

L. Ludovici (RM1) F. Terranova (MI-B) <u>A. Longhin (LNF)</u>

- Tagged v beams
- Applications: v_{a} cross section
- Beamline and decay tunnel instrumentation
- Rate and dose at the tagger station
- Background, efficiencies, rates at the neutrino detector
- Perspectives and conclusions

Tagged neutrino beams

The "forbidden dream" of v physicists: detect simultaneously both the neutrino at the far detector and the associated lepton at production \rightarrow unique tag of flavor at production

The possibility of using tagged-neutrino beams in high-energy experiments must have occurred to many people. In tagged-neutrino experiments it should be required that the observed event due to the interaction of the neutrino in the neutrino detector would properly coincide in time with the act of neutrino creation $(\pi \rightarrow \mu\nu, K \rightarrow \mu\nu, B. Pontecorvo, Lett. Nuovo Cimento, 25 (1979) 257$

Literature: L. Hand, 1969, V. Kaftanov, 1979 ($\pi/K \rightarrow \nu_{\mu}$) G. Vestergombi, 1980, R. Bernstein, 1989 ($K \rightarrow \nu_{e}$) S. Denisov, 1981, R. Bernstein, 1989 (K_{e3}) L. Ludovici, P. Zucchelli, hep-ex/9701007 (K_{e3}) L. Ludovici, F. Terranova, EPJC 69 (2010) 331 (K_{e3})

What's new here: a beam design optimized for $\sigma(v_{a})$

- using $\mathbf{K}^+ \rightarrow \mathbf{e}^+ \pi^0 \mathbf{v}_{\mathbf{e}} (\mathbf{K}^+_{\mathbf{e}3} \text{ decays})$
- taking advantage of the progress in fast and radiation-hard detectors at the LHC

Importance and status of $\sigma(v_{a})$

- Despite lepton universality in weak interactions the v_{μ}/v_{e} ratio suffers from uncertainties related to nuclear effects (Phys. Rev. D86 (2012) 052003).
- Current mesurements (Gargamelle, T2K) are limited by systematics.
 - T2K recent measurement: $\sigma_{svs} = 16\%$ (12% from the v flux)
- Measurement of leptonic CP violation: modulations in the energy spectrum of $v_{\rm g}$ from

 $\nu_{\mu} \rightarrow \nu_{e}$: knowing well the ν_{e} cross section is extremely valuable for future experiments planned worldwide (HyperK, LBNF/O).

Tagging e⁺ from $K^+ \rightarrow e^+ \pi^0 v_{R(K_{e3}) = (5.07 \pm 0.04) \%} e^{\pm 0.04}$

"SINGLE TAG" = count "all" prompt e⁺ instrumenting the decay tunnel

$$N(e_{prompt}^{+}) = \alpha N(v_{e})_{Produced} = \alpha' N(v_{e})_{Detector}$$

 α, α' geometrical acceptances of tagger and v detector (K decay kinematics)

1) could measure $\sigma(v_e)$ removing the largest uncertainty related to the flux (driven by hadro-production in the target)

$$\sigma^{\rm CC}(v_{\rm e}) \propto N(v_{\rm e}^{\rm CC, \, Observed})/N(v_{\rm e})_{\rm Detector}$$

"DOUBLE TAG" prompt e^+ in time coincidence with v_s^{cc} at v detector

2) could **veto the intrinsic v_e background** in conventional neutrino beams

3) could **measure E(v_) event-by-event** from the energies of e^+ and π^0

Concept for the tagger

Let's assume a beam of collimated pions and kaons selected in sign and momentum.

Channel	v at far detector	Angular spread (*)	kinematics				
$\pi^{+} \rightarrow \mu^{+} \nu_{\mu}$	Bulk of ν_{μ}	$\mu^{\star} \sim 4 \text{ mrad}$	2-body				
$\pi^{+} \rightarrow \mu^{+} \nu_{\mu} \rightarrow e^{+} \nu_{e} \overline{\nu}_{\mu} \nu_{\mu}$	$v_{e}^{}$ from μ decay in flight (DIF)+(anti) $v_{\mu}^{}$	e⁺ ~ 28 mrad	3 body (low mass)				
$K^{\scriptscriptstyle +} \to \pi^0 e^{\scriptscriptstyle +} \nu_{_e}$	$v_{_{e}}$ from K $_{_{e3}}$	e⁺~ 88 mrad	3 body (high mass)				
Undecayed π ,K/p	/	O(3 mrad)(**)					
Other K^{+} decays	$ u_{\mu}$		No prompt e⁺				
		(*) RMS as (**) depend	suming p = 8.5 GeV (see Is on the focusing system	e below			
tagger	✓ e ⁺						
K⁺				ν _e			
	π	.0 🔪					

5

Concept for the tagger

- Good tagging efficiency for e⁺ from K_{e3} thanks to the high emission angle
- e⁺ from μDIF suppressed by L_μ << L and low emission angle (28 vs 88 mrad)

What else hits the tagger ?

- hadrons and γ from K, π decays (mostly at low angle). Must be efficiently discriminated from e⁺
- μ from K and π decays: easy to discriminate
- undecayed $\pi/K/p$. Very few/none if the incoming beam is collimated enough.

Tagged neutrino beams, What Next (Padova) 01/12/2014

Beam design considerations $\binom{K^+ \text{ decay "earlier":}}{(\tau/m)_{w_+}} = 0.13 (\tau/m)_{w_+}$

The $v_{e}^{\dagger} v_{\mu}^{\dagger}$ **ratio** roughly scales as: (neglecting v_{μ}^{\dagger} from K⁺ w.r.t. v_{μ}^{\dagger} from π^{+})

To get a sizeable v_e from K_{e3} with reduced v_e from μ DIF: 1) keep the tunnel "short" (L) 2) increase the parent energy (γ)

→ ν_{e} at far proportional to the decaying $K^{+} \rightarrow e^{+}$

Increasing $E(K,\pi) \sim \gamma$ * increased $R_{K/\pi}$ S* < loss in the transport line S* better e/π separation S* $E(v_e)$ higher than the R.O.I. S* longer decay (tunnel) S

Setup and simulation tools

- p-target interactions: FLUKA 2011 (cross-checked w. BMPT param.)
 Be target: L= 1.1 m Ø 3 mm. Energies: 30, 50, 60, 70, 120, 450 GeV/c (JPARC, U-70 at Protvino, NUSTORM 1^v beamline, FNAL-MI, CERN-SPS)
- K+/π+ charge selection, focusing, transport: not simulated in detail (horns for fast extraction, quad/solenoid focusing for slow extraction. See next →)
- K^+/π^+ decays and propagation in the tunnel (**GEANT4**, two independent)
- e^{+}/π^{+} interactions with the fast calorimeter (**GEANT4**, up to hits level)
- e⁺ energy reconstruction: smearing with a realistic parametrisation
- v detector at 100 m: not sim. $\sigma_t \sim 1-10$ ns, good NC- π^0 rejection, 500 t

Geometrical acceptance

- % of v_e at v-detector with a tagged e⁺ = 85% (tagger geometrical acceptance – forward "hole") ¹⁰₈E
- % of tagged e⁺ with a v_e at far = 80% (far det. geometrical acceptance)

85 % 80 %

e⁺ from K_{e3} @ CAL

9

 v_e from K_{e3} @ far

```
Radial profiles at the v detector (z = 100m)
```


Tagged neutrino beams, What Next (Padova) 01/12/2014

Neutrinos at the v detector

Detector at 100 m from the hadron window with a cross sectional area of $17.7 \times 17.7 \text{ m}^2$. Mass = 500 t (isoscalar)

$$\frac{\Phi_{\nu_e}}{\Phi_{\nu_{\mu}}} = 1.8 \% \ (\nu_e \text{ from } K_{e3})$$

$$\frac{\Phi_{\nu_e}}{\Phi_{\nu_{\mu}}} = 0.06~\%~(\nu_e~{\rm from~DIF})$$

- Only 3.3 % of v_{e} from μ DIF (low-E)
- <E> = 3 GeV, FWHM = 3.5 GeV Interesting region of long baseline projects is well covered.
- A good rejection power for NC π^0 is still necessary (large v_{μ} flux).

The v_{a} flux is proportional to the e⁺ flux measured in the CAL.

It does NOT depend on:

hadroproduction, $R_{_{K/n}}$, PoT, 2^{ry} beamline transport efficiency

It depends on:

geometrical efficiency of far detector, e⁺ efficiency in the CAL and backgrounds

Tagged neutrino beams, What Next (Padova) 01/12/2014

Transport line/focusing system

- The secondary hadrons have to be captured, sign-selected and transported to the instrumented decay tunnel
- Requirements at the tagging station:
 - K⁺ and π^+ in a 8.5 GeV/c ± 20 % momentum bite
 - distributed over a 10 x 10 cm² window
 - dN/dθ uniform in [0, 3] mrad
 - Geom. acceptance of the dec. tunnel,

 $-A = 4\epsilon_{xx'} = 4\epsilon_{vv'} = 4 \times (5 \text{ cm}) \times (3 \text{ mrad}) = 0.6 \text{ mm rad}$

- Time structure: a 2 ms extraction
 - Used for example in the past at the CERN WANF.
 - Horn pulses have this typical time development even for beams with $O(10 \ \mu s)$ extractions (NOvA, T2K).
- Length: ~10 m induces a 16% loss from early decays

Not decayed hadrons do not intercept the tagger → acceptable rates

Options for the focusing system

- No detailed simulation/optimization. Considered two focusing schemas based on realistic figures (literature, e.g. the NUSTORM proposal)
- Option 1: magnetic horn based

Particle rates along the tagger

Assuming to have $10^{10} \pi^+$ in a 2 ms spill at the tunnel entrance \rightarrow

13

Transport line/focusing system: option 1

- Adopts a magnetic pulsed horn (compatible with a 2 ms extraction)
- We assume a 85% collection efficiency (from NUSTORM) in the momentum bite.
- For each proton energy (E_p) we have considered the (x,x',y,y') phase space 5 cm downstream of the target
- We have figured out in this space the ellipse with emittance ($\epsilon_{xx'} = \epsilon_{yy'} = 0.15$ mm rad) maximizing the π^+ rate \rightarrow figure out the maximal collectable π^+ /PoT (see below)
- 1.94 x 10^{13} K⁺ are needed per v_e^{CC} with a 500 t detector and the given setup (does not depend on E_p) \rightarrow count how many PoT are needed to get $10^4 v_e^{CC}$ (= 1% stat. err. measurement).

E (GeV)	$\frac{\pi^+/\text{PoT}}{(10^{-3})}$	$\frac{K^+/{ m PoT}}{(10^{-3})}$	PoT for a 1 spill (10	$0^{10} \pi^+$]	PoT for $10^4 \nu_e$ (10^{20})	CC	■ Needed spills
30	4.0	0.39	2.5		5.0		~2 x 10 ⁸
$50\\60\\70\\120\\450$	$9.0 \\ 10.6 \\ 12.0 \\ 16.6 \\ 33.5$	$\begin{array}{c} 0.84 \\ 0.97 \\ 1.10 \\ 1.69 \\ 3.73 \end{array}$	1.1 Simple 0.94 conversion 0.83 0.60 0.30	Simple convers 1.94 x 10 ¹³	$\begin{array}{c c} & 2.4 \\ & 2.0 \\ \hline \\ sion \\ K^+ / v_e^{\ cc} \\ 1.16 \\ & 0.52 \end{array}$	•	Integrated PoT: achievable(*)! Number of spills: might be challenging (depend on realistic
FLUKA simulation + emittance optimization in the phase space* JPARC > 6.6×10^{20} PoT CNGS = 1.8×10^{20} PoT 2.4×10^{13} pot/spill every $6s$ NuMI = 10.7×10^{20} PoT							repetition rates, need Hz. Multi-turn extraction ?) Vhat Next (Padova) 01/12/2014

Transport line/focusing system: option 2

- We assume to be able to focus only those pions and kaons emitted in the momentum bite and in a 80 µSr cone centered in the forward direction (a small angular forward acceptance like the one achievable with a purely static focusing and bending channel). Large aperture quadrupoles might eventually be replaced by a Lithium lens device →)
- This option implies a loss of acceptance of ~ x 10 (and correspondingly more PoT for a given neutrino rate).

• Could sustain longer proton pulses.

* JPARC > 6.6 x 10²⁰ PoT CNGS = 1.8 x 10²⁰ PoT NuMI = 10.7 x 10²⁰ PoT

E (GeV)	π^+/PoT	K^+/PoT	PoT for a $10^{10} \pi^+$	PoT for $10^4 \nu_e \text{ CC}$
	(10^{-3})	(10^{-3})	spill (10^{13})	(10^{21})
30	0.24	0.027	4.2	7.2
50	0.58	0.069	1.7	2.8
60	0.73	0.091	1.4	2.2
70	0.80	0.095	1.3	2.0
120	1.25	0.16	0.80	1.22
450	3.65	0.43	0.27	0.46

Layout of the e⁺ tagger

t₀ layer: a pre-shower providing absolute timing of arrival of the charged particle → rejects neutral background (π^0).

Calorimeter: Copper absorber ($X_0 = 1.436 \text{ cm}$, $\lambda_{\pi} = 18.5 \text{ cm}$).**Thickness (17 cm)**: > $3\lambda_{\pi}$ for particles at 88 mrad. Longitudinally **segmented tiles**. **Area = 10 cm**².

Vacuum chamber: 1.5 mm Be or 1 mm Al (to reduce conversion prob. before the t_a layer)

Instrumenting z = 10-50 m, m(CAL) = 185 t. Area ~ 100m² \rightarrow ~ 4 x 10⁵ channels (including t_a)

e^{+}/π^{+} separation

- Defining $E_{1,2}$ as the E deposited in a cylinder w.
- $r = 2R_{Moliere}$ (3.2 cm for Cu)
- $h = 5n X_0$ (7.2 and 14.4 cm)

Selection:

- Coincidence with hits in t₀ detector
- E_{tot} > 300 MeV
- R₁ = E₁ / E_{tot} > 0.2
- $R_2 = E_2 / E_{tot} > 0.7$

the smearing is done on E_{tot}

Cut	Efficiency
K_{e3} decay	100%
e^+ in calorimeter	85%
R_1, R_2 cuts	67%
$E_{tot} > 300 \text{ MeV}$	59%

Pile-up and radiation

Pile-up mostly from the overlap of a K_{μ^2} muon with a candidate e⁺ (N.B. not decayed pions and kaons do not intercept the CAL)

Recovery time, $\Delta t_{cal} = 10 \text{ ns}$ Rate, R = 0.5 MHz/cm² Tile surface, S ~ 10 cm²

→ 5% pile-up probability (=
$$RS\Delta t_{cal}$$
)

Possible mitigation: veto (also offline) mip-like and punch-through particles using the longitudinal segmentation of the CAL and eventually a muon catcher (Fe + μ -chambers)

Radiation

150 MJ (but 64% into muons) from 1.94 x 10¹⁷ K⁺ decays (~ 10⁴ v_e^{CC}) Mass: 3X₀ (4.3cm) for 40 m of length (Cu) → 38 t → integrated dose < 1.26 kGy (~100 kGy for CMS forward ECAL)

→ Both issues not critical

Possible technology for the CAL

- Scintillator tile calorimeter developed for the ILC (CALICE AHCAL)
- Readout: SiPM + WLS fibers
- but with a much coarser longitudinal segmentation.
- Copper could be used as absorber

NA62 LAV llayout (10 x 10 x 37 cm crystals)

3.3 x 3.3 x 17 cm

Tagged neutrino beams, What Next (Padova) 01/12/2014

Background budget after selection

Signal K_{e3} ~ 5% of all K⁺ decays. Bulk: μ from K_{u2} (63%), $\pi^+\pi^0$ from K⁺ $\rightarrow \pi^+\pi^0$ (21%)

- e^+/μ^+ mis-id ~10⁻³ adding $K_{\mu 2}$, $K_{\mu 3}$ and π DIF
- π^+/e^+ dominates (e.m. component of hadronic shower): $\epsilon(\pi^+ \rightarrow e^+) = 2.2 \% \rightarrow 18 \%$ of fake e^+
- π^0/e^+ Mis-id if the γ converts in the t₀ detector or in the vacuum chamber in front 1.5 mm Be $\rightarrow \epsilon(\pi^0 \rightarrow e^+) = 3 \times 10^{-3} \rightarrow < 2\%$ of fake e^+ from π^0 (6% with 1 mm Al) CAL in vacuum region as for NA62 Large-Angle-Veto $\rightarrow 0$

NB. fake e⁺ from K⁺ $\rightarrow \pi^+\pi^+\pi^+$ (5%) and π^0 in K⁺ $\rightarrow \pi^+\pi^0$ (2-6%) could be removed vetoing π^+ from the decay vertex. Requires t₀-detector with $\sigma_t O(100 \text{ ps}) \sim \sigma_2 O(1m)$: not used here.

Source	BR	Misid	$\epsilon_{X \to e^+}$	Contamination
$\pi^+ \to \mu^+ \nu_\mu$	100%	$\mu \to e$ misid.	< 0.1%	neglig. (outside acceptance)
$\mu^+ \to e^+ \bar{\nu}_\mu \nu_\mu$	DIF	genuine e^+	< 0.1%	neglig. (outside acceptance)
$K^+ \to \mu^+ \nu_\mu$	63.5%	$\mu \to e$ misid.	< 0.1%	negligible
$K^+ \to \pi^+ \pi^0$	20.7%	$\pi \to e$ misid.	2.2%	13%
$K^+ \to \pi^+ \pi^+ \pi^-$	5.6%	$\pi \to e$ misid.	3.8%	5%
$K^+ o \pi^0 \mu^+ \nu_\mu$	3.3%	$\mu \to e$ misid.	< 0.1%	negligible
$K^+ \to \pi^+ \pi^0 \pi^0$	1.7%	$\pi \to e$ misid.	0.5%	negligible

Systematics

- The number of reconstructed positrons is proportional to the v_e flux.
- The dependence of the v_e flux from hadron yield, kaons/pions ratio, secondary transport efficiency and number of PoT is thus by-passed.
- The geometrical efficiency of the neutrino detector and of the tagger need to be known (tipically not critical). Residual dependence from:
 - the K_{e3} decay kinematics (very well studied, experimentally)
 - the divergence of the beam at the entrance of the decay tunnel (could be measured in situ with low-intensity runs)
 - The slope of the momentum distribution of K⁺ in the momentum bite (quite flat)
- Test beam characterisation of the calorimeter before installation.
- ~1 % systematics looks possible (even tough only a full simulation might give a more precise answer)

"Double tag" mode?

δt: the difference between the e⁺ and the v_e^{CC} time (~100 ns). δ the linear sum of the timing resolutions of the e⁺ tagger and neutrino detector

measured e⁺ from K_{e3} per extraction fake e⁺ per extraction

Accidental tag probability

$$A \equiv \left[N_K \cdot \text{BR}(K_{e3})(1 - e^{-\frac{\gamma_K c \tau_K}{L}})\epsilon + \text{bkg} \right] \frac{\delta}{T_{extr}} \simeq 2 \times 10^7 \frac{\delta}{T_{extr}}$$

• With T_{extr} = 1s (1 obs. e+ / 30 ns) and δ = 1 ns \rightarrow A = 2 %

NB. Previous beam parameters ($T_{extr} = 2 \text{ ms spill}$) not suitable (1 e⁺ / 70 ps observed). Even assuming $\delta = 50 \text{ ps} (\rightarrow A = 50\%)$, the intrinsic limit related to the imperfect knowledge of the decay point transverse position starts to play a role (~80 ps uncertainty).

"Double tag" mode?

Associating a single neutrino interaction to a tagged positron with a low probability of having picked up a fake coincidence would allow to know "a priori" the energy of that neutrino (event by event).

Tagger acceptance for $K_{e3}(e^+ + \pi^0)$ pairs = ~ 70%

(\rightarrow still high even adding the π^0 requirement)

 E_v resolution: mainly limited by the ignorance of the parent K⁺ energy (momentum bite $\Delta_n = 20\%$) besides the energy resolution on the e⁺:

For 3 GeV v_e : [K⁺ (8.5 GeV) $\rightarrow v_e$ (3 GeV) + {e⁺ π^0 }(5.5 GeV)] $\frac{\sigma_E}{E} = \frac{13\%}{\sqrt{E(\text{GeV})}} \oplus 3\%$ for e^-, e^+, γ $\sigma_{\text{Ev}} = \sigma_{\text{em}} \oplus (\Delta_p/\sqrt{12}) = 0.35 \oplus 0.49 = 0.6$ GeV (i.e. ~20 %) This could of course be combined with direct measurement at the far detector.

Present "double tag" mode challenges

- 1 s beam extraction is needed to cope with accidental coincidences and reasonably standard time resolutions
 - BUT magnetic horns cannot be pulsed at ~100 kA for so long (Joule heating) → should rely on static focusing components (or high-duty cycle Lithium lenses) at the expense of a lower collection efficiency
 - Cosmic ray background increase
 - O(10x) larger than in single tag mode
- Momentum bite → reflects directly on the achievable neutrino energy resolution. Being more selective → drop in statistics, PoT cost.

Conclusions

- The development of fast, radiation hard detectors allows for a reconsideration of the old idea of tagged neutrino beams.
- Tagging efficiencies: 59%. Background contamination ~ 18%. 85% of e⁺ with a $\nu_{\rm e}$ crossing the far detector.
- Single tag mode:
 - can be employed to reduce systematics in the determination of the initial flux (flux depends on kinematic corrections) and measure the v_e cross-section
 - 1 % precision (10⁴ v_e^{cc}) achievable with a 0.5 kt detector and a reasonable amount of PoT (0.5-5x10²⁰ PoT depending on the proton energy). Large number of spills (~2 x 10⁸) might pose restrictions (to be better investigated).
- Double tag mode can be implemented to veto v_e intrinsic component of the beam and reconstruct the v energy at source.
- Challenged by high accidental rates requiring long proton extractions (1 s)

Thank you !

 π^+

 μ^+

 K^+

pΝ

K^{\pm}		K^0_L		K^0_S		
Ļ	$\iota^{\pm} u_{\mu}$	63.51%	$\pi^- e^+ \nu_e$	19.35%	$\pi^+\pi^-$	68.61%
π	$\tau^{\pm}\pi^{0}$	21.17%	$\pi^+ e^- \bar{\nu}_e$	19.35%	$\pi^0\pi^0$	31.39%
π	$\pi^{\pm}\pi^{+}\pi^{-}$	5.59%	$\pi^-\mu^+ u_\mu$	13.5%		
e	$e^{\pm}\nu_e\pi^0$	4.82%	$\pi^+\mu^-ar{ u}_\mu$	13.5%		
ŀ	$\iota^{\pm}\nu_{\mu}\pi^{0}$	3.18%	$\pi^0\pi^0\pi^0$	21.5%		
π	$\pi^{\pm}\pi^{0}\pi^{0}$	1.73%	$\pi^+\pi^-\pi^0$	12.38%		

Sign-selecting the secondaries Consider e+ like CC (assume NC π^0 rejection)

 π^{-}

 μ^{-}

ave

pΝ

K^{\pm}		K_{1}^{2}	0 L	K^0_S		
$\mu^{\pm} u_{\mu}$	63.51%	$\pi^- e^+ \nu_e$	19.35%	$\pi^+\pi^-$	68.61%	
$\pi^{\pm}\pi^{0}$	21.17%	$\pi^+ e^- \bar{\nu}_e$	19.35%	$\pi^0\pi^0$	31.39%	
$\pi^{\pm}\pi^{+}\pi^{-}$	-5.59%	$\pi^-\mu^+ u_\mu$	13.5%			
$e^{\pm}\nu_e\pi^0$	4.82%	$\pi^+\mu^-ar{ u}_\mu$	13.5%			
$\mu^{\pm} \nu_{\mu} \pi^{0}$	3.18%	$\pi^0\pi^0\pi^0$	21.5%			
$\pi^{\pm}\pi^{0}\pi^{0}$	1.73%	$\pi^+\pi^-\pi^0$	12.38%			

Sign-selecting the secondaries Consider e+ like CC (assume NC π^0 rejection) Consider large angle e+ only and shorten tunnel

Intrinsic uncertainty

 $\delta t \sim 50-100 \text{ m/c} = 170-330 \text{ ns}$. The difference between the e+ and the v_eCC time.

Realistic σ_t of 50 ps (contribution from tagger and neutrino detector timing resolution) Coincidence $|\delta t - \Delta/c| < \sigma_t$

This assumes that the e+ and the neutrino are isocronous which is not perfectly true due to the e+ emission angle. The correction is of $O(R_{in}\theta/2c) \sim 80 \text{ ps}$