

SHIP Search For Hidden Particles A new experiment proposal

Neutrino Physics with the SHiP experiment

Giovanni De Lellis

Università Federico II and INFN Naples

Outline of the talk

- The physics case for a beam dump facility
- The SHiP experiment
 - The detector for hidden particles
 - The tau neutrino detector
- Neutrino physics program: active neutrinos and heavy neutral leptons

History lesson - 1930s:

- Back then, the "Standard Model" was photon, electron, nucleons
- Beta decay: $n \rightarrow p + e^-$

Continuous spectrum!

• Pauli proposes a radical solution - the neutrino!

 $n \to p + e^- + \bar{\nu}$

- Great example of a hidden sector!
 - neutrino is electrically neutral (QED gauge singlet)
 - very weakly interacting and light
 - interacts with "Standard Model" through "portal" -

 $(ar{p}\gamma^{\mu}n)(ar{e}\gamma$

Today, 2014 - Where are we?

- Higgs!
- Triumph of the Standard Model!

- Still, many reasons to believe there is new physics
 Theoretical: naturalness (Higgs, CC), flavor, Strong CP, Unification, Gravity ...
 Empirical: Dark Matter, Neutrino Oscillations, Baryon Asymmetry
- Unfortunately, there are no guarantees of discovery
- All searches for new physics are now fishing expeditions!

Search for new physics with accelerators: Physics case for a beam dump facility

hidden sector:

HNL: baryon asymmetry of the Universe, dark matter, neutrino masses sgoldstino, light neutralino: SUSY paraphoton: mirror matter, dark matter

Physics case for a beam dump facility EWSB, Hierarchy WIMP DM ...

....

Light Hidden particles \rightarrow singlets with respect to the SM gauge group \rightarrow couple to different singlet composite operators (**Portals**) of the SM

LHN

Renormalizable

 $\left\{ \begin{array}{c} \mu S + \lambda S^2 \end{pmatrix} H^{\dagger} H \\ -\frac{\kappa}{2} B_{\mu\nu} V^{\mu\nu} \end{array} \right.$

Higgs Portal

Neutrino portal

Vector Portal

Higher dimension operators

Light mediator

Direct detection:

$$\frac{\partial_{\mu}a}{f_a}\bar{\psi}\gamma^{\mu}\gamma^5\psi$$

 $\begin{cases} & J \\ \frac{1}{\Lambda^2} \bar{\chi} \chi \bar{q} q + \dots, \end{cases}$

 $g_{\chi}\phi\bar{\chi}\chi + g_q\phi\bar{q}q + \dots$

Dark Matter

Production Detection HS →— SM SM

Generic setup, not to scale!

Motivation for Heavy Neutral Leptons

See-saw generation of neutrino masses

Most general renormalisable Lagrangian of SM particles (+3 singlets wrt SM gauge group):

$$L_{singlet} = i\bar{N}_I\partial_\mu\gamma^\mu N_I - Y_{I\alpha}\bar{N}_I^c\tilde{H}L_\alpha - M_I\bar{N}_I^cN_I + h.c.$$

 $v \sim 246 \,\,\mathrm{GeV}$

Yukawa term: mixing of N_I with active neutrinos to explain oscillations

Majorana term which carries no gauge charge

9

The scale of the active neutrino mass is given by the see-saw formula: $m_{
u} \sim where \ m_D \sim Y_{I\alpha} v$ - typical value of the Dirac mass term

eVν M_H strong coupling direct Yukawa coupling $^{-10}$ N ν experianoma-BAU DM stability search mass masses lies ment neutrino masse GUT are too large 10-16 YES NO NO NO NO YES _ 10 GeV see-saw 2-3 10 GeV NO NO YES YES YES YES EWSB LHC neutrino masses are too small keV a'la 10^{-1} v MSM NO YES YES YES YES YES 10^{-13} 10¹¹ 10¹⁷ 10^{-7} 0.1 10^{5} GeV CHARM LSND v MSM LHC GUT see-saw ν a'la YES YES NO NO YES YES eV LSND Majorana mass, GeV scale

Four "popular" N mass ranges

Leptogenesis with 3 RH neutrinos

Marco Drewes, PRL 110 (2013) 6, 061801 Review: Int. J. Mod. Phys. E22 (2013) 1330019

- Model not pretending to explain dark matter too
- Dark matter can be something else (4th RH neutrino, axion, ...)
- It does not require N₂ and N₃ to be quasi-degenerate, CP-violation does not need to be enhanced by mass degeneracy
- BAU explained also if $|Y_{\alpha l}|$ are not so small
- Individual $|Y_{\alpha l}|$ can be very different

The vMSM model: leptogenesis and dark matter

N = Heavy Neutral Lepton - HNL

Role of N_1 with mass in keV region: dark matter

Role of N_2 , N_3 with mass in 100 MeV – GeV region: "give" masses to

neutrinos and produce baryon asymmetry of the Universe

Role of the Higgs: give masses to quarks, leptons, Z and W and

inflate the Universe.

vMSM: T.Asaka, M.Shaposhnikov PL **B620** (2005) 17 M.Shaposhnikov Nucl. Phys. B763 (2007) 49

global lepton-number symmetry broken at the level of $O(10^{-4})$ leads to the required pattern of sterile neutrino masses consistent with neutrino oscillations data

Dark Matter candidate HNL N₁

N₁ can be sufficiently stable to be a DM candidate, M(N₁)~10keV

Yukawa couplings are small \rightarrow *N* can be very stable.

Main decay mode: $N \rightarrow 3\nu$. Subdominant radiative decay channel: $N \rightarrow \nu\gamma$.

New line in photon galaxy spectrum at 3.5 keV? To be checked with higher accuracy

Photon energy:

 $E_{oldsymbol{\gamma}}=rac{M}{2}$

Radiative decay width:

$$\Gamma_{\rm rad} = \frac{9 \,\alpha_{\rm EM} \,G_F^2}{256 \cdot 4\pi^4} \, \sin^2(2\theta) \, M_N^5$$
Interaction strength

Masses and couplings of HNLs

• $M(N_2) \approx M(N_3) \sim a$ few GeV \rightarrow CPV can be increased dramatically to explain Baryon Asymmetry of the Universe (BAU)

Very weak $N_{2,3}$ -to-v mixing (~ U^2) $\rightarrow N_{2,3}$ are much longer-lived than SM particles

N_{2,3}

π

 N_{23}

• Produced in semi-leptonic decays, $K \rightarrow \mu\nu, D \rightarrow \mu\pi\nu, B \rightarrow D\mu\nu$

*Example: N*_{2.3} production in charm

n in charm

Ds

• $\propto \sigma_D \times U^2$

•
$$U_2^2 = U_{2,\nu_e}^2 + U_{2,\nu_\mu}^2 + U_{2,\nu_\tau}^2$$

and subsequent decays

- Typical lifetimes > 10 μs for M(N_{2,3}) ~ 1 GeV Decay distance O(km)
- Typical BRs (depending on the flavour mixing):

Br(N → μ/e π) ~ 0.1 - 50% Br(N → μ⁻/e⁻ ρ⁺) ~ 0.5 - 20% Br(N → νμe) ~ 1 - 10%

Experimental and cosmological constraints

Already searches in K/D-decay performed:

- PS191('88)@PS 19.2 GeV, 1.4×10^{19} pot, 128 m from target.
- CHARM('86)@SPS 400 GeV, 2.4×10^{18} pot, 480 m from target.
- NuTev('99)@Fermilab 800 GeV, 2.5×10^{18} pot, 1.4 km from target.
- BBN, BAU and Seesaw constrain more than experimental searches for $M_{\rm N} > 400$ MeV.
- Recent progress in cosmology
 - The sensitivity of previous experiments did not probe the interesting region for HNL masses above the kaon mass
 - Strong motivation to explore cosmologically allowed parameter space

Experimentally this domain has been only marginally explored!

Sensitivity for $N_{2,3} \propto U^4$

- PS-191: Used K decays \rightarrow limited to 500 MeV (PLB 203 (1988) 332)
- Goal: Extend mass range to ~ 2 GeV by using charmed hadron decays
- B-decays: $20\div 100$ smaller σ , and B \rightarrow Dµv, i.e. limited to ~ 3 GeV still

Where to produce charmed hadrons?

LHC ($\sqrt{s} = 14 \text{ TeV}$): with $1 \ ab^{-1}$ (~ 3-4 years): ~ 2 × 10¹⁶ in 4π SPS (400 GeV *p*-on-target (pot) $\sqrt{s} = 27$ GeV): with 2 × 10²⁰ pot (~ 3-4 years): ~ 2 × 10¹⁷

The acceptance of a beam dump facility is much larger for long lived particles

Experimental requirements

• Search for HNL in Heavy Flavour decays

Beam dump experiment at the SPS with a total of 2×10²⁰ protons on target (pot) to produce a large number of charmed hadrons CNGS: 1.8 x 10²⁰ pot, 2011 run: 4.8 x 10¹⁹ pot

• HNLs produced in charm decays have significant P_{T}

Detector must be placed close to the target to maximize geometrical acceptance

Effective (and "short") muon shield is essential to reduce
 muon-induced backgrounds (mainly from short-lived resonances accompanying charm production) 16

3D sketch of the first 5m section

01/12/14

Experimental setup

Detector concept (based on existing technologies)

• Reconstruction of the HNL decays in the final states: $\mu^-\pi^+$, $\mu^-\rho^+$ & $e^-\pi^+$

Requires long decay volume, magnetic spectrometer, muon detector and electromagnetic calorimeter, preferably in surface building

Tracking chambers

Same as NA62 $(K^+ \rightarrow \pi^+ \nu \bar{\nu})$ 2m diameter vessel at 0.01 µbar 10 mm diameter straws made of PET \rightarrow working well in vacuum $X/X_0 = 0.5\%$ for 4 view stations 120 µm resolution/straw

Magnet and e.m. calo

- \bullet With X/X0=0.5~% chambers: modest 0.5 Tm
- Need $\sim 20~m^2$ aperture.

LHCb magnet: 4 Tm, 16 m^2 aperture Preliminary calculations (W.Flegel):

- $\bullet~{\rm Needs}~30~\%$ less iron/yoke than LHCb.
- Consumes 3 times less power.

- 6.3×7.8 m²
- $\frac{\sigma(E)}{E} < 10\%/\sqrt{E} \oplus 1.5\%$

Expected exclusion limits

SHIP sensitive to a significant part of the parameter space

v_{τ} : the less know particle in the Standard Model

DONUT: 9 observed v_{τ} candidate events (leptonic number not measured) OPERA: First observation of $v_{\mu} \rightarrow v_{\tau}$ oscillation in appearance mode (4.2 σ result) $\bar{\nu}_{\tau}$ not detected yet!

Standard Model: v_{τ} physics with 2×10²⁰ pot

Standard Model: v_{τ} physics with 2×10²⁰ pot

- $\simeq 3500 \ \nu_{\tau}$ interactions with 6 tons detector ($\simeq 5\%$ of OPERA films)
- Discovery of $\bar{\nu}_{\tau}$
- ν_{τ} and $\bar{\nu}_{\tau}$ cross-section
- ν_{τ} magnetic moment
- Structure functions (F_4 and F_5 never measured)
- F_1, F_2 and F_3 measured with $2 \times 10^6 \nu_{\mu}$ interactions
 - Charged current neutrino nucleon scattering

 ν_e interactions (10⁵) to measure charm production yield \rightarrow constraint normalization also for HNL

Hybrid detector principle

This configuration (ECC + an emulsion spectrometer) never used so far! TESTS are needed to finalize the geometry and performances

- Nuclear emulsions as trackers with micrometric resolution
- Detect τ -lepton production and decay vertices
- Compact emulsion spectrometer to measure the charge of τ decays
- Electronic detectors to provide the "time stamp " and reconstruct μ charge/momentum

Magnetized neutrino target

Detector design

Compact emulsion spectrometer

- 3 emulsion films interleaved with 1.5 cm air gap in a magnetic field (~ 1T), 3cm thick device, H. Shibuya et al NIM A592 (2008) 56
- Emulsion films alternated by low density material (Rohacell, 30÷100 kg/m³)
- the charge of 8 GeV muons detectable $(\pm 4.5 \ \mu m) \rightarrow$ require precise alignment

Muon detector requirements

- Detector performances driven by background rejection → minimise muon misidentification
- Soft and large angle muons \rightarrow difficult to be identified
- Large acceptance and fine graining to identify P < 2 GeV
- 4.5 x 4.5 m² to detect angles up to $tan(\vartheta) \le 1$
- High sampling to use momentum/range correlation

The magnetic spectrometer as a muon detector (OPERA one is an option)

v-induced charm production

CHORUS, New Journal of Physics 13 (2011) 093002

$$f(charm) = \frac{\int \Phi_{\nu_{\mu}} \sigma_{\nu_{\mu}}^{CC} \left(\frac{\sigma_{charm}}{\sigma_{\nu_{\mu}}^{CC}}\right) dE}{\int \Phi_{\nu_{\mu}} \sigma_{\nu_{\mu}}^{CC} dE} \approx 2\%$$

In ν_{μ} interactions: $\sigma_{charm} \sim 2\%$, ~ 11000 charm

In anti- ν_{μ} interactions: anti- $\nu_{\mu} / \nu_{\mu} \sim 63\%$, $\sigma_{\nu\text{-bar}} / \sigma_{\nu} = 0.5 \sim 3500$ events only 32 observed by CHORUS

- Strange quark content obtained by the comparison of charm production in neutrino and anti-neutrino interactions
- Charm production with electronic detector tagged by dimuon events (high energy cut to reduce background): insensitive to the low energy region, slow-rescaling threshold → charm quark mass

Search for multi-quark states in v interactions: charmed pentaquarks

Weakly decaying charmed hadron (below 2.8 GeV)

Unlike other processes like e+ e- scattering, the θ_c^0 production in anti-neutrino interactions is favoured by the presence of three valence quarks

G. De Lellis et al. / Nuclear Physics B 763 (2007) 268-282

Fig. 1. Θ_c^0 production in $\bar{\nu}_{\mu}$ interactions.

Fig. 2. Decay topology of Θ_c^0 events produced in $\bar{\nu}_{\mu}$ interactions with two and four prongs.

$$\sigma_{\Theta_c^0}/\sigma_{\bar{\nu}} < 0.039$$
 at 90% C.L.

lifetime equal to $0.5\tau_{D^0}$

Not a tight bound, larger than D⁰ prod, Limited by the anti-nu statistics SHiP: 2 orders of magnitude better CERN task force to evaluate required infrastructure

- Following the SPSC encouragement in January 2014, CERN DG formed a dedicated Task Force
- The Task Force report (80 pages document) published and discussed at the extended CERN directorate meeting on July 18th
- Detailed cost, manpower and schedule
- Encouraged to go ahead and report a Technical Proposal by next Spring

SHiP is currently a collaboration of 41 Institutes from 14 Countries.

36

CERN Accelerator complex

proposed location by CERN beams and support department

Prevessin North Area from task force report

Planning schedule of the SHIP facility

			2015	2016	2017	20	18	2019	2020	2021	2022	2023	2024	2025	2026	
	Activity	Q1 Q2 Q3 Q4	Q1 Q2	Q3 Q4	Q1 Q2 Q3 Q4											
	LHC operation															
	SPS operation															
xperiment	Technical Proposal															
	SHIP Project approval															
	Technical Design Reports and R&D															
	TDR approval															
	Detector production															
	Detector installation															
Û	SHIP dry runs and HW commissioning									T						
	SHIP commissioning with beam											. ,		↓		
	SHIP operation		•													
+ infra	Pre-construction activities(Design, tendering, permits)															
	CE works for extraction tunnel, target area						,									
	CE works for TDC2 junction cavern															
Ю	CE works for shield tunnel and detector hall															
Ŭ	General infrastructure installation															
	Detailed design, specification and tender preparation															
	Technical Design Report Approval															
	Integration studies															
Je Je	Production and tests															
. <u></u>	Refurbishment of existing equipment	I				↓										
Bearr	Removal of TT20 equipment for CE								k							
	Installation of new services and TT20 beam line															
	Installation of services for new beam line to target															
	Installation of beam line and tests								_							
	Muon shield installation (commissioning)															
Target	Design studies and prototyping															
	Production and installation															

A few milestones:

- ✓ Form SHIP collaboration
- ✓ Technical proposal
- ✓ Technical Design Report
- \checkmark Construction and installation
- ✓ Commissioning
- ✓ Data taking and analysis of 2×10^{20} pot → 2023 2027

- → June-September 2014
- → 2015
- → 2018
- → 2018 2022
- → 2022

2	Theoretical paper: exploiting physics case						
_	2.1	Tau neu	trino physics	F. Tramontano M. Shaposhnikov			
	2.2	Neutrino	o portal				
		2.2.1 F	Particle physics notations	1			
		2.2.2 S	eesaw Lagrangian				
		2.2.3 S	eesaw formula and scale of seesaw				
		2.2.4 I	Dirac and Majorana masses: HNL phenomenology				
		2.2.5 H	INL and baryon asymmetry of the Universe				
		2.2.6 H	INL and dark matter	F. Vissani			
		$2.2.7 \nu$	MSM				
		2.2.8 H	INL in astrophysics				
	2.3	Vector portal		Maxim Pospelov			
		2.3.1 I	Dark photons				
		2.3.2 Z	<u>7</u>				
		2.3.3 N	Iillicharge fermions				
		2.3.4	Chern-Simons portal				
	2.4	Scalar p	ortal	Christophe Grojean			
		2.4.1 2	HDM, 3HDM				
	2.5	Axion-li	ke particles				
	2.6	SUSY models		Joerg Jaeckel			
		2.6.1 F	R-parity violating models				
		2.6.2 S	goldstino				

Tau neutrino physics

- S. Alekhin, Protvino, Higher order QCD corrections for DIS, strangeness, α_s, global fit sensitivity (ABMPDF)
- A. Guffanti, Copenhagen, Strangeness, α_s determination, global fit sensitivity (NNPDF)
- Sven-Olaf Moch, Hamburg, Higher order QCD corrections for DIS, strangeness, α_s , global fit sensitivity (ABMPDF)
- E. Roberto Nocera, Milano, Strangeness, α_s determination, global fit sensitivity (NNPDF)
- Emmanuel Paschos, Dortmund, Electroweak parameters
- Mary Hall Reno, Iowa, USA, Neutrino flux and cross-section, Target mass corrections
- Ingo Schienbein, Grenoble, Target mass corrections
- Francesco Tramontano, Naples (Convener), Exotic charmed baryon production

Conclusions

- Searches for new physics beyond SM: explore the high intensity frontier
- SM guaranteed physics program: $\bar{\nu}_{\tau}$ discovery, ν_{τ} cross-section studies and more
- Technical proposal in preparation (Spring 2015)

