

THE ASTROPHYSICAL JOURNAL, 758:3 (15pp), 2012 October 10

doi:10.1088/0004-637X/758/1/3

© 2012. The American Astronomical Society. All rights reserved. Printed in the U.S.A.

BEAMING NEUTRINOS AND ANTI-NEUTRINOS ACROSS THE EARTH TO DISENTANGLE NEUTRINO MIXING PARAMETERS

DANIELE FARGION^{1,2}, DANIELE D'ARMIENTO¹, PAOLO DESIATI³, AND PAOLO PAGGI¹ ¹ Physics Department, Rome University 1, P.le A Moro 5, I-00185 Rome, Italy; daniele.fargion@roma1.infn.it ² INFN Sezione di Roma, Roma 1, 00185, Roma, Italy ³ Department of Physics, University of Wisconsin–Madison, 1150 University Avenue Madison, WI 53706, USA; paolo.desiati@icecube.wisc.edu *Received 2010 December 10; accepted 2012 July 30; published 2012 September 18*

ABSTRACT

The Astrophysical Journal, 758:3 (15pp), 2012 October 10

Daniele Fargion, D.D'armiento, P.Paggi, P.Desiati

Summary

- Neutrino tau and anti-tau birth needs tens GeV energy threshold
- At 20s GeV the oscillation lenght is twice Earth radius
- Muon Neutrinos into tau were too rare at OPERA-CERN
- 20s GeV neutrino detection at Deep Core is within
- 4-8 Mton thousands times OPERA-Kton detector
- Oscillation at Opera is 1.5% while 100% at ICECUBE
- Size, oscillation distances and rate makes CERN or

Fermilab beaming across Earth to ICECUBE

Ideal to disentangle CPT violation and mixing parameters and MSW

As tau and anti tau appearence, Hierarchi mass..mixing angles

At least 4 order of magnitude more abundant in tau than

CERN-OPERA experiment

SIMILAR PROPOSALS

<u>Mass hierarchy discrimination</u> with atmospheric neutrinos in large volume ice/water Cherenkov detector D Franco, C Jollet, A Kouchner, V Kulikovskiy

Neutrino mass hierarchy determination with IceCube-PINGU W Winter - Physical Review D, 2013 - APS

Mass hierarchy, 2-3 mixing and CP-phase with Huge Atmospheric Neutrino Detectors

EK Akhmedov, <u>S Razzaque</u>, AY Smirnov

MAIN DIFFERENCES

When you receive a random atmospheric muons at a few (3-6 GeV), you do not know:

- The initial atm.neutrino energy
- Its nature (matter-antimatter)
- The arrival direction because low energy-wield Scattering angle

1) When beaming by 50 GeV pions you choose matter and anti matter by Lorentz bending forces

2) When sending the 20 GeV neutrino you control the energy (by 10-20%)

3) When you cross the Earth you do know in detail the path and the distances

Cosmic Ray Spectra background

Neutrino Mixing flavor Matrix

$$|\nu_{\alpha}\rangle = \sum_{k} U_{\alpha k}^{*} |\nu_{k}\rangle, \quad (\alpha = e, \mu, \tau \quad k = 1, 2, 3)$$

$$U = \begin{pmatrix} U_{e1} & U_{e2} & U_{e3} \\ U_{\mu 1} & U_{\mu 2} & U_{\mu 3} \\ U_{\tau 1} & U_{\tau 2} & U_{\tau 3} \end{pmatrix} =$$

$$= \begin{pmatrix} 1 & 0 & 0 \\ 0 & c_{23} & s_{23} \\ 0 & -s_{23} & c_{23} \end{pmatrix} \cdot \begin{pmatrix} c_{13} & 0 & s_{13}e^{-i\delta} \\ 0 & 1 & 0 \\ -s_{13}e^{i\delta} & 0 & c_{13} \end{pmatrix} \cdot \begin{pmatrix} c_{12} & s_{12} & 0 \\ -s_{12} & c_{12} & 0 \\ 0 & 0 & 1 \end{pmatrix}$$

$$= \begin{pmatrix} c_{12}c_{13} & s_{12}c_{13} & s_{13}e^{-i\delta} \\ -s_{12}c_{23} - c_{12}s_{23}s_{13}e^{i\delta} & c_{12}c_{23} - s_{12}s_{23}s_{13}e^{i\delta} & s_{23}c_{13} \\ s_{12}s_{23} - c_{12}c_{23}s_{13}e^{i\delta} & -c_{12}s_{23} - s_{12}c_{23}s_{13}e^{i\delta} & c_{23}c_{13} \end{pmatrix}$$

Usual Mixing in vacuum

$$P_{\nu_{\alpha} \to \nu_{\beta}}(t) = \sum_{k,j} U_{\alpha k}^{*} U_{\beta k} U_{\alpha j}^{*} U_{\beta j} \ e^{-i(E_{k} - E_{j})t}$$

$$= \sum_{k,j} U_{\alpha k}^{*} U_{\beta k} U_{\alpha j}^{*} U_{\beta j} \exp\left(-i \ 2.54 \ \frac{\Delta m_{kj}^{2}}{(eV^{2})} \frac{(GeV)}{E} \frac{L}{(km)}\right)$$

$$P_{\nu_{\alpha} \to \nu_{\beta}}^{incoerente}(t) = \sum_{k} \left| \langle \nu_{\beta} | \nu_{k} \rangle e^{-iE_{k}t} \langle \nu_{k} | \nu_{\alpha} \rangle \right|^{2} = \sum_{k} |U_{\alpha k}|^{2} |U_{\beta k}|^{2}$$

$$U_{\tau 1} \ U_{\tau 2} \ U_{\tau 3} \ \rangle$$

All 3	Oscillations	
In va	cuum	

	lphaeta~kj	$\Re oldsymbol{e}ig[U^*_{lpha k} U_{eta k} U_{lpha j} U^*_{eta j}ig]$
	21	$\begin{array}{l} +\frac{1}{4}\sin 2\vartheta_{12}c_{13}^2\left[\sin 2\vartheta_{12}\left(c_{23}^2-s_{23}^2s_{13}^2\right)\right.\\ \left.+\cos 2\vartheta_{12}\sin 2\vartheta_{23}s_{13}\cos\delta_{13}\right]\end{array}$
<u>3 Oscillations</u>	$e\mu$ 32	$-s_{12}s_{23}c_{13}^2s_{13}\left(s_{12}s_{23}s_{13}-c_{12}c_{23}\cos\delta_{13} ight)$
vacuum	31	$-c_{12}s_{23}c_{13}^2s_{13}\left(c_{12}s_{23}s_{13}+s_{12}c_{23}\cos\delta_{13} ight)$
	21	$ \frac{\frac{1}{16}\sin^2 2\vartheta_{12}\sin^2 2\vartheta_{23}\left(1+s_{13}^2\right)^2 - \frac{1}{4}\left(\sin^2 2\vartheta_{12}+\sin^2 2\vartheta_{23}\right)s_{13}^2}{-\frac{1}{16}\sin 4\vartheta_{12}\sin 4\vartheta_{23}\left(1+s_{13}^2\right)s_{13}\cos\delta_{13}} + \frac{1}{4}\sin^2 2\vartheta_{12}\sin^2 2\vartheta_{23}s_{13}^2\cos^2\delta_{13}} $
	$\mu \tau$ 32	$\begin{array}{l} -\frac{1}{4}\sin 2\vartheta_{23}c_{13}^2\left[\sin 2\vartheta_{23}\left(c_{12}^2-s_{12}^2s_{13}^2\right)\right.\\ \left.+\sin 2\vartheta_{12}\cos 2\vartheta_{23}s_{13}\cos\delta_{13}\right]\end{array}$
	31	$ \begin{array}{l} \frac{1}{4}\sin 2\vartheta_{23}c_{13}^2\left[\sin 2\vartheta_{23}\left(c_{12}^2s_{13}^2-s_{12}^2\right)\right.\\ \left.+\sin 2\vartheta_{12}\cos 2\vartheta_{23}s_{13}\cos\delta_{13}\right] \end{array} $
	21	$ \begin{array}{l} \frac{1}{4}\sin 2\vartheta_{12}c_{13}^2\left[\sin 2\vartheta_{12}\left(c_{23}^2s_{13}^2-s_{23}^2\right)\right. \\ \left. +\cos 2\vartheta_{12}\sin 2\vartheta_{23}s_{13}\cos\delta_{13}\right] \end{array} $
	$\tau e \overline{32}$	$-s_{12}c_{23}c_{13}^2s_{13}\left(s_{12}c_{23}s_{13}+c_{12}s_{23}\cos\delta_{13}\right)$
	31	$-c_{12}c_{23}c_{13}^2s_{13}\left(c_{12}c_{23}s_{13}-s_{12}s_{23}\cos\delta_{13} ight)$
	21	$rac{1}{4}\sin^2 2artheta_{12}c_{13}^4$
	ee 32	$\frac{1}{4}s_{12}^2\sin^22\vartheta_{13}$
	31	$\frac{1}{4}c_{12}^2\sin^22artheta_{13}$
	21	$ \frac{\frac{1}{4}\sin^2 2\vartheta_{12} \left(c_{23}^4 + s_{23}^4 s_{13}^2\right) + \frac{1}{4} \left(1 - \frac{1}{2}\sin^2 2\vartheta_{12}\right)\sin^2 2\vartheta_{23} s_{13}^2 \\ + \frac{1}{4}\sin 4\vartheta_{12} \sin 2\vartheta_{23} \left(c_{23}^2 - s_{23}^2 s_{13}^2\right) s_{13} \cos \delta_{13} \\ - \frac{1}{4}\sin^2 2\vartheta_{12} \sin^2 2\vartheta_{23} s_{13}^2 \cos^2 \delta_{13} $
	$\frac{\mu\mu}{32}$	$s_{23}^2c_{13}^2\left(c_{12}^2c_{23}^2+s_{12}^2s_{23}^2s_{13}^2-\tfrac{1}{2}\sin 2\vartheta_{12}\sin 2\vartheta_{23}s_{13}^2\cos^2\delta_{13}\right)$
	$\frac{1}{31}$	$\frac{s_{23}^2 c_{13}^2 \left(s_{12}^2 c_{23}^2 + c_{12}^2 s_{23}^2 s_{13}^2 + \frac{1}{2} \sin 2\vartheta_{12} \sin 2\vartheta_{23} s_{13}^2 \cos^2 \delta_{13}\right)}{s_{13}^2 \cos^2 \delta_{13}}$
	21	$\frac{\frac{1}{4}\sin^2 2\vartheta_{12} \left(s_{23}^4 + c_{23}^4 s_{13}^2\right) + \frac{1}{4} \left(1 - \frac{1}{2}\sin^2 2\vartheta_{12}\right)\sin^2 2\vartheta_{23} s_{13}^2}{+\frac{1}{4}\sin 4\vartheta_{12} \sin 2\vartheta_{23} \left(s_{23}^2 - c_{23}^2 s_{13}^2\right)s_{13}\cos\delta_{13}} - \frac{1}{4}\sin^2 2\vartheta_{12}\sin^2 2\vartheta_{23} s_{13}^2\cos^2\delta_{13}}$
	32	$c_{23}^2 c_{13}^2 \left(c_{12}^2 s_{23}^2 + s_{12}^2 c_{23}^2 s_{13}^2 + \frac{1}{2} \sin 2\vartheta_{12} \sin 2\vartheta_{23} s_{13}^2 \cos^2 \delta_{13} \right)$
	31	$c_{23}^2 c_{13}^2 \left(s_{12}^2 s_{23}^2 + c_{12}^2 c_{23}^2 s_{13}^2 - \frac{1}{2} \sin 2\vartheta_{12} \sin 2\vartheta_{23} s_{13}^2 \cos^2 \delta_{13}\right)$

OSCILLATION: Two flavor

Three flavor, Vacuum

http://en.wikipedia.org/wiki/Neutrino_oscillation#mediaviewer/ File:Oscillations_muon_long.svg

Mixing inside matter: the MSW mikheyev-smirnov-wolfenstein (MSW) mechanism of amplification of neutrino oscillations in matter or perturbation

$$i\frac{d}{dx}\Psi_{\alpha} = \mathcal{H}\Psi_{\alpha}$$
, con $\mathcal{H} = \frac{1}{2E}\left(UMU^{\dagger} + A\right)$

Meccanismo MSW

12

$$A = \begin{pmatrix} A_{\rm CC} & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \end{pmatrix}, \quad M = \begin{pmatrix} 0 & 0 & 0 \\ 0 & \Delta m_{21}^2 & 0 \\ 0 & 0 & \Delta m_{31}^2 \end{pmatrix}, \quad \Psi_{\alpha} = \begin{pmatrix} \psi_{\alpha e} \\ \psi_{\alpha \mu} \\ \psi_{\alpha \tau} \end{pmatrix}$$
$$A_{\rm CC} = 2\sqrt{2}E \ G_F \ N_e = 0.76 \cdot 10^{-4} eV^2 \frac{E}{GeV} \frac{\rho}{g \ cm^{-3}}$$

Oscillations across Earth

- <u>3 flavours, inside the matter keeping care of:</u>
 - <u>1) ideal constant average density</u>
 - 2) precise mass density profile
- <u>P_{να}-ν_β mixing probability as a function of</u>
 <u>distance and energy</u>,
 - -common popular analitical solutions :
- only for average density of Earth,
- -our solution also semi-analitical and exact numerical keeping
- both exact density profile and
- perturbation MSW step by step along the Earth

 $s_{12}c_{13}$ $c_{12}c_{23} - s_{12}s_{23}s_{13}e^i$ $-c_{12}s_{23} - s_{12}c_{23}s_{13}e^i$

Matter Profile along the Earth (at each angle a different one)

VUOTO

Different estimate: Most tuned $P_{ee}(x)$

4 GeV, $\theta = 68^{\circ}$ sotto l'orizzonte

<u>Quality test:</u> <u>versus-Mu-Tau</u> <u>R. Gandhi et al.,</u> <u>Physical Review</u> <u>D73 053001</u> <u>arXiv:astro-ph/</u> <u>0411252</u>

<u>Black-vacuum;</u> <u>Orange-Gandhi;</u> <u>Blue: Our exact</u> <u>Earth profile .</u>

 $\left(\begin{array}{ccc} U_{e1} & I \\ U_{\mu 1} & I \\ U_{\tau 1} & I \end{array} \right)$

 $\begin{array}{l} Probabilità~di~sopravvivenza~\nu_{\mu}\\ in~funzione~dell'angolo~sotto~l'orizzonte\\ e~dell'energia \end{array}$

Probabilità mediata sull'incertezza dell'energia

• E' necessario mediare la probabilità di oscillazione sulle distribuzioni di incertezza di energia e lunghezza

Test proposto per la misura della violazione di CPT

Una prima osservazione semplice, con i parametri che violano CPT

Una seconda osservazione per ottimizzare la conversione $v_{\mu} \rightarrow v_{\tau}$

Test per la violazione di CPT: Beam attraverso la Terra

La nostra proposta: un esperimento long-baseline per verificare più facilmente i parametri di oscillazione

2010

Abbiamo analizzato 4 baselines: CERN – SuperKamiokande FNAL – SuperKamiokande **FNAL – IceCube CERN - IceCube**

Tang & Winter (2011) riprendono l'idea della baseline verso il polo sud

Possibile violazione di CPT in MINOS e influenza sul mixing

Minos Collaboration, http://www-numi.fnal.gov/PublicInfo/forscientists.html

Energie del fascio di v

TABLE 7

 ν_{μ} and $\bar{\nu}_{\mu}$ event rates considering reduced size experiment, and $\frac{\Delta E}{E} = 20\%$ energy spread. The first row shows event numbers to 10%, because of shorter decay tunnel (50% respect OPERA one) and reduced π flux intens narrow neutrino spectra (20% respect OPERA flux) due to suggested setup for pion bending magnetic field second row shows a very economic scenario, where event rate is reduced to 1%, having considered 20% decay and 5% π flux intensity. In the last row, $N_{\mu_{\tau}}$ and $N_{\bar{\mu}_{\tau}}$ are the μ , $\bar{\mu}$ by τ and $\bar{\tau}$ decay.

	$N_{\nu\mu}$ after osc.	$N_{\bar{\nu}_{\mu}}$ after osc.	$N_{\bar{\nu}_{\mu}}$ after osc.	Statistical
	$year^{-1}$	year-1	vear ⁻¹	Significance
Baseline	$\exists CPT$	$\exists CPT$	[₿] CPT	σ
CERN-SK	19		8+1	2
Fermilab–SK	20	10	${f 18\pm4}$	2
CERN–IceCube	1516	758	$\bf 1517 \pm 39$	19
Fermilab–IceCube	1515	757	$\bf 1544 \pm 39$	20
1%	$N_{\nu_{\mu}}$ after osc.	$N_{\bar{\nu}_{\mu}}$ after osc.	$N_{\bar{\nu}_{\mu}}$ after osc.	Statistical
	$year^{-1}$	$year^{-1}$	$year^{-1}$	Significance
Baseline	$\exists CPT$	$\exists CPT$	$\nexists \text{ CPT}$	σ
CERN-SK	1.9	0.9	1.8 ± 1	0.6
Fermilab–SK	2		1.8 ± 1	0.6
CERN–IceCube	152	76	152 ± 12	6.1
Fermilab–IceCube	151	76	$\bf 154 \pm 12$	6.3
1%	$\langle E_{\mu_{\tau}} \rangle (\text{Gev})$	$N^*_{\mu_{\tau}}$	$N^*_{ar{\mu}_{ au}}$	
Baseline		CPT conserved	CPT conserved	CPT violated
CERN-SK	5.4	0.2	0.1	0.5
Fermilab–SK	5.6	0.2	0.1	0.5
CERN–IceCube	7.3	67	33	16.5
Fermilab–IceCube	7.23	64	32	15.3

* Considering a 17.4% branching ratio.

We remind that the μ_{τ} energy is nearly $\simeq \frac{1}{3}$ of primary tau.

The name μ_{τ} (in (Fargion 2000,2004)), has been much later renamed Tautsie-pop in (Cowen 2007).

Eventi di $v_{\tau} e v_{\tau}^{-\tau}$ al rivelatore con oscillazione

1%	$\overline{N_{\nu_{\tau}}^{CC} + N_{\nu_{i}}^{NC}}$	σ	$\overline{N_{\bar{\nu}_{\tau}}^{CC} + N_{\bar{\nu}_{i}}^{NC}}$	σ	1.00	$N_{\bar{\nu}_{\tau}}^{CC} + N_{\bar{\nu}_{i}}^{NC}$	
Baseline	E CPT	for ν_{τ}	E CPT	for $\bar{\nu}_{\tau}$		∄ CPT	σ
	$y ear^{-1}$		$y ear^{-1}$			$y ear^{-1}$	
CERN-SK	2	0.8	1.1	0.5	•	0.8	0.3
Fermilab–SK	2	0.8	1.2	0.6		0.9	0.3
CERN-IceCube	(658)	14	329	10	•	245	5.3
Fermilab–IceCube	$\overline{665}$	14	333	10		$\bf 248$	5.4

Potenzialità esperimento: 1% rispetto al tunnel di decadimento e flusso di *Opera*

Tau and Anti Tau appearence

TABLE 9 TAU-ANTITAU NEUTRINOS EVENT RATES FOR REDUCED EXPERIMENT, AS BEFORE, TO OVERALL 10% AND TO 1%. STATISTICAL SIGNIFICANCE IS REFERRED BOTH FOR ν_{τ} , $\bar{\nu}_{\tau}$ ONLY DETECTION, AND FOR CPT CASES DETECTION.

10%	$N_{\nu_{\tau}}^{CC} + N_{\nu_{i}}^{NC}$	σ	$N_{\bar{\nu}_{\tau}}^{CC} + N_{\bar{\nu}_{i}}^{NC}$	σ	$N_{\bar{\nu}_{\tau}}^{CC} + N_{\bar{\nu}_{i}}^{NC}$	
Baseline	∃ CPT	for ν_{τ}	∃ CPT	for $\bar{\nu}_{\tau}$	∄ CPT	σ
	$y ear^{-1}$		$y ear^{-1}$		$y ear^{-1}$	
CERN-SK	22	3	11	2	10	0.2
Fermilab–SK	23	3	12	2	11	0.2
CERN-IceCube	6529	45	$\boldsymbol{3264}$	32	3031	4.2
Fermilab–IceCube	6568	45	$\boldsymbol{3284}$	32	3053	4.2
1%	$N_{\nu_{\tau}}^{CC} + N_{\nu_{i}}^{NC}$	σ	$N_{\bar{\nu}_{\tau}}^{CC} + N_{\bar{\nu}_{i}}^{NC}$	σ	$N_{\bar{\nu}_{\tau}}^{CC} + N_{\bar{\nu}_{i}}^{NC}$	
Baseline	∃ CPT	for ν_{τ}	∃ CPT	for $\bar{\nu}_{\tau}$	∄ CPT	σ
	$y ear^{-1}$		$y ear^{-1}$		$y ear^{-1}$	
CERN-SK	2	0.8	1.1	0.6	1	0
Fermilab–SK	2	0.8	1.2	0.6	1.1	0
CERN-IceCube	653	14	326	10	303	1.3
Fermilab–IceCube	657	14	328	10	305	1.3

What we may achieve in 1 year at 1% of OPERA like experiment

Beaming neutrino along the Earth

Confronto e calibrazione dei Nev Opera-Minos

Abbiamo effettuato un confronto tra i p.o.t. e gli eventi osservati o osservabili in futuro

Muon Neutrino beam events by $3.5 \cdot 10^{19}$ proton on target(p.o.t) a year from CERN or FNL

Baseline	distanza (km)	E_{ν} (GeV)	$\left(\frac{L'}{L}\right)^2$	Mass detector $kton$	$N_{evCC+NC} M_{in}^{-1} year^{-1}$	$N_{ev\mu_{CC}}$ no osc. $kton^{-1}year^{-1}$	$N_{ev\mu_{CC}}$ no osc. $year^{-1}$
CERN–OPERA CERN–SK Fermilab–SK CERN-IceCube Fermilab–IceCube	L = 732 L' = 8737 L' = 9140 L' = 11812 L' = 11623	17 16.2 17 21.9 21.7	1 142.5 155.9 260.4 252.1	$1.2 \\ 22.5 \\ 22.5 \\ 4800 \\ 4800$	$3500 \\ 398.5 \\ 420 \\ 114750 \\ 115500$	$2370 \\ 14.41 \\ 15.18 \\ 19.45 \\ 19.57$	2847 324 341 93343 93951

Come lanciare un fascio di v attraverso la Terra

 Campo magnetico 1 Tesla $E_{\nu}^{\max} = \frac{m_{\pi}^2 - m_{\mu}^2}{2m_{\pi}^2} \left(E_{\pi} + p_{\pi} \right) \approx \left(1 - \frac{m_{\mu}^2}{m_{\pi}^2} \right) E_{\pi} = 0.427 E_{\pi}$ • E^{max} ~ 22 GeV π curvati di 68° •E_π ~ 50 GeV Site BA4 of SPS Temporary shaft Altitude (m) 450 Meyrin Genève-Cointrin Airport 400 ____ TN4 Targe MORAINES Metodo off-axis Alternati LEP/LHC per aumentare la 350 Target Tunnel MOLASSE monocromaticità Un nuovo del fascio 300 _____ **Decay tunnel** tunnel... 250 ____ Hadron Stop 1st Muon detector Neutrino beam to Icecube Deep Core 32 2nd Muon detect 200 0.5 1,5 2.5 2.5 3,5 Km

0.55

0.60

0.65

0.75

0.80

0.85

Km

0.70

Lanciare un fascio di v attraverso la Terra

Baseline	E_{ν}	E_{π}	Angolo	R	L_{arc}	Arc Depth	
	(GeV)	(GeV)	gradi	(m)	(m)	(m)	
CERN–SK	16.2	37.9	43.19°	126.5	95.3	34.2	
Fermilab–SK	17	39.8	45.77°	132.7	106	40	
CERN-IceCube	21.9	51.3	67.82°	171	202.3	106.3	
Fermilab–IceCube	e 21.7	50.8	65.67°	169.4	194.2	99.5	
Baseline	Tunnel	Γ	unnel	Tunn	el	Tunnel	
	length $L_{20\%}^b$	dep	th $H_{20\%}^{b}$	length	$L^{b}_{5\%}$	depth $H_{5\%}^{b}$	Rispetto
	(m)		(m)	(m)	-,,,	(m)	
CERN-SK	202		138	50		34	
$\mathbf{Fermilab}{-}\mathbf{SK}$	222		159	55		40	
CERN-IceCube	369		342	92		(85)	
Fermilab–IceCube	362		330	90		82	

Probabilità mediata di conversione a causa indeterminazione dell'energia

Oscillation probability for initial v_{μ} and \overline{v}_{μ} ,

for CERN–IceCube baseline ($\langle Distance \rangle \approx 11812 \text{ Km}$)

Eventi di $v_{\mu} e v_{\mu}^{-}$ al rivelatore con oscillazione

Baseline	$\langle P_{\mu\mu} \rangle$	$N_{\nu_{\mu}}$ after osc.	$N_{\bar{\nu}_{\mu}}$ after osc.	$\langle P_{\bar{\mu}\bar{\mu}}\rangle$	$N_{\bar{\nu}_{\mu}}$ after osc.
	$rac{\Delta \mathrm{E}}{\mathrm{E}} = 20\%$	$year^{-1}$	$year^{-1}$	$rac{\Delta \mathrm{E}}{\mathrm{E}} = 20\%$	$year^{-1}$
	E CPT	$\exists CPT$	$\exists CPT$	Ž∄ CPT	$\nexists \mathrm{CPT}$
CERN-OPERA	0.985	20494	10247	0.972	10125
CERN-SK	0.096	187	93	0.454	441
Fermilab–SK	0.096	197	98	0.457	469
CERN–IceCube	0.106	12415	6207	0.494	28808
Fermilab–IceCube	0.106	12496	6248	0.491	28831

Eventi di v_{μ} e anti v_{μ} al rivelatore con oscillazione

	Provide States			
1%	$N_{\nu_{\mu}}$ after osc.	$N_{\bar{\nu}_{\mu}}$ after osc.	$N_{\bar{\nu}_{\mu}}$ after osc.	Statistical
	$year^{-1}$	$year^{-1}$	$year^{-1}$	Significance
Baseline	$\exists CPT$	$\exists CPT$	$\nexists \mathrm{CPT}$	σ
CERN-SK	1.8	0.9	4.4 ± 2	1.7
Fermilab–SK	1.9	1	4.7 ± 2	1.7
CERN–IceCube	124	62	$\fbox{288\pm17}$	13.3
Fermilab–IceCube	125	62	288 ± 17	13.3

Potenzialità esperimento: 1% rispetto al tunnel di decadimento e flusso di Opera

$$\sigma = \frac{N_{segnale}}{\sqrt{N_{segnale} + N_{rumore}}} = \frac{N_{\bar{\nu}_{\mu}}^{\ddagger CPT} - N_{\bar{\nu}_{\mu}}^{\exists CPT}}{\sqrt{N_{\bar{\nu}_{\mu}}^{\ddagger CPT}}}$$

36

Essendo emessi in finestre del nano secondo, non avrebbero rumore atm.
Eventi di $v_{\tau} e v_{\tau}^{-\tau}$ al rivelatore con oscillazione

				and the second sec			
		$N^{CC}_{ u_{ au}}$ with osc	c. $N^{CC}_{ar u_ au}$ with osc.	$N^{CC}_{ar{ u}_{ au}}$ with osc.	$N_{ u_i}^{NC}$ with osc.	$N^{NC}_{ar{ u}_i}$ with osc.	
Baseline		$\exists CPT$	\exists CPT	$\nexists \operatorname{CPT}$	noise τ like	noise τ like	
		$y ear^{-1}$	$y ear^{-1}$	$y ear^{-1}$	$y ear^{-1}$	$y ear^{-1}$	
CERN-OPERA		16	(0.50)	0.90			
					RUMORE		
CERN-S	Κ	119	59	31	101	51	
Fermilab–SK		125	63	33	107	53	
CERN-Ic	ceCube	36713	$\left(18357\right)$	9958	(29123)	14562	
Fermilab-	-IceCube	37191	18596	10117	29313	14656	
					11 salle		
			$N_{\nu_{\tau}}^{CC} + N_{\nu_{i}}^{NC}$	$\overline{N_{\bar{\nu}_{\tau}}^{CC} + N_{\bar{\nu}_{i}}^{NC}}$	$N_{\bar{\nu}_{\tau}}^{CC} + N_{\bar{\nu}_{i}}^{NC}$	C	
	Baseline		E CPT	E CPT	∄ CPT	1000	
			$y ear^{-1}$	$y ear^{-1}$	$y ear^{-1}$	Charles .	
1000	CERN-S	SK	220	110	66		
Fermilab–Sł		o–SK	232	116	70		
	CERN-I	ceCube	65836	32918	19541		

33252

19715

66504

Fermilab–IceCube

Eventi di $v_{\tau} e v_{\tau}^{-}$ al rivelatore con oscillazione

1%	$\overline{N_{\nu_{\tau}}^{CC} + N_{\nu_{i}}^{NC}}$	σ	$\overline{N_{\bar{\nu}_{\tau}}^{CC} + N_{\bar{\nu}_{i}}^{NC}}$	σ	- 7	$N_{\bar{\nu}_{\tau}}^{CC} + N_{\bar{\nu}_i}^{NC}$	
Baseline	E CPT	for ν_{τ}	E CPT	for $\bar{\nu}_{\tau}$	12	∄ CPT	σ
	$y ear^{-1}$		$y ear^{-1}$			$y ear^{-1}$	
CERN-SK	2	0.8	1.1	0.5		0.8	0.3
Fermilab–SK	2	0.8	1.2	0.6	- 21	0.9	0.3
CERN–IceCube	$\left(658\right)$	14	329	10		245	$\left(5.3 ight)$
Fermilab–IceCube	$\widetilde{665}$	14	333	10	114	${\bf 248}$	5.4

Potenzialità esperimento: 1% rispetto al tunnel di decadimento e flusso di *Opera*

Requirements for a New Detector at the South Pole Receiving an Accelerator Neutrino Beam

Authors: Jian Tang, Walter Winter

(Submitted on 26 Oct 2011 (v1), last revised 23 Jan 2012 (this version, v2))

Theta 13

FIG. 12.— The conversion probability of muon neutrino into electron, for different $\sin(2\theta_{13})^2$ values, a probability deviations that may test at low energy the disappearance of muons tracks and the appearance of electron showers (similar to tau ones). The present Deep Core array can hardly be able to reveal such a small energy signals (muon tracks versus electron showers), while future more dense PINGU array may be a better tuned detector.

Oscillation probability NH and IH, for initial v_{μ} , for CERN–IceCube baseline (<Distance> \approx 11812 Km⁻

Muon to electron

Oscillation probability NH and IH, for initial v_{μ} , for CERN–IceCube baseline (<Distance> \approx 11812 Km)

FIG. 13.— The conversion probability of muon neutrino into electron, in normal or inverted neutrino mass hierarchy. As shown in the figure there is a remarkable deviation from normal neutrino mass hierarchy and inverted one mostly in the low energy region ($\simeq 6$ GeV), where the $\bar{\nu}_e$ appears (in the inverted case) at a 38% probability rate (born by a $\bar{\nu}_{\mu}$ conversion), while it is nearly absent $\simeq 2\%$ probability rate in normal neutrino mass hierarchy.

Hierarchy neutrino mass

Oscillation probability NH and IH, for initial v_e ,

Oscillation probability for NH and IH, for initial v_e ,

FIG. 14.— Left: the electron neutrino survival probability $P_{\nu_e \to \nu_e}$ and $P_{\bar{\nu}_e \to \bar{\nu}_e}$, in normal or inverted neutrino mass hierarchy. As shown in the figure there is a remarkable deviation from normal neutrino mass hierarchy and inverted one mostly in the low energy region ($\simeq 6$ GeV), which turns to be higher in the SuperK baseline respect the IceCube one. A $\nu_e, \bar{\nu}_e$ beam is suitable for best hierarchy model discrimination. Right: the oscillation probability $P_{\nu_e \to \nu_\alpha}$ for the SuperK baseline show that there is non-negligible conversion into muon neutrino, possibly detectable in future ν_e beam.

Conclusione: Beaming Neutrino may act as a fast comunication system while testing the lepton sector

> related to: UHECR and Tau neutrino Airshower

Most recent Proposal (in press Nucl.Phys.B) arXiv:1408.0227 DF

M82: protons

https://indico.cern.ch/event/287474/session/10/contribution/0/mate

Auger, TA,ASHRA e gli sciami estesi di v_{τ}

Sezione d'urto risonante W

RAPPORTO DEI FLAVORS

Numero di eventi previsti per 3 anni in Auger

La somma degli eventi nell'intervallo da $6.3 \cdot 10^{15}$ a $2.9 \cdot 10^{18}$ eV = 1.3 per 3 anni

TAU-MUON ARRAY

Recording horizontal muons across a canyon or across a vulcano, waiting for rare, sudden horizontal airshower originated by a PeVs Horizontal Tau Airshower coming from the opposite side

Muon array Detector

A COMPLEMENTARY ARRAY

To test Vulcano or hazard geological sites The proposal is to combine array of horizontal Muon track detectors (around mountain vulcano) that inspect crossing muons across, while at same time may discover rare up-going electromagnetic airshowers

Horizontal ARRAY

The detector array maybe as usual scintillators and as simple as Hawk like cilindrical water Cherenkov rooms, possibly dig inside the Vulcano inclined walls yo screen them from noisy vertical showers.

Hawk

Conclusioni

Stiamo incontrando l'astronomia dei **UHECR**? Connessione con le sorgenti? Astronomia dei PeV neutrini? Astronomia dei tau neutrini? Conosciamo i flavor? Beaming neutrinos and Tau Arrays may help

⊃ µe

Eventi di v_µ e v[¯]_µ in assenza di oscillazione

Baseline	E_{ν}	$N_{\nu_{\mu}}$ no osc.	$N_{\nu_{\mu}}$ no osc.	$N_{\nu_{\mu}}$ no osc.	$N_{\bar{\nu}_{\mu}}$ no osc.
		born in detector	born outside	total	total
	GeV	$year^{-1}$	$year^{-1}$	$year^{-1}$	$year^{-1}$
CERN-OPERA	17	2847	18278	21125	10562
CERN-SK	15.8	324	1621	1945	972
Fermilab–SK	16.5	342	1708	2050	1025
CERN–IceCube	21.8	93343	23336	(116679)	58340
Fermilab–IceCube	21.4	93951	23488	117439	58720

Oscillazioni con i parametri di MINOS 2011

Auger e gli sciami estesi di v_{τ}

Numero di eventi previsti per 3 anni in Auger

La somma degli eventi nell'intervallo da $6.3 \cdot 10^{15}$

Prevedere i flussi dei Neutrini atmosferici

- Analisi dei dati atmosferici in **DeepCore** per discriminare tra gli scenari di violazione CPT
- Calcolo degli eventi di v atmosferici a partire dal flusso

Estensione a DeepCore e previsioni

 Calibrazione del calcolo sui dati di SuperKamiokande Flusso dei v atmosferici

Sezione d'urto v N

Sezione d'urto v N

Calibrazione degli Eventi differenziali in SK

 $\frac{dN}{dE_{\nu}\,dt\,d\Omega}(E_{\nu},\theta) = 2\pi \,\frac{\phi_{\nu}(E_{\nu})}{E_{\nu}^2} \,F(E_{\nu},\theta) \,\sigma_{CC}(E_{\nu}) \,N_A \underbrace{V(E_{\nu},\theta)}_{P_{\nu_{\mu}\to\nu_{\mu}}}(E_{\nu},\theta).$

SuperKamiokande $V_{tot} = 22'458 \text{ m}^3$

Non dipende dall'energia Né dalla direzione di arrivo

SK Volume (Ε,θ) per eventi v Fully Contained

 $V_{FC}(E_{\nu},\theta) = (h - L_{\mu}(E_{\nu}) \cdot |\sin\theta|) \cdot \frac{\pi}{4} (d - L_{\mu}(E_{\nu}) \cdot |\cos\theta|)^{2}$ $h > L_{\mu} \cdot |\sin\theta|$ $d > L_{\mu} \cdot |\cos\theta|$
Per verificare il mio modello analitico, confronto le previsioni con gli Eventi ν_μ Fully Contained in SK in funzione dell'energia: appurata la capacita' di previsione

$$\Delta N(E_{\nu}) = \int_{E_{i}}^{E_{i}+\Delta_{i}E} dE_{\nu} \int_{-1}^{0} d(\cos\theta) \frac{dN}{dE_{\nu} dt d(\cos\theta)} (E_{\nu},\theta) \cdot \Delta t$$

Verifica degli Eventi v_{μ} Fully Contained in funzione dell'angolo per finestra energetica: 1.33-10 GeV

Volume efficace V(E) per Eventi v_{μ} in IceCube - DeepCore

Da quanto sopra derivo le Previsioni di Eventi ν_{μ} in IceCube - DeepCore

$\begin{array}{c} Eventi \ v_{\mu} \ in \\ IceCube \ - \ DeepCore \end{array} \end{array}$

Backup slide

Confronto degli Eventi v_e Fully Contained in funzione dell'energia

Tesi triennale teorica on: Unexpected Icecube Neutrino Revolution Rivolgersi presso Prof. D.Fargion st: 113--0649914287

Possible interesting signals in future

Tau neutrinos with double pulses at IceCube

D. Xu(ID:643)

Poster(NU-IN) A high energy v_{τ} charged current (CC) interaction in the ice would produce two showers.

Fig. 2. Sketch of a V_T CC event in the IceCube PMT array

About 0.32 ± 0.04 events/year v_{τ} CC events are expected assuming a flux of all neutrino flavors E², = 3.6x10⁻⁸ GeVsr⁻¹s⁻¹cm⁻².

Glashow resonance at

IceCube

J. Kiryluk(ID:494)

Poster(NU-IN)

Due to Glashow resonance($\overline{\nu_e} + e^- \rightarrow W^-$), event excess is expected at $E_v = -6.3$ PeV.

Expect 0.9 (0.4) resonance events/year from $pp(p\gamma)$ sources for 5PeV< E_{vis} < 7PeV assuming electron type flux of $E^2 \phi(v_e + \overline{v_e}) = 1 \times 10^{-8} \text{ GeVsr}$ ¹s⁻¹cm⁻².

The Simplest- The Best

Array as large as Hawk But much much spread in few cluster each

Flux of a 10 EeV Tau Airshower at 100 meter from its axis

A PeV tau airshower shine a tenth part of a thousand

Muon Radiography

Vulcan Radiography Comparison of muographic measurement results.

Sistema di 9 equazioni differenziali P_{uτ}

 $i \ \psi_{\mu\tau}'(x) = \frac{1}{E_{\nu}} (2.534 \ \cos [\theta_{13}] \ (\cos [\theta_{23}] \ \sin [\theta_{13}] \ \Delta_{31} - \sin [\theta_{12}] \ (\cos [\theta_{23}] \ \sin [\theta_{12}] \ \sin [\theta_{13}] + \cos [\theta_{12}] \ \sin [\theta_{23}] \ \Delta_{21}) \ \psi_{\mu e}(x) + 2.534 \ (\cos [\theta_{13}]^2 \ \cos [\theta_{23}] \ \sin [\theta_{23}] \ \Delta_{31} - (\cos [\theta_{23}] \ \sin [\theta_{12}] \ \sin [\theta_{13}] + \cos [\theta_{12}] \ \sin [\theta_{23}]) \ (\cos [\theta_{12}] \ \cos [\theta_{23}] - \sin [\theta_{12}] \ \sin [\theta_{13}] \ \sin [\theta_{23}]) \ \Delta_{21}) \ \psi_{\mu\mu}(x) + 2.534 \ (\cos [\theta_{13}]^2 \ \Delta_{31} \ \cos [\theta_{23}] \ - \sin [\theta_{12}] \ \sin [\theta_{23}]) \ \Delta_{21}) \ \psi_{\mu\mu}(x) + 2.534 \ (\cos [\theta_{13}]^2 \ \Delta_{31} \ \cos [\theta_{23}]^2 + (\cos [\theta_{23}] \ \sin [\theta_{12}] \ \sin [\theta_{13}] + \cos [\theta_{13}] \ \sin [\theta_{23}]) \ \Delta_{21}) \ \psi_{\mu\mu}(x) + 2.534 \ (\cos [\theta_{13}]^2 \ \Delta_{31} \ \cos [\theta_{23}]^2 + (\cos [\theta_{23}] \ \sin [\theta_{12}] \ \sin [\theta_{13}] + \cos [\theta_{13}] \ \sin [\theta_{23}]) \ \Delta_{21}) \ \psi_{\mu\nu}(x) + 2.534 \ (\cos [\theta_{13}]^2 \ \Delta_{31} \ \cos [\theta_{23}]^2 + (\cos [\theta_{23}] \ \sin [\theta_{12}] \ \sin [\theta_{13}] + \cos [\theta_{13}] \ \sin [\theta_{23}]) \ \Delta_{21}) \ \psi_{\mu\tau}(x)),$

Sistema di 9 equazioni differenziali

$i \ \psi'_{\rm ee}(x) =$

 $\frac{1}{E_{\nu}} \left\{ \left(2.534 \operatorname{Cos}\left[\theta_{13}\right]^{2} \Delta_{21} \operatorname{Sin}\left[\theta_{12}\right]^{2} + 0.000192 E_{\nu} \rho(x) + 2.534 \operatorname{Sin}\left[\theta_{13}\right]^{2} \Delta_{31} \right) \psi_{ee}(x) + \left[\operatorname{Sin}\left[\theta_{12}\right] \left(2.534 \operatorname{Cos}\left[\theta_{12}\right] \operatorname{Cos}\left[\theta_{13}\right] \operatorname{Cos}\left[\theta_{23}\right] - 1.267 \operatorname{Sin}\left[\theta_{12}\right] \operatorname{Sin}\left[2\theta_{13}\right] \operatorname{Sin}\left[\theta_{23}\right] \right) \Delta_{21} + 1.267 \operatorname{Sin}\left[2\theta_{13}\right] \operatorname{Sin}\left[\theta_{23}\right] \Delta_{31} \right] \psi_{e\mu}(x) + \operatorname{Cos}\left[\theta_{13}\right] \left[\left(-2.534 \operatorname{Cos}\left[\theta_{23}\right] \operatorname{Sin}\left[\theta_{13}\right] \operatorname{Sin}\left[\theta_{12}\right]^{2} - 1.267 \operatorname{Sin}\left[2\theta_{12}\right] \operatorname{Sin}\left[\theta_{23}\right] \right) \Delta_{21} + 2.534 \operatorname{Cos}\left[\theta_{23}\right] \operatorname{Sin}\left[\theta_{13}\right] \Delta_{31} \right] \psi_{e\tau}(x) \right],$

$$\begin{split} i \ \psi_{\mu e}'(x) &= \\ \frac{1}{E_{\nu}} \left((2.534 \ \cos\left[\theta_{13}\right]^2 \Delta_{21} \sin\left[\theta_{12}\right]^2 + 0.000192 \ E_{\nu} \ \rho(x) + 2.534 \ \sin\left[\theta_{13}\right]^2 \Delta_{31} \right) \psi_{\mu e}(x) + \\ \left(\sin\left[\theta_{12}\right] \left(2.534 \ \cos\left[\theta_{12}\right] \cos\left[\theta_{13}\right] \cos\left[\theta_{23}\right] - 1.267 \ \sin\left[\theta_{12}\right] \sin\left[2\theta_{13}\right] \sin\left[\theta_{23}\right] \right) \Delta_{21} + \\ 1.267 \ \sin\left[2\theta_{13}\right] \sin\left[\theta_{23}\right] \Delta_{31} \right) \psi_{\mu\mu}(x) + \cos\left[\theta_{13}\right] \left((-2.534 \ \cos\left[\theta_{23}\right] \sin\left[\theta_{13}\right] \sin\left[\theta_{12}\right]^2 - \\ 1.267 \ \sin\left[2\theta_{12}\right] \sin\left[\theta_{23}\right] \right) \Delta_{21} + 2.534 \ \cos\left[\theta_{23}\right] \sin\left[\theta_{13}\right] \Delta_{31} \right) \psi_{\mu\tau}(x) \} \,, \end{split}$$

$$\begin{split} i \ \psi_{\tau e}'(x) &= \\ \frac{1}{E_{\nu}} \left((2.534 \ \cos\left[\theta_{13}\right]^2 \Delta_{21} \sin\left[\theta_{12}\right]^2 + 0.000192 E_{\nu} \ \rho(x) + 2.534 \sin\left[\theta_{13}\right]^2 \Delta_{31} \right) \psi_{\tau e}(x) + \\ \left(\sin\left[\theta_{12}\right] \left(2.534 \ \cos\left[\theta_{12}\right] \cos\left[\theta_{13}\right] \cos\left[\theta_{23}\right] - 1.267 \ \sin\left[\theta_{12}\right] \sin\left[2\theta_{13}\right] \sin\left[\theta_{23}\right] \right) \Delta_{21} + \\ 1.267 \ \sin\left[2\theta_{13}\right] \sin\left[\theta_{23}\right] \Delta_{31} \right) \psi_{\tau \mu}(x) + \cos\left[\theta_{13}\right] \left((-2.534 \ \cos\left[\theta_{23}\right] \sin\left[\theta_{13}\right] \sin\left[\theta_{12}\right]^2 - \\ 1.267 \ \sin\left[2\theta_{12}\right] \sin\left[\theta_{23}\right] \right) \Delta_{21} + 2.534 \ \cos\left[\theta_{23}\right] \sin\left[\theta_{13}\right] \Delta_{31} \right) \psi_{\tau \tau}(x) \right), \end{split}$$

 $i \psi_{e\mu}'(x) = \frac{1}{E_{\nu}} (2.534 \operatorname{Cos} [\theta_{13}] (\operatorname{Sin} [\theta_{12}] (\operatorname{Cos} [\theta_{12}] \operatorname{Cos} [\theta_{23}] - \operatorname{Sin} [\theta_{12}] \operatorname{Sin} [\theta_{13}] \operatorname{Sin} [\theta_{23}]) \Delta_{21} +$

Sistema di 9 equazioni differenziali

$$\begin{split} & \sin \left[\theta_{13} \right] \sin \left[\theta_{23} \right] \Delta_{31} \right) \psi_{ee}(x) + 2.534 \ \left(\cos \left[\theta_{13} \right]^2 \Delta_{31} \sin \left[\theta_{23} \right]^2 + \left(\cos \left[\theta_{12} \right] \cos \left[\theta_{23} \right] \right) \\ & - \sin \left[\theta_{12} \right] \sin \left[\theta_{13} \right] \sin \left[\theta_{23} \right] \right)^2 \Delta_{21} \right) \psi_{e\mu}(x) + 2.534 \left(\cos \left[\theta_{13} \right]^2 \cos \left[\theta_{23} \right] \sin \left[\theta_{23} \right] \Delta_{31} - \\ & \left(\cos \left[\theta_{23} \right] \sin \left[\theta_{12} \right] \sin \left[\theta_{13} \right] + \cos \left[\theta_{12} \right] \sin \left[\theta_{23} \right] \right) \left(\cos \left[\theta_{12} \right] \cos \left[\theta_{23} \right] - \\ & \sin \left[\theta_{12} \right] \sin \left[\theta_{13} \right] \sin \left[\theta_{23} \right] \right) \Delta_{21} \right) \psi_{e\tau}(x) \right), \end{split}$$

$$\begin{split} i \ \psi_{\mu\mu}'(x) &= \\ \frac{1}{E_{\nu}} \left(2.534 \ \cos\left[\theta_{13}\right] \left(\sin\left[\theta_{12}\right] \left(\cos\left[\theta_{12}\right] \cos\left[\theta_{23}\right] - \sin\left[\theta_{12}\right] \sin\left[\theta_{13}\right] \sin\left[\theta_{23}\right] \right) \Delta_{21} + \\ \sin\left[\theta_{13}\right] \sin\left[\theta_{23}\right] \Delta_{31} \right) \psi_{\mu e}(x) + 2.534 \ \left(\cos\left[\theta_{13}\right]^2 \Delta_{31} \sin\left[\theta_{23}\right]^2 + \left(\cos\left[\theta_{12}\right] \cos\left[\theta_{23}\right] - \\ \sin\left[\theta_{12}\right] \sin\left[\theta_{13}\right] \sin\left[\theta_{23}\right] \right)^2 \Delta_{21} \right) \psi_{\mu\mu}(x) + 2.534 \ \left(\cos\left[\theta_{13}\right]^2 \cos\left[\theta_{23}\right] \sin\left[\theta_{23}\right] \Delta_{31} - \\ \left(\cos\left[\theta_{23}\right] \sin\left[\theta_{12}\right] \sin\left[\theta_{13}\right] + \cos\left[\theta_{12}\right] \sin\left[\theta_{23}\right] \right) \left(\cos\left[\theta_{12}\right] \cos\left[\theta_{23}\right] - \\ \sin\left[\theta_{12}\right] \sin\left[\theta_{13}\right] \sin\left[\theta_{23}\right] \right) \Delta_{21} \right) \psi_{\mu\tau}(x) \end{split}$$

$$\begin{split} i \ \psi_{\tau\mu}'(x) &= \\ \frac{1}{E_{\nu}} \left(2.534 \ \cos\left[\theta_{13}\right] \left(\sin\left[\theta_{12}\right] \left(\cos\left[\theta_{12}\right] \cos\left[\theta_{23}\right] - \sin\left[\theta_{12}\right] \sin\left[\theta_{13}\right] \sin\left[\theta_{23}\right] \right) \Delta_{21} + \\ \sin\left[\theta_{13}\right] \sin\left[\theta_{23}\right] \Delta_{31} \right) \psi_{\tau e}(x) + 2.534 \ \left(\cos\left[\theta_{13}\right]^2 \Delta_{31} \sin\left[\theta_{23}\right]^2 + \left(\cos\left[\theta_{12}\right] \cos\left[\theta_{23}\right] - \\ \sin\left[\theta_{12}\right] \sin\left[\theta_{13}\right] \sin\left[\theta_{23}\right] \right)^2 \Delta_{21} \right) \psi_{\tau\mu}(x) + 2.534 \ \left(\cos\left[\theta_{13}\right]^2 \cos\left[\theta_{23}\right] \sin\left[\theta_{23}\right] \Delta_{31} - \\ \left(\cos\left[\theta_{23}\right] \sin\left[\theta_{12}\right] \sin\left[\theta_{13}\right] + \cos\left[\theta_{12}\right] \sin\left[\theta_{23}\right] \right) \left(\cos\left[\theta_{12}\right] \cos\left[\theta_{23}\right] - \\ \sin\left[\theta_{12}\right] \sin\left[\theta_{13}\right] \sin\left[\theta_{23}\right] \right) \Delta_{21} \right) \psi_{\tau\tau}(x) \end{split}$$

continua

$i \ \psi'_{e\tau}(x) =$

 $\frac{1}{E_{\nu}} (2.534 \text{Cos} [\theta_{13}] (\text{Cos} [\theta_{23}] \text{Sin} [\theta_{13}] \Delta_{31} - \text{Sin} [\theta_{12}] (\text{Cos} [\theta_{23}] \text{Sin} [\theta_{12}] \text{Sin} [\theta_{13}] + \\ \text{Cos} [\theta_{12}] \text{Sin} [\theta_{23}]) \Delta_{21}) \psi_{\text{ee}}(x) + 2.534 (\text{Cos} [\theta_{13}]^2 \text{Cos} [\theta_{23}] \text{Sin} [\theta_{23}] \Delta_{31} - \\ (\text{Cos} [\theta_{23}] \text{Sin} [\theta_{12}] \text{Sin} [\theta_{13}] + \text{Cos} [\theta_{12}] \text{Sin} [\theta_{23}]) \\ (\text{Cos} [\theta_{12}] \text{Cos} [\theta_{23}] - \text{Sin} [\theta_{12}] \text{Sin} [\theta_{13}] \text{Sin} [\theta_{23}]) \Delta_{21}) \psi_{\text{e\mu}}(x) + \\ 2.534 (\text{Cos} [\theta_{13}]^2 \Delta_{31} \text{Cos} [\theta_{23}]^2 + (\text{Cos} [\theta_{23}] \text{Sin} [\theta_{13}] + \\ \text{Cos} [\theta_{12}] \text{Sin} [\theta_{23}])^2 \Delta_{21}) \psi_{e\tau}(x)) ,$

$$\begin{split} i \ \psi_{\mu\tau}'(x) &= \\ \frac{1}{E_{\nu}} \left(2.534 \ \cos\left[\theta_{13}\right] \left(\cos\left[\theta_{23}\right] \sin\left[\theta_{13}\right] \Delta_{31} - \sin\left[\theta_{12}\right] \left(\cos\left[\theta_{23}\right] \sin\left[\theta_{12}\right] \sin\left[\theta_{13}\right] + \\ \cos\left[\theta_{12}\right] \sin\left[\theta_{23}\right] \right) \Delta_{21} \right) \psi_{\mu e}(x) + 2.534 \ \left(\cos\left[\theta_{13}\right]^2 \cos\left[\theta_{23}\right] \sin\left[\theta_{23}\right] \Delta_{31} - \\ \left(\cos\left[\theta_{23}\right] \sin\left[\theta_{12}\right] \sin\left[\theta_{13}\right] + \cos\left[\theta_{12}\right] \sin\left[\theta_{23}\right] \right) \\ \left(\cos\left[\theta_{12}\right] \cos\left[\theta_{23}\right] - \sin\left[\theta_{12}\right] \sin\left[\theta_{13}\right] \sin\left[\theta_{23}\right] \right) \Delta_{21} \right) \psi_{\mu\mu}(x) + \\ 2.534 \left(\cos\left[\theta_{13}\right]^2 \Delta_{31} \cos\left[\theta_{23}\right]^2 + \left(\cos\left[\theta_{23}\right] \sin\left[\theta_{12}\right] \sin\left[\theta_{13}\right] + \\ \cos\left[\theta_{12}\right] \sin\left[\theta_{23}\right] \right)^2 \Delta_{21} \right) \psi_{\mu\tau}(x) \right), \end{split}$$

$i \psi_{\tau\tau}'(x) =$

 $\frac{1}{E_{\nu}} (2.534 \operatorname{Cos} [\theta_{13}] (\operatorname{Cos} [\theta_{23}] \operatorname{Sin} [\theta_{13}] \Delta_{31} - \operatorname{Sin} [\theta_{12}] (\operatorname{Cos} [\theta_{23}] \operatorname{Sin} [\theta_{12}] \operatorname{Sin} [\theta_{13}] + \operatorname{Cos} [\theta_{12}] \operatorname{Sin} [\theta_{23}]) \Delta_{21}) \psi_{\tau e}(x) + 2.534 (\operatorname{Cos} [\theta_{13}]^2 \operatorname{Cos} [\theta_{23}] \operatorname{Sin} [\theta_{23}] \Delta_{31} - (\operatorname{Cos} [\theta_{23}] \operatorname{Sin} [\theta_{12}] \operatorname{Sin} [\theta_{13}] + \operatorname{Cos} [\theta_{12}] \operatorname{Sin} [\theta_{23}]) \\ (\operatorname{Cos} [\theta_{12}] \operatorname{Cos} [\theta_{23}] - \operatorname{Sin} [\theta_{12}] \operatorname{Sin} [\theta_{13}] \operatorname{Sin} [\theta_{23}]) \Delta_{21}) \psi_{\tau \mu}(x) + 2.534 (\operatorname{Cos} [\theta_{13}]^2 \Delta_{31} \operatorname{Cos} [\theta_{23}]^2 + (\operatorname{Cos} [\theta_{23}] \operatorname{Sin} [\theta_{13}] + \operatorname{Cos} [\theta_{13}] \operatorname{Sin} [\theta_{13}] + \operatorname{Cos} [\theta_{23}] \operatorname{Sin} [\theta_{13}] + \operatorname{Cos} [\theta_{23}] \operatorname{Sin} [\theta_{23}] \operatorname{Sin} [\theta_{13}] + \operatorname{Cos} [\theta_{23}] \operatorname{Sin} [\theta_{23}] \operatorname{Sin} [\theta_{23}] + \operatorname{Cos} [\theta_{23}] \operatorname{Sin} [\theta_{23}] \operatorname{Sin} [\theta_{23}] \operatorname{Sin} [\theta_{23}] + \operatorname{Cos} [\theta_{23}] \operatorname{Sin} [\theta_{23}] \operatorname{Sin} [\theta_{23}] \operatorname{Sin} [\theta_{23}] + \operatorname{Cos} [\theta_{23}]^2 \operatorname{Sin} [\theta_{23}] \operatorname{Sin} [\theta_{23}] \operatorname{Sin} [\theta_{23}] + \operatorname{Cos} [\theta_{23}] \operatorname{Sin} [\theta_{23}$