

Measurement of the CP violating phase γ at LHCb

Rose Koopman (Nikhef) on behalf of the LHCb Collaboration

CKM matrix

- Mass eigenstates: $\,u,\,d\,$ well defined mass/lifetime
- Weak interaction between flavour eigenstates: $u',\,d'$

$$\begin{pmatrix} d'\\s'\\b' \end{pmatrix} = \begin{pmatrix} |V_{ud}| & |V_{us}| & |V_{ub}| e^{-i\gamma}\\ -|V_{cd}| & |V_{cs}| & |V_{cb}|\\ |V_{td}| e^{-i\beta} & -|V_{ts}| e^{i\beta_s} & |V_{tb}| \end{pmatrix} \begin{pmatrix} d\\s\\b \end{pmatrix}$$

0.7

<u>Why?</u>

- γ is the least well known angle
- Test standard model
- Tree decays: no sensitivity new physics <u>How?</u>

- Interference between b → u and b → c transitions
- $A_{ub}/A_{cb} = r_B \approx 1$
- B meson decays

LHCb

La Thuile, March 3rd 2015

La Thuile, March 3rd 2015

 $B^{\pm} \rightarrow D^0 h^{\pm}$

$$A^{DK,f} = \frac{\Gamma(B^- \to [D[\to f]K^-) - \Gamma(B^+ \to [D[\to \bar{f}]K^+))}{\Gamma(B^- \to [D[\to f]K^-) + \Gamma(B^+ \to [D[\to \bar{f}]K^+))}$$
$$R^f_{K/\pi} = \frac{\Gamma(B^- \to [D[\to f]K^-) + \Gamma(B^+ \to [D[\to \bar{f}]K^+))}{\Gamma(B^- \to [D[\to f]\pi^-) + \Gamma(B^+ \to [D[\to \bar{f}]\pi^+))}$$

$$\begin{split} A^{DK,f} &= \frac{\Gamma(B^- \to [D[\to f]K^-) - \Gamma(B^+ \to [D[\to \bar{f}]K^+)}{\Gamma(B^- \to [D[\to f]K^-) + \Gamma(B^+ \to [D[\to \bar{f}]K^+)} \\ R^f_{K/\pi} &= \frac{\Gamma(B^- \to [D[\to f]K^-) + \Gamma(B^+ \to [D[\to \bar{f}]K^+)}{\Gamma(B^- \to [D[\to f]\pi^-) + \Gamma(B^+ \to [D[\to \bar{f}]\pi^+)} \\ R^{DK,f}_{\pm} &= \frac{\Gamma(B^{\pm} \to D[\to f_{\sup}]K^{\pm})}{\Gamma(B^{\pm} \to D[\to f_{\max}]K^{\pm})} \end{split}$$

GLW

CP eigenstate: $f = KK, \pi\pi$ 3 eqns, 5 parameters: $r_B, \delta_B, r_B^{\pi}, \delta_B^{\pi}, \gamma$

ADS

common final state: $f = K\pi, \pi K, \pi K\pi\pi$ 5 eqns, 7 parameters: $r_B, \delta_B, r_B^{\pi}, \delta_B^{\pi}, r_D, \delta_D, \gamma$

[PLB 712 (2012) 203-212]

[PLB 723 (2013) 44]

<u>GLW</u>

- *f* is CP eigenstate: K⁺K⁻, π⁺π⁻
- Large event rate, small interference

<u>ADS</u>

- common final state:
 K⁺π⁻, K⁻π⁺, K[±]π⁺π⁺π⁻
- Lower event rate, larger interference

 $B^0 \rightarrow D^0 K^{*0}$

[PRD 90 (2014) 112002]

Both $B^0 \rightarrow DK^{*0}$ decay paths colour suppressed! Self tagging decay: $K^{*0} \rightarrow K^+\pi^-$

<u>GLW</u>

- *f* is CP eigenstate: K⁺K⁻, π⁺π⁻
- Small event rate, large interference

<u>ADS</u>

- common final state:
 K⁺π⁻, K⁻π⁺
- Large event rate, small interference

$$R^{D\pi}_{fav/sup} = \frac{\Gamma(B^- \to D[\to f_{\rm fav}]\pi^-) + \Gamma(B^+ \to D[\to f_{\rm fav}]\pi^+)}{\Gamma(B^- \to D[\to f_{\rm sup}]\pi^-) + \Gamma(B^+ \to D[\to f_{\rm sup}]\pi^+)}$$

<u>GLS</u>

- common final state: $K_s^{0}K^{+}\pi^{-}$
- Single cabibbo suppressed D decay
- Large interference

<u>GLS</u>

- common final state:
 K_s⁰K⁺π⁻
- Single cabibbo suppressed D decay
- Large interference

<u>GGSZ</u>

- common final state: $K_s^0 \pi^+ \pi^-$, $K_s^0 K^+ K^-$
- Decay amplitude in bins of Dalitz plane

$$N_{\pm i}^{-} = h_{B^{-}} \begin{bmatrix} F_{\pm i} + r_{B}F_{\mp i} + 2\sqrt{F_{i}F_{-i}}(x_{-}c_{\pm i} + y_{-}s_{\pm i}) \end{bmatrix} \qquad x_{\pm} \equiv r_{B}\cos(\delta_{B} \pm \gamma)$$

- $N_{\pm i}^{+} = h_{B^{+}} \left[F_{\mp i} + r_{B} F_{\pm i} + 2\sqrt{F_{i} F_{-i}} (x_{+} c_{\pm i} y_{+} s_{\pm i}) \right] \qquad y_{\pm} \equiv r_{B} \sin(\delta_{B} \pm \gamma)$
- c, s: average strong phase (CLEO), F: fraction of D decays ($B^0 \rightarrow D^{*+}\mu^-\nu X$)

La Thuile, March 3rd 2015

Combination

0, K[†] 0, K[†]

 $\gamma = (73 \, {}^{+9}_{-10})^{\circ}$

- Most precise measurement of γ using tree decays:
 - 30% improvement compared to pre-LHCb!
- Compare to γ measurement with B>hh decays (loop diagrams)

Entries / (15 MeV/ c^2)

5600

 $M(D(K^*\pi^-)K^{*0})$ [M

5400

5200

200

100

300 LHCb

5200

• $\gamma = (73^{+9}_{-10})^{\circ}$ versus $\gamma = (63.5^{+7.2}_{-6.7})^{\circ}$

 m^{2}_{+} [GeV²/ c^{4}

LHCb

 $B^+ \rightarrow [\pi^+ K^- \pi^+ \pi^-]_{\mu} \pi^+$

20

5000

- Need better precision to find new physics
- Expected sensitivity¹
 - Run II: 4-11°
 - Upgrade: 1°

τ modulo $(2\pi/\Delta m_s)$ [ps

01

5400

5200

 $m([K_S^0 K \pi^*]_D \pi)$ [MeV/c²]

5400

5600

 $m(Dh^{\pm})$ (MeV/ c^2)

LHCb

¹[CERN-LHCC-2012-007]

Thank you!

γ results

La Thuile, March 3rd 2015

Formalism

$$A^{DK,f} \begin{vmatrix} GLW & ADS \\ \frac{2r_B \sin \delta_B \sin \gamma}{1+r_B^2+2r_B \cos \delta_B \cos \gamma} \\ R^f_{K/\pi} \begin{vmatrix} R_{\text{cab}} \frac{1+(r_B)^2+2r_B \cos \delta_B \cos \gamma}{1+(r_B^\pi)^2+2r_B^\pi \cos \delta_B^\pi \cos \gamma} \\ R^D_{\pm} \end{vmatrix} = R^{DK,f} \begin{vmatrix} R_{\text{cab}} \frac{1+(r_B)^2+2r_B \cos \delta_B \cos \gamma}{1+(r_B^\pi)^2+2r_B^\pi r_D \cos (\delta_B - \delta_D) \cos \gamma} \\ R^D_{\pm} \end{vmatrix}$$

$$GLS R_{\text{fav/sup}}^{D\pi} = \frac{1 + (r_B^{\pi} r_D)^2 + 2r_B^{\pi} r_D \kappa \cos(\delta_B - \delta_D) \cos \gamma}{(r_B^{\pi})^2 + r_D^2 + 2r_B^{\pi} r_D \kappa \cos(\delta_B + \delta_D) \cos \gamma}$$