GEANT4 simulation of the n_TOF spallation target: Neutron production and transport

J. Lerendegui-Marco, M. A. Cortés-Giraldo, J. M. Quesada, C. Guerrero

Universidad de Sevilla (Seville, Spain)

UCANS-V May 15th, 2015

Introduction

- GETERUS group, University of Seville:
- Members of the n_TOF collaboration (CERN)
 - Validate Geant4 for neutrons with n_TOF Flux
- Members of GEANT4 hadronic group
 - Benchmark for production of neutrons beyond 3GeV
- Involved with CNA (National Accelerators Center)
 - Starting neutron research line in the 3MV TANDEM

Why GEANT4?

- Usually MCNPX/FLUKA to simulate neutron transport
- Explore the capabilities of GEANT4 for neutron production
 - Versatile code with multiple applications
 - Large community of users and extensive support
 - Improved treatment of neutron transport (HP-package)
- GEANT4
 - Developed at CERN: International GEANT4 collaboration
 - Object oriented (C++), modular architecture
 - Allows Customization and extension by the user
 - Extensive documentation and installation guide

http://geant4.cern.ch

Geant 4

The n_TOF facility at CERN

- High resolution neutron cross section measurements
 - Time of Flight (ToF) Technique
 - $\Delta E/E(1keV)$: EAR1 (185m) $\rightarrow ~3.10^{-4}$, EAR2(19m) $\rightarrow ~8.10^{-3}$
 - Flux (n/cm²/pulse): EAR1: ~4.10⁵, EAR2: ~7.5.10⁶
 - Neutron spectrum from thermal to few GeV (highest among similar facilities)
- Applications:
 - Nuclear Technologies
 - ADS, Fast reactors
 - Astrophysics
 - s-process (AGB stars)
 - Basic Nuclear Physics

n_TOF EAR1

• @ 185m from spallation target in forward direction (10 deg w.r.t proton beam)

u

n_TOF EAR2

• @ 20m from spallation target in *vertical* direction (90 deg w.r.t proton beam)

Geant 4

INTOF

- Neutron Flux EAR1 x ~25
- Expected factor 10 relative background reduction
- Small masses (<mg)
- Highly radioactive samples
- Open to Radiation Damage studies

n_TOF Neutron Source: Pb Spallation Target

Simulation of n_TOF target

- 10⁷ 20 GeV/c protons, with an incidence angle of 10 deg
- Gaussian profile proton beam (FWHM=3.53cm)
- Precise implementation of the cooling and moderation layers
- All the components have been implemented following the technical drawings
- Special care in the composition of the Lead target and the surrounding materials

Detailed Geometry Model:

Detailed Geometry Model

Notes about Methodology

- GEANT4 (v. 10.0.3 used) provides a unique variety of Physics Models
- All must be considered to target the neutron production with 20 GeV p for the 1st time:
 - Fritiof (FTF) or Quark-Gluon-String model (QGS) (T > ~10 GeV)
 - Intranuclear cascade models: Bertini (BERT), Binary Cascade Exciton Model+Precompound (BIC) or INCL++ (Bertini above 3GeV) (INCLXX)
 - Neutron High Precision (HP) below 20 MeV with thermal scattering (T) (T < 4 eV) using evaluated data libraries (ENDF VII.0) available at IAEA web site (*).
- In order to validate our results, comparison with experimental data is needed.
 Experimental data (**) available just far from the target.
- Optical transport to experimental areas with a geometric transport code (***)

(*) E. Mendoza et al., IEEE-TNS 61: 2357 (2014) (**) C. Guerrero et al., EPJ A49: 27 (2013) (***)V. Vlachoudis

EAR2 : 3D scorer, beam line shape

- Scoring surfaces defined as in previous simulations in n_TOF (FLUKA)
- Why? Use previous transport codes to get results at EAR1 and EAR2 from the GEANT4 simulation @ target
- Angular acceptance limited to 4 deg ↔ isotropic spectra within this solid angle
- **Collected information at scorer**: Position, momentum, energy, type of particle and time

ÈAR1: 2D scorer @ entrance of beam line

Results at the scorers

EAR1 Scorer: Spatial Distribution

- Beam off-centered due to 10° angle of incidence
- Border of the Lead Target (30cm radius)
- Al grid in borated water layer: Lack of absorption → Enhanced production
- Shadow of the Al grid in entrance of beam line. Rotated 45°

EAR2 Scorer: Spatial distribution

- Spatial distribution on the plane perpendicular to the beam pipe EAR2 shows the shadow of the entrance window
- Projections in the different axis show the structure of the 3D scorer

Transport to experimental areas

Transport Code

- Real simulation to the EAR's : Unaffordable CPU Time
- ~1300 instances are created for each scored neutron (with $\theta \le 2^{\circ}$) and sent scanning a 2cm radius scorer in EAR1 (185m) or EAR2 (19m)
- Input with the position and dimensions of the collimators in both beam lines

1]%

Geant 4

• Simplified transport: If a neutron hits a collimator is discarded

Goals: Relevant Results

- As a **TOF facility** our goal is to obtain the following results:
- Energy distribution (Flux) of neutrons arriving to Experimental Areas :
 - CAN be measured with FLUX Monitors
 - Used for validation of our simulations
- <u>Relation between Energy and Time of Flight</u>(determines the energy), called Resolution Function:
 - CAN NOT be measured → Simulations Needed
 - Intrinsic of the typical moderation time of neutrons in the target assembly
 - Needed to analyze the experimental resonances

Results @ EAR1

Beam Profile at EAR1

- R=2cm (= Radius scorer) and symmetric (aligned collimation system)
- Off-centered: 0.15cm in X axis, and almost centered in vertical axis
- Gaussian Profile : FWHM=1.49-1.50mm

Flux at EAR1: G4 Physics Lists

- Deviations in the integral flux of one the G4 Physics Lists, FTFP_BERT
- The other Physics List agree with each other within a few percent.
- Main differences in shape in the region above 20MeV: No role of neutron HP

Flux at EAR1:G4 vs. Experimental results

- All the Physics Lists give a global yield larger than the experiment
- The deviation ranges from 30% for QGSP_INCLXX to 50% for FTFP_BERT
- Transport code might not reflect all the flux loss → More relevant to focus on the shape

Flux at EAR1: G4 vs. Experimental results

- Normalization to epithermal range $(1-10 \text{keV}) \leftrightarrow \text{Most}$ reliable range in the measured flux
- Shape better appreciated: Reproduction of dips in the flux from AI- alloys: AI, Mn, ...etc
- Good reproduction of the thermal/epithermal ratio
- Largest deviations above 10MeV, experimental flux within average simulated results

Geant 4

Results @ EAR2

Beam Profile at EAR2

- Considered the real misalignment of the two first collimators
- Off-centered: 0.23cm in X axis, and -0.15cm in Y axis
- FWHM ~20mm

Flux at EAR2: G4 Physics Lists

- Flux up to 300MeV, in EAR1 \rightarrow few GeV : Forward Component
- Smaller differences in the high energy region than in EAR1: Relevance of directionality
- No experimental flux in EAR2 officially released

EAR1 vs EAR2

u

Geant 4

- FTFP_INCLXX_HPT compared for both EAR's
- Simulated Flux EAR2 x~15-20 Flux EAR1
- Thermal Peak just in EAR2 due to the absence of B-10
- Larger dips in the keV-MeV region in EAR2's Flux
- Flux extends to 300-400 MeV in EAR2 and 5GeV in EAR1

INTOF

Global Neutron Yield

NEUTRONS SCORED per 1000 protons							
	EAR1(2°)	EAR1(4°)	EAR2(2°)	EAR2(4°)			
QGSP_BIC_HPT	98.9	394.0	15.9	67.1			
FTFP_BERT_HPT	118.0	469.0	20.2	85.2			
QGSP_INCLXX_HPT	91.5	364.8	14.8	62.2			
FTFP_INCLXX_HPT	98.2	391.7	16.3	68.6			

NEUTRON YIELD RATIOS							
FTFP_BERT/QGSP_BIC	1.19	1.19	1.27	1.27			
QGSP_INCLXX/QGSP_BIC	0.92	0.93	0.93	0.93			
FTFP_INCLXX/QGSP_BIC	0.99	0.99	1.02	1.02			

- FTFP_BERT_HPT and QSGP_INCLXX_HPT provide the largest/smallest production (22-28% deviation)
- The yield ratios are independent of the angular acceptance (within 1%) for angles < 4°</p>
- Besides FTFP_BERT_HPT, the other PL's give the same global production within 7%

Resolution Function

Energy- time relation of neutrons @ target exit (θ<4°)
 EAR1 EAR2

- Resolution Function=Energy dependent time distribution of neutrons with the same energy
- Obtained from the projection of the E-t correlation for a certain neutron energy.
- EAR2: To avoid false structures due to the 3D scoring, we get the time at 150 cm above the target

Resolution Function

TOF or Energy(TOF) distribution for neutrons of a certain energy EAR1 vs EAR2

- After adding the TOF corresponding to each neutron Energy:
- EAR2 worse resolution than EAR1 due to the shorter flight path
- EAR2 larger shifting of energy reconstructed from TOF
- In general, distribution width increases with energy \rightarrow Worse resolution

Geant 4

Summary and conclusions

Summary and Conclusions

- We have explored and confirmed the good performance of GEANT4 to simulate the neutron production and transport, in an energy range beyond previous works.
- The results are needed both for n_TOF (Resolution Function of EAR2) and validation of the capabilities of GEANT4 to simulate neutron transport using different officially released Physics Lists.
- The geometry of the **target assembly** has been **implemented in detail**. At the level of the target exit we have scored the neutrons that leave towards EAR1 and EAR2.
- We have obtained the two most relevant quantities: FLUX and RESOLUTION FUNCTION at EAR1 (185m forward) and EAR2 (19m upwards)
- GEANT4 is able to reproduce the shape of the experimental flux and agrees with the global neutron flux within the expected accuracy of 30-50%.

Outlook

- Next step will be to confirm the good reproduction of the final experimental neutron flux for EAR2(*)
- The obtained resolution function for EAR2 will be used for the capture measurements in the starting campaign of n_TOF.
- There is also a work in progress to provide more information about the main neutron production channels and the origin of the different neutron yield at the level of physics model providing a benchmark for Geant4.
- Ongoing simulations with Geant4 latest version 10.1.1, which includes a newer and extended version of INCL++.

(*)M.Barbagallo, M. Sabate, T.Wright,n_TOF Analysis Meeting. Feb 2015

Thanks for your attention !!

Comparison to FLUKA @ scorer EAR1

Comparison to FLUKA @ EAR1

FLUX EAR1: Comparison G4, FLUKA, experiment

Comparison to FLUKA @ EAR1

FLUX EAR1: G4 & FLUKA scaled to experimental 1-10keV

Comparison to FLUKA @ scorer EAR2

Comparison to FLUKA @ EAR2

Gamma flux EAR1

Gamma flux EAR2

Gamma flux EAR1 vs EAR2

NEUTRON YIELD RATIOS								
	EAR1(2°)	EAR1(4°)	EAR2(2°)	EAR2(4°)				
QGSP_BIC/FLUKA	1.03	1.03	1.26	1.33				
QGSP_INCLXX/FLUKA	1.23	1.22	1.60	1.69				
FTFP_INCLXX/FLUKA	0.95	0.95	1.18	1.24				