Antineutrini da reattori e geoneutrini in JUNO

Fabio Mantovani – University of Ferrara & INFN - Italy

Geoneutrinos: what next?

Fabio Mantovani – University of Ferrara & INFN - Italy

SUMMARY

- Cosa è stato fatto...
- Cosa si sta facendo...

 Cosa si potrebbe fare..

Borexino and KamLAND results

* arXiv:1303.2571v2 Borexino collaboration - Physics Letters B 722 (2013) ** arXiv:1303.4667v2 KamLAND collaboration - Phys. Rev. D 88 (2013)

KL and BX results and radiogenic heat

In the plane (S,H), a region containing all models consistent with geochemical and geophysical data can be defined:

- ✓ the "slope" is universal
- \checkmark the intercept depends on the site
- the width depends on the site (crust effect)

88	200

Cosmochemical BSE models: $m_{PRIM}(U) = 0.5 \pm 0.1 \ 10^{17} \text{ kg}$ Th/U = 3.5

Geochemical BSE models: $m_{PRIM}(U) = 0.8 \pm 0.2 \ 10^{17} \text{ kg}$ Th/U = 4

Geodynamical BSE models: $m_{PRIM}(U) = 1.4 \pm 0.2 \ 10^{17} \text{ kg}$ Th/U = 4

Implications of KL and BX on terrestrial radiogenic heat

* Bellini et al 2013 - Prog Part Nucl Phys - arXiv:1310.3732

Two independent and pioneering experiments, far ~10⁴ km one from another, are measuring a geoneutrino signal in good agreement with the expectations

Geoneutrinos are bringing to Earth's surface information about the chemical composition of the whole planet **Open questions about natural radioactivity in the Earth**

✓ What is the radiogenic contribution to terrestrial heat production?

How much U and Th in the crust and in the mantle?

What is the distribution of radioactivity in the mantle?

What is hidden in the Earth's core? (geo-reactors...)

Is the standard geochemical model (BSE) consistent with geo-neutrino data?

Terra incognita

- Deepest hole is about 12 km
- Samples from the crust (and the upper portion of mantle) are available for geochemical analysis.
- Seismology reconstructs density profile (not composition) throughout all Earth.
- Recent novelties^[2]:
- a refined geophysical structure of CC and new compilations of geochemical data
- a new approach for evaluating the composition of MC and LC
- the contributions from Lithospheric
 Mantle and from 3 classes of BSE
 compositional models (cosmochemical, geochemical and geodynamical)

Geophysical model and its uncertainties

Crustal reference model^[1]: 64.800 1°x1° voxels divided in CC and OC.

- CRUST2.0^[2]: reflection and refraction seismic data
- CUB2.0^[3]: surface seismic waves
- GEMMA^[4]: gravitational potential field

35 30 25

20 15

10

5

- First uncertainty estimate of global crustal thickness
- ~10% uncertainty in continents
- Larger uncertainty

in oceans and continental margins

[1] Huang, Y., et al. – 2013 [2] Bassin et al. - 2000

```
[3] Shapiro and Ritzwoller - 2002
[4] Negretti et al. - 2012
```

		CRUST2	CUB2	GEM	RM
Mass (10 ²¹ kg)	CC	21.4	20.9	19.6	20.6 ± 2.5
	OC	6.3	6.4	7.4	6.7 ± 2.3

Seismic argument for estimating Felsic/Mafic in MC and LC

- Felsic and mafic rocks can be distinguished on the basis of P and S waves velocities
- Ultrasonic velocity measurements of deep crustal rocks **provide a link** between seismic velocity and lithology.
- The fractions of **felsic** (**f**) and **mafic** (**m**) rocks in the MC and LC of RRM are estimated solving:

$$\begin{cases} \mathbf{f} + \mathbf{m} = 1 \\ \mathbf{v}_{\mathrm{C}} = \mathbf{m}\mathbf{v}_{\mathrm{m}} + \mathbf{f} \mathbf{v}_{\mathrm{f}} \\ \mathbf{a} = \mathbf{m}\mathbf{a}_{\mathrm{m}} + \mathbf{f} \mathbf{a}_{\mathrm{f}} \end{cases}$$

		<i>a</i> (U) μg/g
MC	Fels.	1.4 _{-0.6} +1.0
	Mafic	0.4 _{-0.2} +0.4
LC	Fels.	0.4 _{-0.2} +0.4
	Mafic	0.1 _{-0.1} +0.1

 v_{c} = seismic velocity measured in MC and LC (CRUST2.0) $v_{f;m}$ = lab. measurements of felsic and mafic rock velocity $a_{f;m}$ = U (and Th) abundance in felsic and mafic rocks a = U (and Th) abundance in MC and LC

Heterogeneous distribution of U in MC

	MC		LC		Bulk CC		
	<i>a</i> (U)	a(Th)	<i>a</i> (U)	a(Th)	<i>a</i> (U)	a(Th)	$\mathbf{D}(\mathbf{T}\mathbf{W})$
	[µg/g]	[µg/g]	[µg/g]	[µg/g]	[µg/g]	[µg/g]	r (1 vv)
R&G (03)	1.3	6.5	0.2	1.2	1.4	6.2	7.4
Huang et al (13)	1.0 ^{+0.6} -0.4	4.9 ^{+4.3} -2.3	0.2+0.1	1.0 ^{+1.2} -0.5	1.3+0.3	5.6 ^{+1.6} -0.9	6.8 ^{+1.4} -1.0

How to look into the deep Earth?

Including a refined local model, in Enomoto et al. (2007) the expected signal in KamLAND is 35.2 TNU.

[1] Fiorentini et al. - 2012

[2] Huang, Y., et al. - 2013 - arXiv:1301.0365v2

[3] KamLAND collaboration - Phys. Rev. D 88 - 2013

[1] Fiorentini et al. – 2012 // [2] Huang, Y., et al. - 2013 - arXiv:1301.0365v2 // [3] Borexino collaboration - Physics Letters B 722 - 2013

- 3146 samples used for estimating U and Th abundance ir
- Local 3D geophysical model based on ~400 seismic control points

		Total	Exporimont			
	LOC ^[1]	FFC ^[2]	CLM ^[2]	Mantle ^[2]	Expected	Experiment
S(U+Th) [TNU]	15.6 ± 4.3	15.1 ± 2.6	2.1 ± 2.1	8.7	41.5 ± 5.4	(2016?)

[1] Huang, Y., et al. - 2014 - arXiv:1404.6692 // [2] Huang, Y., et al. - 2013 - arXiv:1301.0365v2

Geoneutrinos signal in JUNO

Crust surrounding JUNO

Reactors antineutrinos and geoneutrinos in JUNO

