

Characterization of nuclear material by Neutron Resonance Transmission Analysis (NRTA)

UCANS V

12 – 15 May 2015, INFN Laboratori Nazionali di Legnaro

P. Schillebeeckx

EC - JRC (Geel)

Standards for Nuclear Safety, Security and Safeguards (SN3S)

Fukushima accident

Earthquake followed by a Tsunami (15 m)

- core meltdown (units 1,2,3)
- production of hydrogen followed by an explosion

Melted fuel:

Complex mixture of materials in fuel and control/safety rods, i.e. U, Pu, fission products, structural materials and neutron absorbers (¹⁰B)

Removal of melted fuel huge amounts of debris will be produced

Neutron resonance transmission analysis NRTA

- Resonances appear at energies, which are specific for each nuclide
- Position and amplitude of resonances can be used as fingerprints to
 - identify and quantify nuclides
 - elemental & isotopic composition
- NRTA developed at the JRC Geel
 - Non-Destructive Analysis (NDA)
 - sensitive to almost all nuclides (except light)
 - no sample preparation required
 - requirements:
 TOF-measurements at a white neutron source

TOF – facility GELINA

Pulsed white neutron source (10 meV – 20 MeV)

- Neutron energy : time of flight (TOF)
- Multi-user facility: 10 flight paths (10 m 400 m)
- Measurement stations with special equipment:
 - Total cross section measurements
 - Partial cross section measurements

GELINA TOF-Facility: High resolution cross-section measurements

Neutron detector

L: distance between target and detector

t: time-of-flight

JAEA

GELINA TOF-Facility: High resolution cross-section measurements

L: distance between target and detector

t: time-of-flight

Total cross section Homogeneous sample

Transmission: fraction of neutron beam traversing without any interaction the sample

$$T_{exp} = \frac{C_{in}}{C_{out}} \qquad \frac{u_{T_{exp}}}{T_{exp}} < 0.3\%$$

- Detection efficiency cancels
- Incoming neutron flux cancels
- ⇒ absolute measurement
- ⇒ no calibration measurement required

$$T_{M}(t) = \int R(t, E) e^{-n \left(\sigma_{tot}(E)\right)} dE$$

R(t,E): response of TOF-spectrometer

 σ_{tot} : total cross section

n : areal number density

total number of atoms per unit area

 σ_{tot} : most accurate cross section (uncertainty \leq 1.0 %) use of well-characterized sample

$$\chi^{2}$$
 (RP) = $(T_{exp} - T_{M})^{T} V_{T_{exp}}^{-1} (T_{exp} - T_{M})$

NRTA Homogeneous sample

Transmission: fraction of neutron beam traversing without any interaction the sample

$$T_{exp} = \frac{C_{in}}{C_{out}} \qquad \frac{u_{T_{exp}}}{T_{exp}} < 0.3\%$$

- Detection efficiency cancels
- Incoming neutron flux cancels
- ⇒ absolute measurement
- ⇒ no calibration measurement required

$$T_{M}(t) = \int R(t, E) e^{-n \sigma_{tot}(E)} dE$$

R(t,E): response of TOF-spectrometer

 σ_{tot} : total cross section

n : areal number density

total number of atoms per unit area

 σ_{tot} : most accurate cross section (uncertainty \leq 1.0 %)

NRTA: most accurate NDA technique

$$\chi^{2}(n) = (T_{exp} - T_{M})^{T} V_{T_{exp}}^{-1} (T_{exp} - T_{M})$$

Characterization of debris of melted fuel NRTA challenges

Characterization of debris of melted fuel by NRTA

Target value: uncertainty on Pu and U content ≤ 2%

Challenges due to the material characteristics:

- Inhomogeneity of the samples: due to diversity in shape and size of the particle like debris samples (particle-like or rock-like, granularity)
- <u>Impact of impurities</u>: structural material and strong neutron absorbers, e.g. ¹⁰B (control rods and borated water)
- Complex transmission spectra due to fission products

Solutions have been studied and validated by measurements at GELINA as part of a JRC/JAEA collaboration

Workshop on Neutron Resonance Densitometry

Joint EURATOM / JAEA workshop 4 – 5 March 2015 JRC-IRMM, Geel, Belgium

Objective of the workshop

- Report on progress made
- Demonstration of NRTA performance

50 participants

- Extensive delegation from Japan (JAEA, Univ. Kyoto & Nagoya)
- DG-ENER, JRC
- EU Member states
- Participants from IAEA, US (DOE, LANL, LLNL, ORNL)

Impact of particle size distribution

Transmission is a non-linear function of n

Heterogeneous sample :

$$<$$
T $>=<$ e $^{-n} \sigma_{tot} > \neq e^{-< n> \sigma_{tot}}$

<n> is the quantity of interest

- ⇒ Dedicated model for debris samples is required to avoid bias effects

 Validation of different models by stochastic calculations (MC simulations)
- ⇒ LP − model (Levermore, Pomraning et al., J. Math. Phys. 27, 2526, (1986))
 - Widely used for other problems dealing with radiation transport through stochastic media, e.g. scattering of sunlight in clouds
 - Starts from microscopic properties of the sample such as grain size
 - Applicable for powder samples
 - Validated by experiments at GELINA

Experimental validation of LP-model at GELINA

Declared : $n_W = 9.38 \cdot 10^{-4} \text{ at/barn}$

 T_{M} (hom.) : $n_{W} = 9.36 \cdot 10^{-4}$ at/barn

Declared : $n_W = 1.03 \cdot 10^{-5} \text{ at/barn}$

 T_{M} (hom.) : $n_{W} = 0.85 \cdot 10^{-5}$ at/barn

natW-metal disc

 \Rightarrow bias < 1%

natW-powder mixed with natS-powder Homogeneous model ⇒ bias > 15%

Experimental validation of LP-model at GELINA

Declared : $n_W = 9.38 \cdot 10^{-4} \text{ at/barn}$

 T_{M} (hom.) : $n_{W} = 9.36 \cdot 10^{-4}$ at/barn

natW-metal disc ⇒ bias < 1% Declared : $n_W = 1.03 \cdot 10^{-5}$ at/barn

 T_{M} (inhom.): $n_{W} = 1.05 \cdot 10^{-5}$ at/barn

natW-powder mixed with natS-powder LP - model ⇒ bias ≤ 2 %

Impact of impurities e.g. ¹⁰B

Experimental validation of final model at GELINA

U₃O₈ reference sample EC NRM 171

Strong impact of matrix material

Experimental validation of final model at GELINA

Beam attenuation due to matrix ~ 99%

Transmisson

Residua

Fit for areal density

+

$$n_X \sigma_{tot,X}(E) = a_X + \frac{b_X}{\sqrt{E}}$$

Neutron energy / eV

Experimental validation of final model at GELINA

U₃O₈ reference sample EC NRM 171

U-isotope	Areal number density (at/b)		Ratio
	Declaration	NRTA	
²³⁵ U	$(5.0326 \pm 0.0080) \times 10^{-4}$	$(5.063 \pm 0.09) \times 10^{-4}$	1.006
²³⁸ U	$(1.0628 \pm 0.0015) \times 10^{-2}$	$(1.062 \pm 0.01) \times 10^{-2}$	0.999

 \Rightarrow bias < 1.0 %

Demonstration experiment at GELINA selection of samples

Samples

18 different samples 8 different elements

Black box: 8 slots

→ B, Mn, Co, Cu, Nb, Rh, W, Au samples with different thicknesses Selection of samples by DG-ENER, IAEA and DOE representatives

Demonstration experiment at GELINA complex transmission

Experiments with radioactive material containing U and Pu are not possible

- → produce similar complex spectrum using
 - elements with resonances in the low energy region
 - elements with reliable resonance parameters
 - samples that are not radioactive and do not contain nuclear material

Demonstration experiment at GELINA start of the experiment

NRTA station at 10 m

Demonstration experiment at GELINA comparison with reference data

Element	Areal number density (at/barn)		n _{Ref} /n _{NRTA}
	n_Ref	n _{NRTA}	
Mn	1.901 x 10 ⁻²	$(1.928 \pm 0.003) \times 10^{-2}$	1.014 ± 0.002
Co	4.583 x 10 ⁻³	$(4.509 \pm 0.015) \times 10^{-3}$	0.984 ± 0.003
Cu	0	0	
Nb	5.485 x 10 ⁻³	$(5.382 \pm 0.010) \times 10^{-3}$	0.981 ± 0.002
Rh	1.856 x 10 ⁻³	$(1.891 \pm 0.003) \times 10^{-3}$	1.019 ± 0.002
W	2.269 x 10 ⁻³	$(2.250 \pm 0.002) \times 10^{-3}$	0.992 ± 0.001
Au	0	0	

Summary

Neutron Resonance Transmission Analysis (NRTA)

- Non-destructive analysis method (NDA)
- Based on well-established methods for cross section measurements
- Applicable for high radioactive nuclear material
- No sample preparation required
- Sensitive to almost all nuclides (except light nuclides)
- Absolute method, no calibration requirements
- Models to apply the method on particle size debris, including strong neutron absorbers, have been validated at GELINA
- Accurate method (bias effects < 2%, depends only on nuclear data)

Acknowledgements

The JRC / JAEA NRD collaboration

JAEA : H. Harada, F. Kitatani, M. Koizumi and H. Tsuchiya

JRC-IRMM : B. Becker, J. Heyse, S. Kopecky, C. Paradela and P. Schillebeeckx

Technical support of:

G. Alaerts, D. Vendelbo and R. Wynants

Research and training options at Neutron Facilities of JRC Geel

EUFRAT – European facility for nuclear reaction and decay data measurements

Transnational Access of external users to JRC-IRMM nuclear facilities

https://ec.europa.eu/jrc/en/eufrat

GENTLE – Graduate and Executive Nuclear Training and Lifelong Education

Student Research Experience

http://gentleproject.eu/

Thank you for your attention