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Beam delivery 

Delivering illumination for beam 

scattering studies 

  

Microscope (XVI. c.): 

(divergence d prescribed) 

  

 

 = (r,,,) d d 

 

Brightness  is a constant 

of motion along trajectories 

(if no beam loss, e.g. absorption) 
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Liouville theorem and the brightness 

Absolute flux determination: 

 at any point along the beam 

 

         =   source 

 

   (absorption) loss factor  1  

No. of particles hitting in time dt a 

surface perpendicular to 

trajectory (local z axis): 

N= dx dy dz dvxdvydvz=  

=  dx dy vdt vx vy v
2d m/h  

  dt dF d d 

where the brightness 

    mv5/h is a constant if the 

neutron velocity is preserved (i.e. 

little acceleration)  

Note: for Maxwellian tail  is 

independent of v. 

r,v 

Flux is governed by Liouville theorem: 
 Phase space density  is constant along 

 particle trajectories in conservative force fields 
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time 

TOF diagram          Phase space diagram 

Neutrons on sample:  N = () dt dF d d 

Source brightness (n/s/cm2/str/Å) 

 

t 

Example: TOF monochromator 

t 

 

I   t1 t0 /L  t m/h 

Practical Liouville theorem 

sample 
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time 

TOF diagram          Phase space diagram 

Neutrons on sample:  N = () dt dF d d 

Source brightness (n/s/cm2/str/Å) 

 

t 

Example: TOF monochromator 

I   t1 t0 /L  t m/h 

Practical Liouville theorem 

sample 
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Early reactors, spallation sources:  

    direct view of: 

 
    - of reflector or 
      

    - of moderator / cold 

 source       

    

 

 

 

Figure of merit (for large enough d) : brightness  surface 

Moderator / beam tube sizes: 12 – 35 cm, “the bigger the better” 

 

 

 

sample  mod dsample 
 
     = mod Fmod/d2 

Beam delivery: direct view 
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Beam delivery including optics 

d ~ determined by focusing 

         Xtal monochromator 
 

Figure of merit: brightness 

      (above a minimum size) 

“Virtual source”  

     for focusing monochromator 

 

 minimizes extracted neutrons 

    to reduce background: 

    not bigger than needed  

      

IN20 (ILL) 
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  Available neutrons  (“phase space”)     
 

  Neutrons available:   Fmdm          On sample:  Fsds ,     < 1 
 

   Fmdm      should be >     Fsds   
 

  Beam losses:  

 - < 100 % reflectivity of (super)mirrors, crystals 

 - impact angle above the (super)mirror cut-off angle 

 - gaps in the guide 

 - absorption in air, windows, imaging errors,… 

   ……     

  

Lens combination  

Fm ds dm Fs D 

Beam delivery including optics 
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Beam delivery by neutron guides 
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Neutron guide: d is limited, but  independent of distance, 
 

Beam losses by many reflections: can be reduced by guide     

 shape (ballistic, elliptic,…) 

          

Guide dimensions: 

 - comparable to samples 

 -  > 0.5 commonly achievable  

sample  mod dsample 

Monolith 

liner 

h 

d   1/h: 
phase space transformation 

 

 

 



Bi-spectral beam extraction 

Combination of cold and thermal 

neutron spectra in one guide:  

experimentally established 

 

Measured and calculations for comparison 



Conventional “box” moderators: 2 – 6 cm thick, ~12x12 cm2 area 
 

 Re-entrant / grooved moderators: flux higher in depth 
 

 Volume moderators: para-H2 (  15 cm), liquid D2  (  30 cm) 

ISIS TS2 J-PARC 

Recent best practice / developments 

at spallation sources 

 >99% para-H2 

ESS:  scheduled target optimization beyond best practice: 2013 - fall 2014 
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Low-D xyz moderator brightness 
 (z = 15 cm) 

Directionality of 1.5 cm x 1.5 cm 

tube moderator: 

 - slow neutron creation still 

isotropic 

 

Low dimensional para-H2 moderator for 

reactors 
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Perturbed flux increase vs. wavelength  

Thermal flux: also enhanced 

     - less moderator removed 

     - center closer to target 

     - …? 
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unperturbed 

perturbed 

Trend even stronger for the perturbed flux 

 

 Also gains in the thermal flux from 

   water moderator / Be reflector 

   

Unperturbed moderator flux 
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Moderator height

 Total neutron emission 

  Perturbed brightness



Less diffuse fast neutron background with 

the flat moderators: smaller opening for 

beams, more shielding up front.  
15 

Higher brightness, better signal vs. noise 
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Moderator brightness and homogeneity: 

  actual gains > average brightness        

Conv. moderator       Volume moderator 

Conventional vs. flat cold moderators 
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Low dimensional moderator shapes 

In para-H2:  

      high brightness along flat walls > 10 cm 

 

Flat moderator: quasi 2D 

Tube moderator: quasi 1D   



Low dimensional para-H2 moderator for 

reactors 

The same cold  moderator concept 

also works well at reactor sources 

too: 

compared with. optimal D2 or 

conventional H2 moderators 

 

Lower volume / compact source 

   reduced heat deposition 

   can be closer to core  

   additional flux gain 

 

Opportunity for BRR, PIK, etc 
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Efficient beam delivery to sample 

supermirror optics           d:  acceptance angle of optics 

D 

High power sources: 

 D ~ 150 – 200 cm (damage) 

 

Compact sources: 

 D ~ 30 – 50 cm 

 advantage for high d 

 

 

Mirror and nanodiamond reflectors 

Vm = (d)2 Fm      or      (h/D)2 Fm  

h 

 > 5 Å 
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Efficient beam delivery to sample 

Neutrons on sample:  N =  () dt dF d d 

Source brightness (n/s/cm2/str/Å) 
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Straight guide entrance: 8 cm

 sample 4 - 30 mm

T
ra

n
s
m

is
s
io

n
 c

o
e

ff
. 


Moderator height [cm]

 > 60 %, if 

   -  “good” optical design 

   -  (super)mirror critical 

      angle sufficient 

   -  available phase space 

      large enough 

 

Losses in horizontal and 

   vertical dimensions com- 

   bine: asymmetric shapes 

   can be advantageous 

   (for homogeneous moderator brightness) 

d = 2 
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Efficient beam delivery to sample 

The enhanced moderator brightness can always be delivered with little 

losses to the sample for moderate samples size (<2 cm) and moderate 

angular resolution (< 2) or < 4 cm phase space per direction.  

 

 

 Beam optics quality   Flux on sample 
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Summary 

  

 Low dimensional moderator concept: enhanced slow neutron   

  generation capability for all neutron sources:  reactors, spallation 

  and compact neutron sources 
 

 Efficiency of use of  enhanced brightness limited by current  

  neutron supermirrors optics: development potentials  

 

      Full efficiency: for small samples and beam divergences 

    Main challenges: large samples and/or divergences (> 4 cm) 

 

 Compact sources: smaller distance  higher divergence   

   smaller moderator  higher cold n. brightness efficiency 

 

 Future improvement potentials: (regular) exchange of 

   moderators (~ 2-3 years at ESS), new sources 


