SUSY searches with ATLAS (including non-standard Higgs)

Andy Haas (NYU) on behalf of the ATLAS Collaboration

Results and Perspectives in Particle Physics La Thuile, Italy - March 6, 2015 https://agenda.infn.it/conferenceOtherViews.py?confld=8743&view=standard

SUSY, Where Art Thou?

Hierarchy problem Force unification Dark matter

Should find SUSY near the EW scale?

Introduction

NEW! VBF Higgs ATLAS-CONF-2015-001

Events / 50 GeV Higgs-boson production via ATLAS Preliminary +jets/multijets $\rightarrow ev$ vector-boson-fusion (VBF) decaying Other W/Z+jets √s = 8 TeV, 20.3 fb⁻¹ W/Z+y into neutralinos and/or gravitinos Others Total SM (m_{NLSP} , m_{LSP}) = (100, 0) GeV Data 10 ۲ Interpretation in GMSB and NMSSM models $\tilde{G}/\tilde{\chi}_1^0$ p400 500 600 700 800 900 1000 1100 1200 1300 VBF m_{ii} [GeV] $\tilde{G}/\tilde{\chi}_1^0$ 10² Events / 10 GeV Signal region γ+jets/multijets W(→ ev) pATLAS Preliminary Other W/Z+jets W/Z+y Total SM (s = 8 TeV, 20.3 fb⁻¹ Others (m_{NLSP} , m_{LSP}) = (100, 0) GeV Data 10 Analysis Design Event Selection: lepton veto, ≥ 2 jets, ≥ 1 photon, $E_{\rm T}^{\rm miss}$ - event selection optimized to exploit VBF di-jet topology m_{jj} , $\Delta \eta(jj)$ main backgrounds multi-jets and 80 100 20 40 60 120 140 0 gamma+jets m_T [GeV]

Andy Haas, NYU

NEW! VBF Higgs

ATLAS-CONF-2015-001

Higgs-boson production via vector-boson-fusion (VBF) decaying into neutralinos and/or gravitinos

Interpretation in GMSB and NMSSM models

Analysis Design

- Event Selection: lepton veto, \geq 2 jets, \geq 1 photon, $E_{\mathrm{T}}^{\mathrm{miss}}$

- event selection optimized to exploit VBF di-jet topology $m_{jj}, \Delta \eta(jj)$

```
    main backgrounds multi-jets and 
gamma+jets
```

No significant deviation from SM.

Andy Haas, NYU

NEW! WH combination arXiv:1501.07110 $1\ell + 2 bb + E_{\rm T}^{\rm miss}$ $1\ell+2$ photons + $E_{\mathrm{T}}^{\mathrm{miss}}$ $\ell^{\pm}\ell^{\pm} + \geq 1$ jet + $E_{\rm T}^{\rm miss}$ ρ± Simplified models: p $ilde{\chi}_1^\pm ilde{\chi}_2^0$ decays via Wh p $\tilde{\chi}_1^{\pm}$ $\tilde{\chi}_1^{\pm}$ • $\tilde{\chi}_1^{\pm}, \tilde{\chi}_2^0$ wino, $\tilde{\chi}_2^0$ mass degenerate $\tilde{\chi}_{2}^{0}$ p• $\tilde{\chi}_1^0$ bino Overall very good agreement between data and expectation Strategy 10³ Events / 30 GeV - all 3 signatures combined Data +iets ATLAS 5 Total SM Single top s = 8 TeV, 20.3 fb⁻¹ - 2 signal regions exploiting m_{T}^W , m_{CT} 10² Other and requiring m_{bb} to be around the $m(\tilde{\chi}^{\pm}\tilde{\chi}^{0},\tilde{\chi}^{0}) = (250,0) \text{ GeV}$ Higgs mass 10 W+jets and tt SM background 2.5 GeV processes dominate 🗕 Data ATLAS a (s = 8 TeV, 20.3 fb⁻¹ 1 - 2 signal regions exploiting $m_{\mathrm{TT}}^{W\gamma}$, and Fit to Data Events / $\Delta \phi(W, \gamma)$ 10 - VH and tTH SM background processes dominate Data / SM 2 - 6 signal regions exploiting $m_{\rm eff}$, and $m_{\rm T}$ 0 - VV and non-prompt lepton SM 80 100 120 140 160 180 Poo 60 110 120 130 140 150 160 m_{bb} [GeV] background processes dominate m_{γγ} [GeV]

WH combination

arXiv:1501.07110

$3\ell + E_{\rm T}^{\rm miss}$ (arXiv:1402.7029)

Combination + 3L

- No significant deviation from SM
- Combination of all 3 channels
 + 3L analysis shows the best exclusion (mind the axis range)
- Excluding charginos with mass up to 250 GeV for massless LSP

NEW!

 $\mathsf{A} \to \mathsf{Z}\mathsf{h}$

arXiv:1502.04478

2HDM

Can be dominant A decay, especially for $m_A < 2m_{top}$ A is a narrow resonance in 220 – 1000 GeV

 $\begin{array}{l} \mbox{Look for } Z \rightarrow II + h \rightarrow bb \mbox{ or } \tau\tau \\ \mbox{ and } Z \rightarrow \nu\nu + h \rightarrow bb \end{array}$

NEW!

 $\mathsf{A}\to\mathsf{Z}\mathsf{h}$

arXiv:1502.04478

2HDM

Can be dominant A decay, especially for $m_A < 2m_{top}$ A is a narrow resonance in 220 – 1000 GeV

 $\begin{array}{l} \mbox{Look for } Z \rightarrow II + h \rightarrow bb \mbox{ or } \tau\tau \\ \mbox{ and } Z \rightarrow \nu\nu + h \rightarrow bb \end{array}$

(a) ℓℓbb

NEW!

 $\mathsf{Gluino} \to \mathsf{multi-jets}$

Search for gluino decays to jets through RPV coupling q pDominant QCD background is estimated using templates derived in lower jet multiplicity bins Excess searched for with $\geq 6,7$ jets or large total (fat-)jet mass \tilde{q} - \tilde{q} production, $\tilde{q} \rightarrow q q \tilde{\chi}^0$, $\tilde{\chi}^0 \rightarrow q q q$ $m_{\widetilde{\chi}_1^0}$ [GeV] Events / 50 GeV Jet Counting, No B-tags 10^{4} 3-Jet Template, Data Expected Total Jet Mass 4-Jet Sample, Data, SR Observed 10³ Expected Jet Counting, With B-tags Uncertainties Observed $m(\widetilde{g}, \widetilde{\chi}_{1}^{0}) = 800, 175 \text{ GeV}$ $\sqrt{s} = 8 \text{ TeV}, 20.3 \text{ fb}^{-1}$ ATLAS 1000 10² All limits at 95% CL ATLAS $\sqrt{s} = 8 \text{ TeV}, 20.3 \text{ fb}^{-1}$ 5-3 qal folidan 10 4jSR, $p_{\tau}^{3} > 250 \text{ GeV}$ Bated Due to UDD 500 Ratio to Template 2.0 1.5 1.0 0.5 ×10³ 0.0^L 0.2 0.5 0.8 1.2 600 800 1200 1400 1000 400 m_ã [GeV] Total Jet Mass [GeV]

Andy Haas, NYU

NEW! Search for $e\mu$, $e\tau$, or $\mu\tau$ resonances

RPV decays of the τ sneutrino LFV decays of a Z'

Dominant backgrounds modeled in MC and checked in Control Regions

Excess searched for in mass ranges compatible with signal resolution

eμ

Andy Haas, NYU

200

400

Events / 20 GeV

10⁴

10³

10²

10

10⁻¹

2

0

Data/SM

Various SUSY decay chains can give 2l+jets+MET

Look at events with a Z \rightarrow II candidate Signal Region: MET>225GeV and HT>600GeV

Main background (ttbar) is estimated from data using eµ events with the same cuts as the SR. This is cross checked using the Z side-bands.

3.0\sigma excess (!) ... 3.0 σ for ee, 1.7 σ for $\mu\mu$

Channel	SR-Z ee	SR-Z $\mu\mu$	SR-Z same-flavour combined
Observed events	16	13	29
Expected background events	4.2 ± 1.6	6.4 ± 2.2	10.6 ± 3.2
Flavour-symmetric backgrounds	2.8 ± 1.4	3.3 ± 1.6	6.0 ± 2.6
$Z/\gamma^* + \text{jets}$ (jet-smearing)	0.05 ± 0.04	$0.02^{+0.03}_{-0.02}$	0.07 ± 0.05
Rare Top	0.18 ± 0.06	0.17 ± 0.06	0.35 ± 0.12
WZ/ZZ diboson	1.2 ± 0.5	1.7 ± 0.6	2.9 ± 1.0
Fake leptons	$0.1\substack{+0.7\\-0.1}$	$1.2^{+1.3}_{-1.2}$	$1.3^{+1.7}_{-1.3}$

Various SUSY decay chains can give 2l+jets+MET

Look at events with a Z→II candidate Signal Region: MET>225GeV and HT>600GeV

Andy Haas, NYU

q

p

CMS Search for SUSY with 2I+jets+MET: on Z

Recall ATLAS Signal Region: MET>225GeV and HT>600GeV

CMS has new Signal Region with Njets>2 and large MET

- No excess seen
- More DY background than ATLAS (from looser H_{τ})
- ~30% overlap with ATLAS selection

arXiv:1502.06031

Various SUSY decay chains can give 2l+jets+MET

Also study off-Z-peak range, with 2 or 4 jets, with or without b-tags, and CMS-like selection

Recall CMS 2.6 σ excess 20<m(II)<70 GeV with 2/3 jets (arXiv:1502.06031)

Off-Z Region	$E_{\mathbf{T}}^{\mathrm{miss}}$ [GeV]	$n_{ m jets}$	$n_{ m b-jets}$
Signal regions			
SR-2j-bveto SR-2j-btag SR-4j-bveto SR-4j-btag SR-loose CMS-like	> 200 > 200 > 200 > 200 > 200 > (150, 100)	$ \begin{array}{c} \geq 2 \\ \geq 2 \\ \geq 4 \\ \geq 4 \\ (2, \geq 3) \end{array} $	$= 0$ ≥ 1 $= 0$ ≥ 1

Various SUSY decay chains can give 2I+jets+MET

Also study off-Z-peak range, with 2 or 4 jets, with or without b-tags, and CMS-like selection

 ν/ℓ

p

 ℓ/ν

Set limits in GGM models, as well as squark/gluino decays chains with neutralinos

3.0 sigma excess in Z+MET at large HT weakens limits

	Dilepton edge	Z+MET
ATLAS	No excess	3.0σ
CMS	2.6σ	No excess

The ATLAS and CMS edge selections are the same (by design) but the Z+MET are different, only ~30% of our events enter the CMS selection

Andy Haas, NYU

Scalar charm \rightarrow cc + MET

- Inclusive \tilde{q} searches weaker if only one light \tilde{q} : $\sigma/8$
- In MSSM squarks can mix
 - Weak flavour physics constraints on $\tilde{t} \tilde{c}$ mixing
- \bullet Charm jet tagging gives improved sensitivity to \tilde{c}
- First dedicated search for scalar charm quark

- 2 high-p_T c-jets
- High $E_{\mathrm{T}}^{\mathrm{miss}}$
- No leptons

Scalar charm \rightarrow cc + MET

Searches for Long-lived SUSY

Long Lived Particles (LLP) are predicted by a wide variety of models : Hidden Sectors, RPV violating decays, Split-SUSY, AMSB, GMSB,

All these signatures depend on lifetime

Re-interpretation of Prompt SUSY Searches

What if gluino is just a little long-lived, about 1 ns? (mini-split SUSY) Standard jets+MET SUSY searches should still apply (up to what lifetime?)

- Leptons vetos may start to fail impact-parameter cuts (when?)
- Jets will start to be identified as b-jets (when?)
- Jets may fail cleaning cuts using track pT fraction, EM fraction (when?)

First explicit re-interpretation of prompt SUSY searches for long-lived gluinos!

Stable Massive Particles

JHEP 01 (2015) 068

- ٠ Interpreted in many SUSY models, e.g. GMSB $(\tau_1 \text{ as NLSP})$
 - Four different signatures probed: stable sleptons. leptoSUSY, charginos and R-hadrons (bound states composed of the LLP and light SM guarks or gluons)
 - GMSB: two muon-like SMPs, high β values
 - Signal discrimination using mass measurements $(m = \frac{p}{\beta \gamma})$, with p taken from the charge particle track, time measurement (β) in the calorimeters and muon system, and energy loss $(\beta\gamma)$ measured in the pixel detector

Analysis Design

- Events selected with two SMPs and $0.2 < \beta < 0.95$
- High $p_{\rm T}$ muons with mis-measured β as the dominating background, taken from data
- Discriminating variables: β (taken from ToF), $\beta\gamma$ (can be measured by energy loss $\frac{dE}{dx}$ in pixel detector)

Stau<290 GeV, Chargino < 620 GeV Gluino Rhadrons < 1270 GeV

Direct

Andy Haas, NYU

Conclusions

- Large number of new results still being derived from LHC Run 1 !
 - Challenging analyses / filling gaps in previous search coverage
- Excited to finally lay hands on 13 TeV data
- New heavy states could be discovered relatively quickly!

Backup

$h \to y \text{+} MET$

Requirement	Data	$(m_{NLSP}, m_{LSP}) = (100, 0)$ GeV signal
Data quality and trigger	1.53×10^{7}	337±4
Good vertex	1.53×10^{7}	336±4
$E_T^{\text{miss}} > 50 \text{ GeV}$	1.26×10^{7}	279±3
Selected photon $p_T > 40 \text{ GeV}$	7.41×10^{5}	128±2
VBF $m_{jj} > 400$ GeV and $ \Delta \eta_{jj} > 3.0$	3.17×10^{4}	96.4±1.9
VBF jet $p_T \ge 40 \text{ GeV}$	6870	58.0±1.5
Lepton veto	6040	57.2±1.5
≤ 1 non-VBF jet	4620	50.4 ± 1.4
$ \Delta \phi(E_{\rm T}^{\rm miss}, VBF jet) _{min} > 1.4$	600	30.1 ± 1.1
$ \Delta\phi(E_{\rm T}^{\rm miss}, non - VBF jet) _{min} < 2.0$	565	28.2±1.0
OPV	425	27.6±1.0
$ \vec{p}_T^{TOT} \ge 50 \text{ GeV}$	337	26.9 ± 1.0
$ \Delta \phi(E_{\rm T}^{\rm miss}, \gamma) \leq 1.8$	100	21.6±0.9
VBF $m_{jj} > 600$ GeV and $ \Delta \eta_{jj} > 4.0$	50	14.6±0.7

 $h \rightarrow y + MET$

ATLAS Off-Z Results

Define 4 signal regions to target various types of signal models

ATLAS Off-Z Summary of Results

CMS Search for SUSY with 2I+jets+MET: off Z

Andy Haas, NYU

Mono-photon + MET

- arXiv: <u>1411.1559</u> [hep-ex], PRD 91, 012008 (2015)
- Compressed spectra \Rightarrow soft decay products, low $E_{\rm T}^{\rm miss}$
- ISR photon boosts system \Rightarrow higher $E_{\rm T}^{\rm miss}$

- ${\scriptstyle \bullet}$ Veto leptons and >1 jet
- Background $W\gamma$ (15%) and $Z\gamma$ (70%) normalized in lepton CRs

Mono-photon + MET

Process	Event yield
$Z(\rightarrow \nu\nu) + \gamma$	$389\pm36\pm10$
$W(\rightarrow \ell \nu) + \gamma$	$82.5 \pm 5.3 \pm 3.4$
$W/Z + \text{jet}, t\bar{t}, \text{diboson}$	$83\pm2\pm28$
$Z(\rightarrow \ell \ell) + \gamma$	$2.0\pm0.2\pm0.6$
$\gamma + \text{jet}$	$0.4^{+0.3}_{-0.4}$
Total background	$557\pm 36\pm 27$
Data	521

Systematic uncertainties $\sim 15\%$

- CR statistics (6%)
- $e \rightarrow \gamma$ mis-ID (5%)

- Best exclusion along 'diagonal'
- Also sets limits for DM and more general models

$\mathsf{Gluino} \to \mathsf{multi-jets}$

Andy Haas, NYU

Charm tagging

- arXiv: <u>1501.03555</u> [hep-ex], submitted to JHEP
- Many models targeted
 - Gluino (\tilde{g}) and squark (\tilde{q}) production
 - Decays via charginos (*χ̃*[±]₁) and sleptons
 (*l̃*) → leptons in final state
- Four regions, 1 & 2 leptons (decay chain length), soft and hard (mass splittings)
 - Soft: $E_{\mathrm{T}}^{\mathrm{miss}}$ trigger, $p_{\mathcal{T}}^{\ell} < 25\,\mathrm{GeV}$
 - Hard: Combined $\ell + E_{T}^{miss}(+ jet)$ triggers

1 or 2 leptons + jets + MET

• Discrimination from $N_{\rm jets}$, $E_{\rm T}^{\rm miss}$, m_T , $m_{\rm eff}$, topological information

•
$$m_T = \sqrt{2p_T^{\ell} E_T^{\text{miss}} (1 - \cos[\Delta \phi(\vec{\ell}, \mathbf{p}_T^{\text{miss}})])}$$

- $m_{\text{eff}} = E_{\text{T}}^{\text{miss}} + \sum_{i=1}^{N_{\text{jets}}} p_{T,i}^{\text{jet}} \left(+ \sum_{i=1}^{N_{\ell}} p_{T,i}^{\ell} \right)$
- Split event into two 'mega jets'

 Exploit symmetry to approximate rest frame - 'R-frame': 'Razor variables'

L: Longitudinal momentum

SM backgrounds controlled with semi data-driven estimate

- Soft lepton regions contribute to improved sensitivity in compressed regions
- Significant improvement over 2011 results

Mono-jet

Non-pointing and delayed Photons

Limits set for the NLSP decaying into a photon and gravitino with a lifetime in the range from 250 ps up to about 100 ns