NA48/2 studies of rare decays

Mauro Raggi, Laboratori Nazionali di Frascati On behalf of the NA48/2 collaboration

Les Rencontres de Physique de la Vallée d'Aoste La Thuile, Aosta Valley, Italy March 1-7, 2015

Outline

- NA48/2 experiments at CERN SPS
- K[±] ChPT studies history in NA48/2
- New measurement of $K^{\pm} \rightarrow \pi^{\pm}\pi^{0}e^{+}e^{-}$ (new)
- **D** Search for the dark photon in π^0 decays (preliminary)
- Conclusion

The NA48/2 experiment @ SPS north area

NA48/2 collaboration 15 institutes from: Austria, France, Germany, Italy, Russia, CERN, UK, USA

Mauro Raggi, INFN Laboratori Nazionali di Frascati

NA48/2 experiment (2003-2004)

<u>NA48/2 Data taking:</u> 4 months in 2003 (K^{\pm}) + 4 months in 2004 (K^{\pm}) Simultaneous K⁺ and K⁻ beam with N_{K+}/N_{K-} ~1.8 Total of ~2•10¹¹ charged Kaon decays in the fiducial decay region

The ChPT weak chiral lagrangian

■ The basic $\Delta S=1 O(p^4)$ chiral lagrangian can be written as:

$$L_{\Delta S=1} = L_{\Delta S=1}^{2} + L_{\Delta S=1}^{4} = G_{8}F^{4} \left\langle \lambda_{6}D_{\mu}U^{+}D^{\mu}U \right\rangle + G_{8}F^{2} \sum_{i}N_{i}W_{i}$$

$$K \rightarrow 2\pi/3\pi, \gamma\gamma \qquad K^{+} \rightarrow \pi^{+}\gamma\gamma, K \rightarrow \pi\gamma\gamma$$

37 poorly known N_i coefficients and W_i operators

Combinations of such couplings are accessible by measuring Kaon decays branching fractions and form factors D'Ambrosio PoS(EFT09)061

NA48/2 can access all the charged decay with very high precision					
Decay	$\mathscr{L}^4_{\Delta S=1}$ counterterms				
$K^+ ightarrow \pi^+ l^+ l^-$	$N_{14}^r - N_{15}^r$	NA48/2 ee PLE	8 677 (2009) 246-254 μμ PLB 697 (2011) 107-115		
$K_S ightarrow \pi^0 l^+ l^-$	$2N_{14}^r + N_{15}^r$	NA48/1 ee Phy	ys.Lett. B576 (2003) 43-54 μμ PLB 599 (2004) 197-21	•	
$K^{\pm} ightarrow \pi^{\pm} \gamma \gamma$	$N_{14} - N_{15} - 2N_{18}$	NA48/2 Phys.L	ett. B730 (2014) 141-148		
$K_S ightarrow \pi^+ \pi^- \gamma$	$N_{14} - N_{15} - N_{16} -$	· N ₁₇			
$K^{\pm} ightarrow \pi^{\pm} \pi^{0} \gamma$	$N_{14} - N_{15} - N_{16} - N_{17}$ NA48/2 EPJC 68 (2010) 75-87				
$K_L o \pi^+ \pi^- \ e^+ e^-$	$N_{14}^r + 2N_{15}^r - 3(N_{15}^r)$	$r_{16} - N_{17}$	NA48 Eur.Phys.J. C30 (2003) 33-49		
$K^+ ightarrow \pi^+ \pi^0 e^+ e^-$	$N_{14}^r + 2N_{15}^r - 3(N_{15}^r)$	$r_{16} - N_{17}$	Still missing!		
$K_S ightarrow \pi^+ \pi^- e^+ e^-$	$N_{14}^r - N_{15}^r - 3(N_{16}^r)$	$(+N_{17})$	NA48 Eur.Phys.J. C30 (2003) 33-49		
Mauro Raggi, INFN Laboratori Nazionali di Frascati					

$$K^{\pm} \longrightarrow \pi^{\pm} \pi^{0} \gamma^{*} \longrightarrow \pi^{\pm} \pi^{0} e^{+} e^{-}$$

• $K^{\pm} \rightarrow \pi^{\pm}\pi^{0}e^{+}e^{-}$ offers various opportunity of chiral tests:

• Interference $\Gamma_{\rm B} \Gamma_{\rm E}$ can confirm the discrepancy in sign with the theoretical prediction observed by NA48/2 in K[±] $\rightarrow \pi^{\pm}\pi^{0}\gamma_{\rm EPJC 68 (2010) 75-87}$

• Magnetic interference is genuine $\pi\pi$ ee and can be used to extract the sign of the magnetic term Γ_M (impossible to extract in $\pi^{\pm}\pi^0\gamma$).

 P violating observables in the dilepton pair coupling can be used to access short distance physics using K⁺ only (NA62)

Charge asymmetry not contaminated by indirect CP violation (as in K⁰)

Never observed so far!

Reconstruction and background

- $K^{\pm} \rightarrow \pi^{\pm}\pi^{0}{}_{D}(\gamma) \rightarrow \pi^{\pm}e^{+}e^{-}\gamma$ + extra or radiated γ
 - At least 1 $M_{ee\gamma}$ compatible with $M_{\pi 0}$
- $K^{\pm} \rightarrow \pi^{\pm} \pi^{0} \pi^{0}{}_{D}(\gamma) \rightarrow \pi^{\pm} \pi^{0} e^{+} e^{-} \gamma$ with a lost or merged γ
 - $M_{\pi+\pi0}$ much smaller than in the signal due to original 3π final state

First observation of $K \rightarrow \pi^{\pm} \pi^0 e^+ e^-$

Mauro Raggi, INFN Laboratori Nazionali di Frascati

Normalization channel 2003 data only

Number of kaon decays measured by normalizing to $K^{\pm} \rightarrow \pi^{\pm} \pi^{0}_{D}(\gamma)$ decay

Quantity	Value	Value %
# of events	6714917±2591	0.04%
Statistical error		0.04%
Acceptance	(3.555±0.002)%	0.002%
Trigger efficiency	(97.64± 0.04)%	0.04%
BG in 2pD sample	3365±58	8•10-4%
Radiative corrections	0.78%	0.78%
Systematic error		0.78%
$BR(\pi^+\pi^0{}_D(\gamma))$	(2.425±0.073)x10 ⁻³	3.01%
External error		3.01%

 $N_{Kdecays}$ =(7.97±0.03_{Stat}±0.06_{Sys}±0.24_{Ext}) • 10¹⁰ = (7.97±0.25) • 10¹⁰ Error dominated by external error δBR(π⁰→γe⁺e⁻) = 3.01%

$\pi^{\pm}\pi^{0}e^{\pm}e^{\pm}BR$ errors summary table

Error type	Value	Value in %
# signal candidates (1916)	0.095	2.35%
Statistical origin	0.095	2.35%
Radiative correction on IB	0.020	0.50%
Signal total acceptance	0.014	0.34% (statistical error)
	0.041	1.00% (fraction mixture)
Back ground subtraction	0.016	0.40% (statistical)
	0.002	0.05% (systematic Rad. Corr. 2pD)
Trigger efficiency	0.026	0.65% (statistical error)
Total systematics	0.056	1.40%
Normalization measurement		3.10% (from $\pi^+\pi^0_D$ decay BR)
Total external	0.126	3.10%

Systematic error dominated by model dependent acceptance

■ External error from BR($\pi^0_D \rightarrow e^+e^-\gamma$) dominates the total error

Total ππee BR measurement

With the present data sample NA48/2 is not sensitive to DE and INT

 Model dependent BR computed using total acceptance in which the relative weight of the 3 components are obtained from (Eur. Phys. J. C (2012) 72:1872)

 $Acc_{ppee}^{Tot} = \frac{Acc(IB) + Frac(DE)_{Th} \cdot Acc(DE) + Frac(INT)_{Th} \cdot Acc(INT)}{1 + Frac(DE)_{Th} + Frac(INT)_{Th}}$

Using values from table below

Quantity	Value
N _{ppee}	1916 (1860 ± 51 after BG sub)
N _{BG}	55.8±7.4
K _{flux}	(7.97±0.24 _{tot})x10 ¹⁰
Acceptance (Acc ^{TOT} ppee)	(0.583±0.0019)%
Trigger efficiency (ϵ_{ppee})	(98.7±0.65)%

We obtain a preliminary total branching ratio measurement

$$BR(ppee) = \frac{N_{ppee} - N_{BG}}{K_{Flux} \cdot Acc_{ppee}^{TOT} \cdot \varepsilon_{ppee}} = (4.06 \pm 0.10_{stat} \pm 0.06_{sys} \pm 0.13_{ext}) \cdot 10^{-6}$$

Comparison with theory

Total BR prediction from D'Ambrosio et al (private communication isospin breaking): $BR_{TOT}^{Theory} = 4.0995 \cdot 10^{-6}(1+1/71+1/128) = 4.19 \cdot 10^{-6}$ Results are in good agreement within <1 σ even with missing radiative corrections

 $BR(ppee)_{Total}^{Theory} = 4.19 \cdot 10^{-6} \qquad BR(ppee)_{Total}^{NA48/2} = (4.06 \pm 0.17_{Tot}) \cdot 10^{-6}$

Radiative correction included in the NA48/2 montecarlo by using photos

No radiative correction included in Eur. Phys. J. C (2012) 72:1872

Simplest dark photon model

- The simplest hidden sector model just introduces one extra U(1) gauge symmetry and a corresponding gauge boson: the "dark photon" or A' boson.
- The coupling constant and the charges can be generated effectively through the kinetic mixing between the QED and the new U(1) gauge bosons

- In this case the new coupling constant = eE is just proportional to electric charge and it is equal for both quarks and leptons.
- As in QED, this will generate new interactions with SM fermions of type:

$${\cal L}~\sim~g'q_far{\psi}_f\gamma^\mu\psi_f U'_\mu$$

- Not all the SM particles need to be charged under this new symmetry
- In the most general case q_f is different in between leptons and quarks and can even be 0 for quarks. P. Fayet, Phys. Lett. B 675, 267 (2009)

B. Holdom Phys.Lett. B166 (1986) 196

Dark photon searches status

- Visible decays: A'→ ee, μμ, ππ,
 ♦ Kinetic mixed dark photons
- Favored parameters values explaining muon g-2 (red band)
 A'-boson light 10-100 MeV
- Status of dark photon searches
 - Beam dump experiments (grey)
 - Fixed target (Apex, A1)
 - Mesons decays (Babar, KLOE, Wasa)
- Theoretical exclusion from $g_e 2 g_{\mu} 2$
 - \blacklozenge Recent tight limit form α_{EM} (blue filled area) PhysRevD.86.095025
- Much less constraints on "Invisible" decay mode
 - ♦ A'→χχ,
 - \blacklozenge No assumption on α_D and no kinetic mixing

Dark photon in π^0 decays

Mauro Raggi, INFN Laboratori Nazionali di Frascati

NA48/2 data sample

- Number of kaon decays in NA48/2 ('03/'04): $N_{K} \approx 2 \cdot 10^{11}$
 - 4.10¹⁰ π^0 tagged decays from $K^{\pm} \rightarrow \pi^{\pm} \pi^0$ decays
 - High efficiency trigger chain for 3-track vertices throughout the data taking
- Exclusive search for the decay chain $K^{\pm} \rightarrow \pi^{\pm} \pi^{0}$, $\pi^{0} \rightarrow \gamma A'$, $A' \rightarrow e^{+}e^{-}$ ◆ Fully reconstructed final state, 3-track vertex topology.
- Identical to $K^{\pm} \rightarrow \pi^{\pm} \pi^{0}_{D}$ (K_{2pD}), $\pi^{0}_{D} \rightarrow \gamma e^{+}e^{-}$;
 - ♦ BR(K_{2pD})=2.4 10⁻³
 - Sensitivity is limited by the irreducible K_{2pD} background.
- Very good spectrometer mass resolution: $\sigma_{Mee} \approx 0.012 \text{ x } M_{ee}$
- Signal acceptance: depending on $M_{A'}$, up to 2.5%.

Modeling the background

Differential decay rate (lowest order):

$$\frac{1}{\Gamma_0} \frac{\partial \Gamma(\pi \to \gamma e^+ e^-)}{\partial x \partial y} = \frac{\alpha}{\pi} \left| F(x) \right|^2 \frac{(1-x)^3}{4x} \left(1 + y^2 + \frac{r^2}{x} \right)$$

With x =
$$(m_{ee}/m_{\pi})^2$$
, y = $2p(q_1-q_2)/[m_{\pi}^2-(1-x)]$
r = $2m_e/m_{\pi}$

Radiative corrections

- Mikaelian and Smith, PRD5 (1972) 1763
- Improved numerical precision by Husek, Kampf and Novotný (to be published)
- \square π^0 transition form factor F(X)=1+ax
 - PDG TFF slope found inadequate
 - Modified TFF slope used for better data description

• TFF slope measurement in progress

Data sample: $K_{2\pi D}$ analysis

Selection optimized for $K_{2\pi D}$ (total P_T consistent to zero). Candidates: $N(K_{2\pi D}, M_{ee} > 10 MeV/c^2) = 4.687 \cdot 10^6$, $K_{\mu 3D}$ contribution: 0.15%. Semileptonic K[±] decays (K $\rightarrow \pi^0_D l^{\pm}v$, large P_T) can be included.

Statistical significance

- Scanned DP mass range: 10 MeV/c²<M_{DP}<125 MeV/c².
 - Variable DP mass step: ≈0.5σM_{ee}.
 - DP mass hypotheses tested: 398
- Confidence intervals for $N_{A'}$ are computed from:
 - N_{exp} , N_{obs} and δN_{obs} in the signal mass window
 - The Rolke-Lopez method.

NA48/2 preliminary exclusion limit

We conservatively assume $N_{obs} = N_{exp}$ in cases when $N_{obs} < N_{exp}$. Therefore there are no downward spikes

Improvement of the existing limits in the range 10-60 MeV/c^2 .

If DP couples to SM through kinetic mixing and decays only to electrons, it is ruled out as the explanation for anomalous (g-2)µ.

Conclusions

- NA48/2 reported the first observation of the decay $K^{\pm} \rightarrow \pi^{\pm} \pi^{0} e^{+} e^{-}$
 - Based on 1860 candidates the preliminary value of the BR is:

$$BR(ppee) = \frac{N_{ppee} - N_{BG}}{K_{Flux} \cdot Acc_{ppee}^{TOT} \cdot \varepsilon_{ppee}} = (4.06 \pm 0.10_{stat} \pm 0.06_{sys} \pm 0.13_{ext}) \cdot 10^{-6}$$
PRELIMINARY

- Statistical precision can be reduced significantly including 2004 data
- Observation of DE and INT components requires radiative correction in theoretical model. Final result expected for the end of the year.
- NA48/2 presented a preliminary limit on the dark photon searches
 - Improvement of the existing limits in the range 10-60 MeV/ c^2 .
 - Allowed value of ϵ^2 has been pushed well below 10⁻⁶ at 90% CL
 - Assuming kinetic mixing and dark photon decaying to lepton pairs the whole favored by (g-2)μ region has been excluded
 - Further improvements can be obtained by including semi-leptonic decays
 - Final result draft paper in preparation

Spare slides