Current Status of the Hokkaido University Neutron Source (HUNS)

2015.05.14.

Special Thanks

- Hokkaido University
 - S.Takeda, T. Ishida, H. Moriki, T. Sasaki
 - M. Ohnuma, T. Kamiyama, H. Sato
- RIKEN
 - Y. Yamagata, J. Guo, T. Hosobata, J. Kato, S. Morita, T. Kawai
- KURRI
 - M. Hino
- KEK
 - N. Yamada

Contents

- Introduction to the HUNS facility
- HUNS upgrade on going
 - Best example of "laboratory neutron source"
 - METI advanced steel project
 - Ministry of Economy, Trade and Industry
 - Not too large, just enough for daily research activities
- New target stations
 - Cold source troubles

2015.05.14.

Status of HUNS

- New iANS, intermediate-angle neutron source.
- Focusing mirror development for focusing-SANS
 - RIKEN and Hokkaido Univ. (S. Takeda, Y. Yamagata, et. al.)
- Upgrade design of the Bragg-edge transmission instrument (H. Sato, et al.)
- X-ray & neutron imaging (T. Kamiyama)

"Pulsed" "Cold" neutron source

- **Electron Linac**
 - 35 MeV, 30 μA,
 - Since 1974
- 1kW
- **Pulsed & Time of flight** • 50 pps, 3µsec electron pulse
- Solid methane **Cold Source** Flux ≈1/2000
 - @17K
 - "Coupled"
 - **Tentatively mesitylene**

New cold source in trouble

- 4K CCR, pulsed tube type
- Tmin≈35K!

2015.05.14.

Good news! HUNS Upgrade

• power \approx 3. kW • frequency = 50. pps • \geq 100 pps short pulse mode • current \approx 67 μ A • Pulse width = 3 μ s (7 μ s)

2015.05.14.

• Short pulse mode: 0.1 μsec ~ 1 μsec

Getting a second-hand linac from iFEL

- Institute of Free Electron Laser, Osaka University
- S-band,
- 165 MeV-2.5 kW,
- 24 µsec macro-pulse at 10 Hz.
 - modifiable to 4 μ sec 50Hz

2015.05.14.

2015.05.14.

Klystron at iFEL

- Toshiba E3729, 2 in use, 2 backups
 - Frequency 2.856GHz
 - Very close to the ones used at KEK-B injector

 24 μsec
 24 MW
 10 pps
 284 kV
 280 A

 12.5 μsec
 34 MW
 50 pps
 304 kV
 316 A

 4 μsec
 70 MW
 50 pps
 378 kV
 451 A

What's on? at HUNS

2015.05.14.

16

Intermediate-Angle Neutron Scattering Neutron Scattering using very short flight-paths

High Nitrogen Martensitic Steel

Vacuum chamber for iANS

Focusing mirror development

- High precision cutting + mechanical polishing
 - RIKEN team
 - Shin Takeda (Hokkaido Univ.)
 - RIKEN: J. Guo, S. Morita, ≤ 0.3 nm roughness
 - T Hosobata, T. Kawai,
 - Y. Yamagata
- KUR
 - M. Hino

Imaging: poster by T. Kamiyama

Convertible Source System of Thermal Neutron and X-ray

Advantage of the convertible source system

- Usage of common sample position and detector for neutron and X-ray imaging on the single beam line.

Neutron Thermometry with Multiple Nuclides

Summary

- Introduction to the HUNS facility
- HUNS upgrade on going
 - Best example of "laboratory neutron source"
 - METI advanced steel project
 - Ministry of Economy, Trade and Industry
 - Not too large, just enough for daily research activities
- New target stations
 - Cold source troubles

2015.05.14.

Status of HUNS

- New iANS, intermediate-angle neutron source.
- Focusing mirror development for focusing-SANS
 RIKEN and Hokkaido Univ. (S. Takeda)
- Bragg-edge transmission (H. Sato, et al.)
- X-ray & neutron imaging (T. Kamiyama)
- Softerror (Single event effects)