

Target choice for SARAF TNS (Thermal Neutron Source)

Ido Silverman, Soreq-NRC on behalf of SARAF team

UCANS-V conference 12-15/5/2015 INFN Laboratori Nazionali di Legnaro

Talk Layout

- System requirements for the Thermal Neutron Source (TNS) at Soreq Applied Research Accelerator Facility (SARAF)
- Review of technologies for the neutron converter
- Recent results with a liquid lithium neutron converter

Background

 Soreq nuclear reactor (IRR-1) is in operation since 1961

It provides:

- Neutron radiography
- Neutron diffraction
- Samples irradiation
- Soreq infrastructure should be modernized to support experimental nuclear physics research in Israel

SARAF Accelerator Complex

שורק

IRR-1 radiography facility capabilities

#	Capability	Requirement for SARAF TNS
1	Neutron flux on image plane 6x10 ⁵ n/(s*cm ²)	High intensity neutron generator
2	Resolution $- L/D > 250$	System geometry
3	Cadmium ratio > 15	Effective neutron thermalization
4	Neutron flux homogeneity, better than 3% cm ²	Small neutron opening from source to radiography system, high neutron density in thermalization system
5	Gamma dose < 300 mR/hr	Effective gamma shielding

Preliminary system design

Available technologies for neutron converter design

Target design Carbon B		eryllium	Lithium		
Static	SPIRAL-I LE		NS, SPES	Birmingham BNCT, BINP	
Rotating	FRIB, SPIRAL-II	ES	S-BILBAO	?	
Liquid	Х		Х	IFMIF, LiLiT	
Target design	Advantages		Dra	awbacks	
Static	Simple		High heat flux, Radiation damage, Large neutron source		
Rotating	Low thermal stress, Low radiation damage density		Complex mechanism, Reduced neutron conversion efficiency		
Liquid Low thermal stress, Low radiation damage Small neutron source		Complex system, Only for lithium			

Available technologies for neutron converter design

Target design	arget design Carbon		Lithium		
Static	SPIRAL-I	LENS, SPES	Birmingham BNCT, BINP		
Rotating	FRIB, SPIRAL-II	ESS-BILBAO	?		
Liquid	Х	Х	IFMIF, LILIT		
Target design	Advantages	Пг	awhacke		
Static	Simple 2005 DES Large neutron source				
Rotating	Low thermal stress, Low radiation damage	density Complex mech Reduced neut efficiency	Complex mechanism, Reduced neutron conversion efficiency		
Liquid	Low thermal stress, Low radiation damage Small neutron source	Complex syste Only for lithiun	em, 1		

Target fail modes review – R&D risks Short term fail modes

- Target cooling
- Mechanical loads
- Medium\ Long term fail modes
 - Radiation damage limited knowledge, difficult to evaluate
 - Mechanical reliability
 - Radiation safety

Micro-channels cooling of a solid target

Proposed 80 kW micro-channels cooled neutron source (size 100x100 mm²) and prototype test section (channel width 0.2 mm, made of Aluminum)

10

Micro-channels cooling – experimental results

Measured wall temperature above coolant temperature as function of heating power flux for two flow rate. Distinctive change in heat transfer capability can be noticed at power flux of about 600 W/cm². Stable operation has been achieved for heating power of up to 1400 W/cm^2

Radiation damage from high current low energy proton beam

Irradiation of solid targets cause fast accumulation of hydrogen gas at traps close to the targets surface (depth < 100 µm)

Unless released or chemically locked, the gas bubbles may fracture the target

SARAF phase-I Tungsten beam dump after irradiation by ~10 mA*hr protons at 2-3 MeV

Radiation damage in Be thick targets

Design studies for ESS-BILBAO neutronic applications laboratory

ESS-BILBAO Target Group

	LENS	ESS-B	ESS-B ro	ot
Avg. Intensity [mA]	0.62	2.25		
Operation time [hr]	156	171	3420	
Implantation [a/cm ³]	18	4.5		1

(cm)

N

Liquid Lithium Target - LiLiT

- Proton energy: ~2 MeV
- Proton current: <3.5 mA</p>
- ★ T ≈ 220°C
- ♦ $T_{max} \approx 350^{\circ}C$
 - Jet: 18 mm x 1.5 mm
 - Lithium velocity: 20 m/s
 - Wall assisted lithium jet

 Operating at SARAF since 10/2013

LiLiT installation at SARAF

LiLiT thermal model

17

Jet velocity effect

שורק

Emissivity - $\mathcal{E}_{Li} = 0.05$ $\mathcal{E}_{SS} = 0.4-0.6$

Measured lithium temperature

1.5 mA Protons beam
at 1.92 MeV Beam
power ~3 kW
Beam size, σ=2.5 mm

Calculated heat-up 200°C

Measured ~ 50°C

Summary

Design choices for TNS has been reviewed based on:

Short and long term failure modes

- System requirements
- ♦ R&D risk analysis

SARAF TNS design is considering changing from a static beryllium target to a liquid lithium target