

Experiment and Simulation of plasma window

Kun Zhu, Sheng Huang, Wang shaoze, Yuarong, Zhiyu Guo Physics school of Peking university Institute of Heavy Ion Physics UCANS2015

outline

➢Introduction

► Plasma window test bench

Simulation of plasma window

➤ conclusion

what is plasma window

Traditional solid window

Disadvantage:

- Thermal damage
- Radiation damage
- Increase energy loss and energy spread

Windowless target

Windowless deuterium gas target

Expensive differential pump system Complicated vacuum and mechanical system

windowless hydrogen gas target for ⁷Be(p,_{*Y*}) reaction measurement

Why plasma window

- ≻ needn't worry about thermal problem.
- ≻No radiation damage
- Very thin equivalent thickness(~nm)
- Effectively improve the performance of differential pump system

Non-vacuum electron beam welding

Plasma Arc Window e-beam welder schematic

9mA 25mA Electron beam current after exiting plasma window , Pure helium gas Aperture: 2.36mm Current: 45A

Air boring and non-vacuum electron beam welding with a plasma window, Ady hershcovitch, Physics of plasma, 12(2005)

Deuterium gas target using plasma window

50kW power supply

operating gas pressure is 0.5 bar for argon Diameter of plasma window: 5mm

Performance of a plasma window for a high pressured differentially Pumped deuterium gas target for mono-energetic fast neutron Production-Preliminary results, A.De Beer, A. hershcovitch, et. al..NIMB, 170(2000), 259-265

High ion current beam need larger plasma window

- Small diameter Plasma window(2-5mm) is successfully used for electron beam welding and gas target.
- If larger diameter plasma window is possible, It has some potential use for high current ion beam.

Peking University Neutron Imaging Facility — Plasma window test bench

Vacuum gauge

Plasma window

Arc power supply

Plasma window

Plasma window sealing effect

	Inlet pressure(kPa)	Outlet pressurek(Pa)	Gas flow(SLM)	
discharge	33.3	70	1.1	
No discharge	12.7	220	12.3	

Operating current is 40A operating voltage is 58V this prove the plasma window 's sealing effect!

Measurement with spectrometer

Schematic diagram of spectroscopy set up

Temperature of plasma

• Experiment show that the plasma window can work. But the sealing ability decreased quickly when plasma window's aperture increase. It may consume much more energy

Simulation of plasma window

- ≻Use magneto-hydrodynamic model
- ≻Ansys fluent
- ➢ Basic assumptions
- plasma is steady, continuous, axisymmetric and optically thin
- Plasma is in LTE state
- Swirling velocity is neglected

Govering equation

$$\partial/\partial z (\sigma \partial \phi/\partial z) + \partial/r \partial r$$

 $(r\sigma \partial \phi/\partial r) = 0$

$$-\left(\frac{\partial}{\partial z}\frac{\partial A_z}{\partial z}\right) + \frac{1}{r}\frac{\partial}{\partial r}\frac{\partial A_z}{\partial r} = \mu_0 j_z$$
$$-\left(\frac{\partial}{\partial z}\frac{\partial A_r}{\partial z}\right) + \frac{1}{r}\frac{\partial}{\partial r}\frac{\partial A_r}{\partial r} = \mu_0 j_r$$

Boundary condition

	Р	ů u	Т	ϕ	u A
AB: Inlet	P = 52.5KPa	/	T = 300	$\partial \phi / \partial n = 0$	$A_i = 0$
HI: Outlet	<i>P</i> = 60	/	$\partial T / \partial n = 0$	$\partial \phi / \partial n = 0$	$\partial A_i / \partial n = 0$
AI: Axis	$\partial P / \partial n = 0 \partial$	$u_i / \partial n = 0$	$\partial T / \partial n = 0$	$\partial \phi / \partial n = 0$	$\partial A_i / \partial n = 0$
CD: Cathode	$\partial P / \partial n = 0$	0	$-k\partial T / \partial n = h_w(T - 400)$	$\phi = -140$	$\partial A_i / \partial n = 0$
EF: Anode	$\partial P / \partial n = 0$	0	$-k\partial T / \partial n = h_w(T - 400)$	$\phi = 0$	$\partial A_i / \partial n = 0$
DE&FG: Wall	$\partial P / \partial n = 0$	0	T = 400	$\partial \phi / \partial n = 0$	$\partial A_i / \partial n = 0$
BC&GH: Wall	$\partial P / \partial n = 0$	0	T = 300	$\partial \phi / \partial n = 0$	$\partial A_i / \partial n = 0$
$ \begin{array}{c c} 0.02 & \text{Inlet Pipe} & \text{Cat} \\ \hline \hline 0.01 & \text{Char} \\ \hline 0 & \text{A} \end{array} $	hode Cas mber Cathode	caded Arc Sectio	Anode section Anode \leftarrow E F G	Anode nozzle	Buffer Chamber H
- - , , ,	0		0.05	0.1	

0.05 Axis[m]

Simulation domain

Current Distribution

Sheng huang, Kun Zhu, et al, Numerical Simulation Study on Fluid Dynamics of Plasma Window Using Argon, Physics of plasmas, 2013

Temperature Distribution

Pressure Distribution

Pressure and velocity distribution along axis

Comparison of Experiment and Simulation results

Inlet pressure: 51kPa Aperture : 3mm Length: 51mm

Sheng huang, Kun Zhu, et al, **Quantitative characterization of arc discharge as vacuum interface**, Physics of plasmas, 2014

How to increase the aperture?

• Power is proportional to r^2 , 10 times of 3mm plasma window

Aperture: 10mm Fixed Current: 50A

Two stage construction

Conclusion

- ➤ A test bench of plasma window is built. Small aperture plasma window experiment is done.
- ➤A simulation model is set up, the simulation result is agree with experiment result. It can be used for evaluating the performance of larger aperture plasma window
- Large aperture will need very high power, So we design a new structure of two stage plasma windows with 10mm aperture, experiments have been done and the feasibility is proven

Future

- >Do plasma window experiments with deuterium gas
- > Improve the structure of plasma window
- ➤Use the simulation method to optimized the property of large diameter plasma window
- >Build two stage plasma window with large diameter if possible

Thank you for your attention!