

University of Bologna & INFN

Top Quark Production Measurements with ATLAS

Matteo Franchini (On behalf of the ATLAS collaboration) La Thuile 2015

1-7 March 2015

matteo.franchini@cern.ch

The top quark

LHC & ATLAS

Production at LHC

Top pairs

Single top Wt-channel Electroweak interaction. t-channel top cross section Hathor Y W $g \mathcal{O}$ 17%t-chan (pb) 78% W LHC(7) 63.9 ± 3.8 5% 00000 LHC(8) 84.7 ± 4.9 WLHC(13) 217.0 ± 11.7 s-channel arXiv:1406.4403

Top production @ ATLAS - La Thuile2015

Top Decay

Boosted Topology

Very high p_T top quarks decays cannot be separated in single jets; Peculiar topology needs specific algorithms.

Top Pairs (tt)

tt Inclusive Cross Section - Dilepton

$\sigma_{t\bar{t}} \rightarrow$	lvi	lvk	b
	<i>LVI</i>	VU	\overline{U}

 $\sqrt{s} = 7 \text{ TeV}$ $\sqrt{s} = 8 \text{ TeV}$ $\int L \cdot dt \simeq$ **4.6 \ fb^{-1} (2011)** $\int L \cdot dt \simeq$ **20.3 \ fb^{-1} (2012)**

<u>Selection</u>: opposite sign(OS) $e\mu$ + 1 or 2 b-tag jets;

<u>**Bkg:</u>** W-t single top (**main**, from MC), Z+jets(from MC + data driven Z->ll scaling), fake leptons(data driven extrapolation from same sign(SS) sample);</u>

<u>**Cross Section strategy:**</u> directly from cross section equations in both the cases of exactly 1 or 2 b-tag:

$$N_1 = L\sigma_{t\bar{t}} \epsilon_{e\mu} 2\epsilon_b (1 - C_b \epsilon_b) + N_1^{\text{bkg}}$$

$$N_1 = L\sigma_{e\mu} C_b \epsilon_b^2 + N_1^{\text{bkg}}$$

 $N_2 = L\sigma_{t\bar{t}} \epsilon_{e\mu} C_b \epsilon_b^2 + N_2^{\rm org}$

Systematics: Lumi(2-3%), beam energy(2%), tt modelling(~1.3%), PDF(~1.1%).

$$\begin{aligned} \sigma_{t\bar{t}} &= 182.9 \pm 3.1 \pm 4.2 \pm 3.6 \pm 3.3 \, \text{pb} \, (\sqrt{s} = 7 \, \text{TeV}) \\ \sigma_{t\bar{t}} &= 242.4 \pm 1.7 \pm 5.5 \pm 7.5 \pm 4.2 \, \text{pb} \, (\sqrt{s} = 8 \, \text{TeV}) \end{aligned} \qquad \underbrace{\frac{\Delta \sigma_{tt}}{\sigma_{tt}}}_{\sigma_{tt}} &= 4\% \end{aligned}$$

stat. + syst. + lumi + beam energy

tt Inclusive Cross Section - Combination

Dilepton golden channel;

Experimental unc. even smaller than theory ones;

Optimized by systematic uncertainties;

8 TeV

Combination improves sensitivity on the most precise result (ATLAS dilepton) by about **10**%.

Oct. '14	tt Differential Cross Section - <i>l</i> +jets							
	Resolved	($\sigma_{t\bar{t}} \rightarrow c$	qqlvbb		Boosted		First!
$\frac{d\sigma_{t\bar{t}}}{dX}$ X = p _T (t), p _T (tt), m(t	$\sqrt{s} = 7$ $\int L \cdot dt =$	TeV 4.6 fb ⁻¹ (2	2011)	$\frac{d\sigma_{t\bar{t}}}{dp_T(t\sigma)}$	<u>v)</u>	√s = 8 ∫L·dt =	TeV 20.3	fb -1 (2012)
• <u>Selection</u> : one and m_T^W , $\ge 4 a$	isolated <i>e/µ,</i> sym nti-k_T R=0.4 jets	Phys. Rev. D 9 metric miss: $b_r \ge 1$ b-tag;	<u>90, 072004</u> ing E _T	• <u>Select</u> and m (had. c	on: one iso $_{\Gamma}^{W}$, ≥ 1 highted by high bound by	olated <i>e/µ,</i> syr h-p_T anti-k_T I);	ATLAS nmetric R=1.0 jet	S-CONF-2014-057 missing E_T t, ≥ 1 b-tag
 Analysis strategy: σ_{tī} as a function of different kinematic variables. Unfold N-N_{bkg} kinematic distributions (SVD method, bin-per-bin correction for migrations and eff.), scale for luminosity and BR; 			 Analysis strategy: unfold (SVD method) N-N_{bkg} to fiducial phase-space (particle level) and extended at full phase-space (parton level), scale for luminosity and BR; 					
AT 10 ⁴ 10 ³ 10 ² 10 ⁻¹ 10 ⁻¹ 10 ⁻² 10 ⁻³ 10 ⁻³	LAS $=7 \text{ TeV} \int L dt = 4.6 \text{ fb}^{-1}$	µ+jets ↓ Data tī (l+jets) tī (dilepton) Single top W+jets Multijet Other		Events / GeV	10^4 ATLAS 10^3 20.3 fb ⁻¹ , 10^2 10^1 10^{-1} 10^{-2} 1.5 1.5 10^5	Preliminary	Data t Šingle lep t Dilepton Single top W+jets Multijet Z+jets Diboson	
Data/Pre-	00 200 300 400 500 Hadronic	600 700 800 top p _T [GeV]	W+jets: 1	nain bkg	300 400 5	500 600 700 800 top-je	900 1000 1 et candidate p	100 1200 , [GeV]

tt Differential Cross Section - l+jets

Feb. '15 Pseudo-top differential Cross Section

 $\sigma_{t\bar{t}} \rightarrow qqlvbb$

 $\sqrt{s} = 7 \text{ TeV}$

∫L·dt = **4.6 fb-1** (2011)

<u>Same strategy</u> as in the **resolved diff. cross section** at 7 TeV;

Measured in a **fiducial phase-space** (particle level) as a function of hadronic and leptonic $pseudo-top p_T$ and $pseudo-t\bar{t} p_T$, m, y(particle-objects).

Particle object definition

- Leptons: adding the photons around a cone of R=0.1;
- **E**_T^{miss}: sum of all neutrinos;
- Jets: include all stable particles but μ, e and γ not from hadrons;
- **b-tag:** ghost-matching.

arXiv:1502.05923

Top production @ ATLAS - La Thuile2015

tt + jets differential Cross Section

 $\sigma_{t\bar{t}+\gamma} \rightarrow qqlvbb$

Feb. '15

$$\sqrt{s} = 7 \text{ TeV}$$

$$\int L \cdot dt = 4.6 \text{ fb}^{-1} (2011)$$

Selection: 1 lepton (e/μ) , \geq 3 jets, \geq 1 b-tag, E_T^{miss} ;

<u>Cross Section strategy</u>: measured in a fiducial phasespace as a function of <u>*n jets*</u> (3 to 8) and of the p_T of the <u>5 leading p_T jets</u>;

- Jet multiplicity (>4)
 correlated to <u>*n* hard jets</u> in
 QCD bremsstrahlung;
- As a function of jets p_T is particularly <u>sensitive to higher</u> <u>order QCD effects</u> in modelling MC;
- As function of leading p_T jet complement other cross section measurements.

POWHEG with reduced hard radiation gives the **best overall agreement.**

Top production @ ATLAS - La Thuile2015

M. Franchini

JHEP01(2015)020

tt̄ + γ Inclusive Cross Section

 $\sigma_{t\bar{t}+\gamma} \rightarrow qqlvbb\gamma$

Feb. '15

$$\sqrt{s} = 7 \text{ TeV}$$

 $\int L \cdot dt = 4.6 \text{ fb}^{-1} (2011)$

<u>Selection</u>: 1 lepton (e/μ), \ge 4 jets, \ge 1 b-tag, E_T^{miss} , 1 γ ;

<u>**Bkg:**</u> prompt-photons(various DD methods), tt, W +jets(MC+DD normalization), fake leptons;

<u>**Cross Section strategy:</u>** via binned template maximum likelihood fit, measurement in a **fiducial phase-space**;</u>

Systematics: Systematics: Jet modelling(16.6%), photon modelling(8.8%), b-tag(8.2%).

$$\sigma_{t\bar{t}+\gamma} \times BR = 63 \pm 19/-16 \text{ fb}$$

$$\sigma_{t\bar{t}+\gamma}(theory) = 48 \pm 10 \text{ fb}$$
Prediction from MadGraph and WHIZARD.

Observed with a significance of **5.3σ** away from the *no-signal hypothesis*.

M. Franchini

Single top Cross Section - t-channel

 $\sigma_t \mathcal{E} \sigma_{\bar{t}} \rightarrow qlvb$

$$\sqrt{s} = 7 \text{ TeV}$$

 $\int L \cdot dt = 4.6 \text{ fb}^{-1} (2011)$

- Selection: one isolated e/μ , E_T^{miss} , 2 or 3 jets, ≥ 1 b-tag;
- **<u>Bkg</u>**: W+jets (main), fake lepton, tt and diboson+jets (MC);
- <u>Analysis strategy</u>: binned maximum-likelihood fit to the Neural Network(NN) discriminant distributions in 2 and 3 jets samples;

$$\sigma(tq) = 46 \pm 1 \text{ (stat.)} \pm 6 \text{ (syst.) pb}$$

$$\sigma(tq) = 46 \pm 1 \text{ (stat.)} \pm 6 \text{ (syst.) pb}$$
Extend PDFs sensitivity to u-quark and d-quark
$$\sigma(\bar{t}q) = 23 \pm 1 \text{ (stat.)} \pm 3 \text{ (syst.) pb}$$

Total t-ch top xSec. $d\sigma/\sigma=12\%$ $\sigma_t(tq+\bar{t}q) = 68 \pm 2 \text{ (stat.)} \pm 8 \text{ (syst.) pb}$ Systematics: JES(~9-16%), IFSR (~7%), b-tag.

Phys. Rev. D. 90, 112006 (2014)

Relative t-ch top xSec. $R_t = 2.04 \pm 0.13 \, (\text{stat.}) \pm 0.12 \, (\text{syst.})$ $R_t = \sigma(t) / \sigma(\bar{t})$ $dR_t / R_t = 8\%$

Decrease the syst. uncertainty (stat. dominates). Still constraining PDFs.

Top production @ ATLAS - La Thuile2015

March '14 Single top Cross Section - t-channel

<u>t-channel</u> single top cross section

 $\sqrt{s} = 8 \text{ TeV}$

ATLAS Preliminary

Data corrected with

acceptance correction from:

aMC@NLO(2→3)+Herwig

$\int L \cdot dt = 20.3 \text{ fb}^{-1} (2012)$

L dt = 20.3 fb⁻¹ vs=8 TeV

NLO+NNLL (MSTW2008)

ATLAS-CONF-2014-007

Same strategy as in 7TeV but cross section first measured in a **fiducial phase-space** then **extrapolated** to full phase-space.

Feb. '15 Single top Cross Section - s-channel

<u>s-channel</u> single top cross section

$$\sqrt{s} = 8 \text{ TeV}$$
 $\int L \cdot dt \simeq 20.3 \text{ fb}^{-1} (2012)$

Selection: one lepton (e/μ), large E_T^{miss} , 2 b-tag jets;

Bkg: tt (main), single top t-ch, W+jets;

Analysis strategy: bkg discrimination via Boosted Decision Tree (**BDT**) and <u>signal extraction</u> using binned maximum likelihood fit.

Main Uncertainties: E_T^{miss} scale (54%), JES(39%), stat. (35%);

Phys.Lett. B740 (2015) 118

 $\sigma_s = 5.0 \pm 4.3 \ pb$

 $\sigma_{theory} = 5.61 \pm 0.22 \ pb$

 $\Delta \sigma_{s-ch} = 86\%$

 σ_{s-ch}

Sept. '14 Single top Cross Section - Wt-channel

 σ_{Wt} ->lvlvb

$$\sqrt{s} = 8 \text{ TeV}$$

$$\int L \cdot dt = 20.3 \, fb^{-1} (2012)$$

- <u>Selection</u>: one $e + \text{one } \mu$ (isolated and opposite sign), missing E_T , 1 or 2 jets, ≥ 1 b-tag;
- <u>Bkg</u>: Z+jets, tt

 , diboson (MC), fake lepton (data driven via matrix method);
- <u>Analysis strategy:</u> Boosted Decision Tree (BDT) for signal/bkg selection; cross section from a maximum likelihood fit of both 1 and 2 jets samples;

$$\sigma_{\rm Wt}^{\rm theory} = 22.4 \pm 1.5 \ {\rm pb}$$

$$\sigma(pp \rightarrow Wt + X) = 27.2 \pm 2.8 \text{ (stat)} \pm 5.4 \text{ (syst) pb}$$

Systematics evaluated from pseudo-experiments; Breakdown obtained by subtraction one sys. contribution at a time; Main impact from JES(10%) and b-tag(8.4%).

Single top Cross Section - Combination

t-channel

Wt-channel

Conclusion

First measurements in **fiducial phase-spaces** and in **boosted regime**;

Boosted approach will be fundamental in runII allowing to study the top quark up to the **TeV scale** thanks to greater statistics and higher energy;

Inclusive measurements in agreement with the theoretical predictions;

- # Inclusive tt cross section (ATLAS deletion & ATLAS+CMS combination) surpassed the precision of theoretical predictions;
- **Differential measurements** disagree at high p_T values;
 - ** now sensitive enough to tune the MCs;
- Some *runI* analysis still ongoing: stay tuned;
- TopLHC Working Group is in the process of discussing harmonising ATLAS and CMS top analyses systematics and MC generators in order to decrease combination uncertainties.

Thanks

for the attention

Back-up

Top Pairs Cross Section

All measurements in agreement with theory;

The dilepton channel has smaller uncertainty with respect to the l+jets one;

tt Differential Cross Section - l+jets

Resolved

tt Differential Cross Section - l+jets

