L'esperimento JUNO e la gerarchia di massa

A. Garfagnini

Padova University and INFN

2 Dicembre 2014

The experimental Site: Kaiping county, Jiangmeng

NPP	Daya Bay	Huizhou	Lufeng	Yangjiang	Taishan
Status	Operational	Planned	Planned	Under construction	Under construction
Power	17.4 GW	17.4 GW	17.4 GW	17.4 GW	18.4 GW

JUNO Civil Construction

JUNO Underground

The JUNO detector concept

The JUNO Central Detector (baseline option)

- A large (D>35m) detector in the water pool
 - Mechanics, optics, chemistry, cleanness, assembly, ...
- Default option: acrylic sphere + stainless steel truss
 - Independent designs from multiple groups
 - Acrylic performances research: strength, bonding, aging, creep
 - Connecting point R&D, making a part of sphere

Deflection analysis

0.1g seismic load

Aging test

Double nonlinearity

Connecting point test 2 Dicembre 2014 6 / 20

AG (PD)

The JUNO Central Detector (alternative option)

Backup option : stainless steel tank + acrylic panel + balloon

- Stainless steel tank design is in progress
- Film material: ETFE/FEP/PEPA
- Requirements to leakage and dust
- 12 m prototype design is underway

PMT related

• PMT coverage, implosion-proof, HV, sample test

Superlayer layout in latitude: >75% AG (PD)

Module layout: >75% JUNO

Possible implosion-proof structure

The JUNO Liquid Scintillator

➡ JUNO LS: LAB + PPO + BisMSB :

- no Gd doping: lower radioactivity
- Iower attenuation : 30 m (15 m in DYB)

➡ Important R&D effort :

- improve raw materials
- improve the production and the purification process:
- ✓ colum purification (IHEP & TUM)
- ✓ charcoal purification (IHEP & JINR)
- ✓ vacuum distillation (IHEP & INFN)

Linear Alky Benzene (LAB)	Atte. L(m) @ 430 nm	
RAW	14.2	
Vacuum distillation	19.5	
SiO ₂ column	18.6	
Al ₂ O ₃ column	22.3	
LAB from Nanjing, Raw	20	
Al ₂ O ₃ column	25	

JUNO LAB Characterization measurements

The JUNO PMT options

The energy resolution challenge

The Calibration system

- an automatic rope system is the primary source delivery system
- ✓ a BOV is more versatile
- a guide tube system covers the boundaries and near boundary regions
- ✓ considering short-lived diffuse radioactive sources to calibrate the detector response
- ✓ a UV laser system is being designed to calibrate the LS properties in situ

Pelletron as a positron beam calibration source

- Mature technology and commercially available:
 - ✓ is a positron gun to shoot positrons directly in the JUNO LS:
 - ✓ energy coverage: 0.5 6.5 MeV, uncertainty < 10^{-4}
 - ✓ can shoot both electrons and positrons and below 5 MeV cheaper than LINAC
 - ✓ energy can be calibrated with a dedicated system (Ge detector) to 0.1% level
 - ✓ excellent energy stability. Super-K LINAC e-beam calibration reached 0.6% absolute energy scale uncertainty

AG (PD)

The VETO system in JUNO

- the VETO system is an outer detector providing information to understand the cosmogenic background. It's made of:
- ✓ a Water Cherenkov
- ✓ a Top Tracker
- simulation and design studies are on going in order to optimize the design. Several options for the Top Tracker are being considered:
 - ✓ the OPERA Target Tracker (scintillator bars) will be moved to JUNO
 - $\checkmark\,$ other detectors technologies are under investigation

Backgrounds in JUNO

- ➡ expected IBD signal rate: ~ 40 events/day
- expected backgrounds :
 - ✓ accidentals
 - ✓ fast neutrons
 - ✗ cosmogenic ⁹Li/⁸He production

Rock overburden: 700 m $< E_{\mu} > \sim$ 200 GeV $< R_{\mu} > \sim 3-4$ Hz

- ✓ accidentals will be reduced thanks to reduced PMT radioactivity and LS purification
- ✓ high muon detection efficiency is important for fast neutrons
- ✓ the biggest background contribution comes from cosmogenic ⁹Li/⁸He muon tracking in JUNO (Central Detector and Water Cherenkov + Top Tracker) is a key element

Expected Significance on Mass Hierarchy

- 3σ if only a relative spectral measurement without external atmospheric mass-squared splitting inputs
- ✓ 4σ with an external Δm^2 measured to about 1% level in ν_{μ} beam oscillation experiments
- ✓ 1% in ∆m² is based on combined T2K and NOvA analysis

S.K. Agarwalla et al, arXiv:1312.1477

- ✓ realistic reactor distributions have been considered
- ✓ 20 kt target mass, 36 GW reactor power, 6-year running
- ✓ 3% energy resolution, 1% energy scale uncertainty assumed

Expected Precisions on Oscillation Parameters

	Nominal	+ B2B (1%)	+ BG	+ EL (1%)	+ NL (1%)
$\sin^2 \theta_{12}$	0.54%	0.60%	0.62%	0.64%	0.67%
Δm_{21}^2	0.24%	0.27%	0.29%	0.44%	0.59%
$ \Delta m_{ee}^2 $	0.27%	0.31%	0.31%	0.35%	0.44%

AG (PD)

A Rich Physcis Program

- Supernova neutrinos
- Diffused supernova neutrinos
- Proton decay $P \rightarrow K^+ + \bar{\nu}$ $\tau > 1.9 \times 10^{34} \text{ yr (90\% C.L.)}$
- Geoneutrinos
 - KamLAND: 30±7 TNU [PRD 88 (2013) 033001]
 - Borexino: 38.8±12.0 TNU [PLB 722 (2013) 295]
 - JUNO (preliminary): 37±10%(stat)±10%(syst)TNU

- Solar neutrinos: high demand on the radioactive background purity. BOREXINO is the standard.
- Atmospheric neutrinos: not much value in redoing what Super-K has done. With JUNO's good energy resolution, atmospheric neutrinos could potentially aid the MH case (PINGU type signal)

AG (PD)

JUNO

The JUNO Collaboration

The JUNO Schedule

