

SPES status

Gianfranco Prete SPES Project leader

PIAVE Heavy Ion Injector

Laboratori Nazionali di Legnaro: site for SPES facility

ALPI Linac 48 MVeq

Tandem XTU 15 MV

SPES Strategy

Research and Production of Radio-Isotopes for Nuclear Medicine

Accelerator based neutron source (Proton and Neutron Facility for Applied Physics)

SPES Facility Layout

SPES

New infrastructure for:

- cyclotron
- RIB (Radioactive Ion Beam)
- application facility

Radioactive Ion Beams are reaccelerated by the superconductive linac ALPI. A normal conductive RFQ placed before ALPI will match the input acceptance beam parameters.

Second SPES International Workshop

Europe/Rome 👻

English 👻

Login

26-28 May 2014 INFN Laboratori Nazionali di Legnaro

Presented 37 Letters of Intents

MAIN TENDERS

SPES general planning

	2012	2013	2014	2015	2016	2017	2018	2019
Authorization to operate and safety	UCx							
	5microA							
ISOL Target-Ion Sources development								
ISOL Targets construction and								
installation								
ISOL on-line commissioning								
Building Construction	Executive	raw buil	ding					
	project	construc	tion					
Cyclotron Construction &				Cyclotro	n			
commissioning				at LNL				
RFQ development and Alpi up-grade								
Design of RIB transport & selection								
(HRMS, Charge Breeder, Beam Cooler)								
Construction and Installation of RIBs								
transfer lines , CB and spectrometers								
Stepwise commissioning and first								
exotic beam (2018), HRMS in 2019								

Cyclotron Site Test at BEST Company (Ottawa)

November 2014 Factory Acceptance Test

Main Parameters

Accelerator Type	Cyclotron AVF 4 sectors
Particle	Protons (H ⁻ accelerated)
Energy	Variable within 30-70 MeV
Max Current Accelerated	750 μΑ (52 kW max beam power)
Available Beams	2 beams at the same energy (upgrade to different energies)
Max Magnetic Field	1.6 Tesla
RF frequency	56 MHz, 4 th harmonic mode
Ion Source	Multicusp H ⁻ I=15 mA, Axial Injection
Dimensions	Φ=4.5 m, h=1.5 m
Weight	150 tons

Cyclotron assembled and operated with 700 μA at 1MeV

SPES: Cyclotron Schedule (2013-2015)

							100000		
	20)13		2014			2015		
	Ш	Ш	I	II	III	I	Ш	Ш	
Final Assembly and Testing									
Factory Commissioning									
Disassembly and Shipping									
Installation at LNL									
Commissioning at LNL									

SPES CYCLOTRON

load work per year

Compact, high current, H- cyclotron: 70 MeV, 0.7 mA shared on 2 exits 2 proton beams are available at the same time

Beam sharing

	Proton beam	N.rs of SHIFTS	Beam on target: Total 10600 hours
ISOL 1	300µA 40MeV	10	2800
Irradiation 1	500 μA 70MeV	9	2500
Irradiation 2	500 μA 70MeV	10	2800
ISOL 2	300 μA 40MeV	9	2500
Maintanance		7	7x14x24=2350
Cyclotron Operation		19	19x12x24= 5462 esperiment 19X2x24= 912 beam preparation

2 weeks per shift

Beam preparation 2 days Beam on target 12 days

Beam on target \rightarrow 280 hours per shift

Each bunker will cool down for 14 days after target irradiation.

Expected Beam on target: 10600 hours per year

More than 5000 hours/year of proton beam available for applications

ISOL FACILITY

Technical highlights: the production target

SPES DIRECT TARGET CONCEPT to operate with 8 kW proton beam

- Direct Target carefully designed to reach **10**¹³ fissions/s with 8 kW proton beam (thermomechanical considerations);
- In beam test performed at iThemba labs (South Africa) on May 2014;
- Prototype under operation.
- Fully developed **front-end** following ISOLDE design

UCx target completely developed

Exotic Beam reacceleration

Collaboration with LPSC (Grenoble) for the SPES Charge Breeder

INFN

Validation of the SPES-CB

LPSC April 4th, 2015

Charge Breeder Beams:

✓ Global capture up to 90% !

		EFFICIENCY* [%]					
ION	Q	SPES req	Best LPSC	SPES-CB			
Cs	26	≥ 5	8,6	11,7			
Xe	20	≥ 10	10,9	11,2			
Rb	19	≥ 5	6,5	7,8			
Ar	8	≥ 10	16,2	15,2			

*results obtained for the same 1+ injected current

High Resolution Mass Separator & Beam Cooler

Approaching Mass resolution: 1/40000 !

Synergies with LNS Collaboration SPES – CENBG Bordeaux

Scaled-up version of the separator designed for CARIBU Mass resolution: 1/40000

Beam Cooler to match the HRMS input requirements

COOLBEAM experiment financed by INFN-CSN5, 2012→2015 Collaboration: LNL-LNS, Milan

High Resolution Mass Separator

L.Calabretta, M.Comunian, A.Russo, L.Bellan

Exotic Beam reacceleration: room temperature RFQ

E. Fagotti, A. Pisent

1⁺ Stable Source

LARAMED Project

Funded with 6.8 Meuro

Joint Research lab of INFN, CNR, Universities and external companies:

- Measurement of cross section through targets activation
- High power targets tests
- Radioisotopes/radiopharmaceuticals Production test facility (^{99m}Tc, ⁶⁴Cu, ⁶⁷Cu, ⁸²Sr, ...)

Production laboratory joint venture with external companies: Selected isotopes of medical interest Sr-82/Rb-82 generator

STATUS:

- Building and infrastructures underer development
- Design of radiochemistry labs
- Design of beam line and target management
- Contract with company for radioisotopes production to be finalized

LARAMED Project @ LNL

ISOLPHARMA*

 Use of exausted ISOL targets: extraction of trapped elements

 Isotopes trapped into the ISOL target

 Isotopes trapped into target

Mo-Tc 99m generator

Useful as strategic production

UCx Target conditioned following standard chemical procedures

Regional production of Mo-99 1150 GBq_3day (needs of Veneto)

(Today not commercially competitive)

* Patent pending

The chain of HIGH INTENSITY

High intensity proton beam

High power target

High neutron production `

High activation

Target Handling problems

Radioprotection and safety

(Storage and decommissioning)

Integral neutror Proton beam= 7 Target = W 5mm	n production at 0 MeV, 500 μA 1	SPES Cyclotron		
Energy region (MeV)	Sn (n/s) ∼ 6·10 ¹⁴ s ⁻¹	Φ _n @ 2.5 m (n cm ⁻² s ⁻¹)	⊕ _n @ 1 cm (n cm⁻² s⁻¹)	
1 < E < 10	$\sim 5.10^{14} \text{ s}^{-1}$	5×10 ⁸	3×10 ¹³	
<mark>10 < E < 50</mark>	$\sim 1.10^{14} \text{ s}^{-1}$	1×10 ⁸	6x10 ¹²	

Neutron spectra for different targets

Continuum and Quasi Mono Energetic spectra

Figure 4: C(p,xn) at 70 MeV

Al(p,xn) at 70 MeV

Thick target yield for Figure 8: thick target yield for MeV

High Power Beam Dump 50 = kW proton beam (≈ 100 W/cm³ at 150°C) Connecting Tube **Copper Plates** IN (20°C) CU **PROTON BEAM** PASS **OUT (40°C) Alluminium Frame**

52500 W

42.5063	1	79.4976	1	116.489	1	153.48	1	190.472	ļ.	
	61.0019		97.9933		134.985		171.976		208.9	96

Cooling system:

Flow	0,16 l/s
Velocity	1,25 m/s
ΔT	20 °C

Input thermal power:

Energy	70 MeV
Current	750 μA
Power	52500 W

High power target at SPES

CONCLUSIONS

- □ The SPES project is financed by INFN up to the completion
- □ The cyclotron just arrived and it is under installation
- The proton beam is expected to be extracted in September 2015 for the Site Acceptance Test
- ISOL:
 - □ The ISOL sistem will be installed in 2016
 - □ First radioactive beam in 2018 (no reacceleration)
- □ Applications:
 - □ First beams available for medicine and neutrons in 2016
- Adressed several common aspects: target, radioprotection and safety

SPES Horizontal Handling system

All system has been developed according the safety & radioprotection rules

SPES Horizontal Handling system

Horizontal device (AGV based)

Devices under construction at the LNL mechanical workshop

Target chamber rack-storage system

The storage system is able to accommodate up to 44 boxes, with the possibility of expelling the box with lower radioactivity (FIFO logic)

The system automatically picks up the Pb box from the AGV and placed in the rack.

