Astrophysical Quests for Neutron Capture Data of Unstable Nuclei

Franz Käppeler Karlsruhe Institute of Technology

- abundances & production scenarios
- neutron reactions & available data
- Iaboratory work: activation vs TOF
- opportunities & prospects

Galactic abundances

neutrons produce 75% of the stable isotopes, but only 0.005% of total abundances

Fe to U: s- and r-process

s-abundance x cross section = $N_s \sigma$ = constant

s-process branchings

probing neutron density, temperature, pressure, time scales !

Maxwellian averaged cross sections

 σ(E_n) measured by TOF for 1 < E_n < 300 keV, MACS by folding with stellar neutron spectrum

$$\langle \boldsymbol{\sigma} \rangle = \frac{\langle \boldsymbol{\sigma} \boldsymbol{V} \rangle}{\boldsymbol{V}_{T}} = \frac{2}{\sqrt{\pi}} \frac{\int \boldsymbol{\sigma}(\boldsymbol{E}_{n}) \boldsymbol{E}_{n} \exp(-\boldsymbol{E}_{n}/kT) d\boldsymbol{E}_{n}}{\int \boldsymbol{E}_{n} \exp(-\boldsymbol{E}_{n}/kT) d\boldsymbol{E}_{n}}$$

MACS directly measured via activation

uncertainties between **1** and **5%** for complete set of isotopes from ¹²C to ²¹⁰Po, including unstable samples

major s-process requests

- AGB model tests:
 16 s-only isotopes
 ± 1%

 -20 unstable isotopes ± 5%
- massive stars: Fe Kr region ± 3-5%
- presolar grains: 75 isotopes ± 1%
- bottle neck nuclei: 15 n-magic nuclei
- neutron poisons: C, N, O, Ne, Mg
- neutron sources: ${}^{13}C(\alpha,n)$ and ${}^{22}Ne(\alpha,n)$
- thermally excited el. and inel. scattering states:

what about theory?

¹⁷⁶Hf, ¹⁷⁸Hf, ¹⁸⁰Hf: MACS uncertainties **1 - 2%**

exercise joined by 6 leading groups: calculate MACS of ¹⁷⁴Hf and ¹⁸²Hf prior to measurement

detection of neutron capture events

prompt γ-rays + TOF-method

single γ´s	* Moxon-Rae * PH-weighting * Ge	ε _γ ~ 1% ~ 20% < 1%
full γ cascade	* 4π BaF ₂	~100%

activation in quasi-stellar spectrummost sensitive* small cross sections,1014 atoms sufficientselective* natural samples or low
enrichment

activation technique at kT=25 keV

- neutron production via ⁷Li(p,n)⁷Be reaction at Van de Graaff
- induced activity measured with HPGe detectors

only possible when product nucleus is radioactive
 → not applicable for most branch-point isotopes

activation: unique sensitivity

4 - 5 orders of magnitude higher flux than best TOF facilities!

measurement of **ubarn** cross sections

measurements with ng samples, important for cross sections of unstable isotopes

parameters for TOF experiments

neutron energies: TOF resolution: signal/background: 0.3 – 300 keV important if RRR matters crucial, many aspects

pulsed neutron sources

Reifarth et al., J Phys G: Nucl.Part.Phys. 41 (2014) 053101

flux and resolution: 10 - 100 keV

Facility	Φ _n (10 ⁴ cm ⁻² s ⁻¹)	∆E/E (‰)
n_TOF EAR1	0.4	1 – 2
GELINA (30 m)	1.4	1.3
n_TOF EAR2	8	10 – 20
LANSCE (20 m)	13	8 – 26
FRANZ ***	in activation mode: Φ	n ~ 10 ¹² ***

exp. MACS for unstable branch points

TOF data in green

summary & outlook

MACS for unstable isotopes crucial for understanding stellar scenarios

main branchings $1 - 3 M_{\odot}$ stars: <10¹⁰ n/cm³

more work needed for scenarios with much higher neutron densities:

massive stars.....up to 10¹² n/cm³
low-metallicity stars.....
Supernovae, *r*-process.....
10²⁰

sample aspects: mass & radiation

activation: now: 30 - 100 ng soon: 300 pg

(10¹⁴ atoms)

limited to special cases

