# The high power target for LENOS Project at Laboratori Nazionali di Legnaro of INFN-LNL

Pierfrancesco Mastinu<sup>a</sup>, G. Martín-Hernández<sup>c</sup>, J. Praena<sup>b</sup>, R. Capote<sup>d</sup>, F. Gramegna<sup>a</sup>, G. Prete<sup>a</sup> And M. Pignatari<sup>e</sup>

<sup>1</sup> Laboratori Nazionali di Legnaro, INFN, Italia.
 <sup>2</sup> CEADEN, La Habana, Cuba.
 <sup>3</sup>Universidad de Sevilla, CNA, Spain.
 <sup>4</sup> Keele University, Keele, Staffordshire, ST5 5BG, UK
 <sup>5</sup>International Atomic Energy Agency Nuclear Data SectionDivision of Physical and Chemical Sciences Department of Nuclear Sciences and Applications A-1400 Vienna, Austria
 <sup>6</sup> ENEA- Bologna, Italy







### What would be LENOS?

- Neutron facility (irradiation, ? TOF ? )
- It is based on a method for the production of different neutron spectra
  - Nuclear Astrophysics.
  - Validation of Evaluated Data for energy and non-energy applications.
  - Medical physics applications.
  - Radiation damage tests (SEE)
  - Material science physics (neutron imaging)

### **Sketch of SPES/LENOS Layout**



Expected Neutron Flux = 5.10<sup>10</sup> n/s.cm<sup>2</sup>

### Validation of the proposed method: 0<sup>o</sup> time spectra.



Neutron spectra has been measured at CN accelerator (BELINA facility) using 3.66 MeV protons inpinging on 75 µm thickness AI layer. LZYield predictions and MCNPX transport with detailed geometry of the setup.

### **Experimental data: 20<sup>o</sup> time spectra.**



Yellow points are our experimental data at 20<sup>o</sup>. Black line is the simulated neutron spectra with our code LZYield+ transport (MCNPX)

### **SPES/LENOS Layout: Energy Shaper**

. We decide to shape the proton beam by using the energy straggling and stopping power of charge particles when interact with a thin foil of material. General method: **multilayer energy shaper.** 

#### **LENOS foil material requirements :**

Low atomic number and low density, high melting point, high emissivity, high thermal conductivity, high tensile strength.





For lower power we can use a monolayer Aluminium foil.

### **LENOS Layout: Energy Shaper**



Starting from this device, the new ANEM rotating target has been constructed (see L. Silvestrin Talk)

### **LENOS Layout: Lithium target**

In order to dissipate so high specific power (about 3 kW/cm<sup>2</sup>) a new generation of heat cooling device have to be implemented and developed.

The target must satisfy some constrains:

Low mass (to avoid neutron backscattering and reduce radioactivity)
Small thickness, in order to maximize the neutron flux (keeping the measuring sample in touch with the neutron producing surface) and reduce neutron spectra perturbation

•Low cost and easy to fabricate procedure, in order to replace the target often even during a measurements

## Microchannels + liquid metal cooling medium

This target is suitable for many other applications (BNCT, radio pharmaceutical production, CPU heat sink etc...)

### **LENOS: Lithium target. First Design**



### **LENOS: Lithium target. ANSYS results**

#### Water cooled

#### Pressure



P<sup>in</sup>=2.7 bar ∆P=2.7 bar



#### Velocity



#### $\mu$ -channel fluid velocity =15m/s



#### Temperature

Li 40 µm Mass flow=160l/h Inlet fluid temperature=15° C Beam Power=1000 W Flat beam profile

Melting point Li =  $182^{\circ}C$ 



### **LENOS: Lithium target. ANSYS results**

### SnInGa alloy cooled

#### ANSY mperature 3.416e+002 3.372e+002 3.329e+002 3.286e+002 3.243e+002 3.200e+002 3 156e+000 3.113e+002 3.070e+002 3.027e+002 2.983e+002 2.940e+002 2.897e+002 2.854e+002 2.810e+002

#### Velocity



 $\mu$ -channel fluid velocity =5 m/s



Pressure

P<sup>in</sup>=2.5bar

 $\Delta P=2.5$  bar

#### Temperature

Li 40 µm Mass flow=55 l/h Inlet fluid temperature=15°C beam Power=1000 W Flat beam profile

Melting point Li =  $182^{\circ}C$ 



### **LENOS: Lithium target. Fluid Comparison**

#### Analytical

**ANSYS** 

ANSYS and Analitycal calculations: Good agreement for water, less for liquid metal

| WATER       |                               |             | GALINSTAN   |                               |             |
|-------------|-------------------------------|-------------|-------------|-------------------------------|-------------|
| parameters  | description                   | value       | parameters  | description                   | value       |
| cp [J/kg K] | fluid specific heat           | 4181,7      | Cp [J/kg K] | fluid specific heat           | 365         |
| λει [W/m K] | fluid thermal conductivity    | 0,6069      | λει [W/m K] | fluid thermal conductivity    | 36          |
| λcu [W/m K] | target thermal conductivity   | 401         | λcu [W/m K] | target thermal conductivity   | 401         |
| v [Pa s]    | fluid viscosity dinamic       | 0,0008899   | v [Pa s]    | fluid viscosity dinamic       | 0,00221     |
| ρ [kg/m^3]  | fluid density                 | 997         | ρ [kg/m^3]  | fluid density                 | 6363        |
| d [m]       | diameter of the microchannels | 0,00055     | d [m]       | diameter of the microchannels | 0,00055     |
| Pr          | Prandtl number                | 6,131644142 | Pr          | Prandtl number                | 0,022406944 |
| v [m/s]     | velocity in the microchannels | 15          | v [m/s]     | velocity in the microchannels | 5           |
| Re          | Reynolds number               | 9242,89246  | Re          | Reynolds number               | 7917,760181 |
| Nu          | Nusselt number                | 73,77145321 | Nu          | Nusselt number                | 7,305505188 |
| α [W/m^2 K] | convection coefficient        | 81403,44537 | α [W/m^2 K] | convection coefficient        | 478178,5214 |
| Tav,fl [ºC] | fluid average temperature     | 23          | Tav,fl [ºC] | fluid average temperature     | 80          |
| n           | number of microchannels       | 13          | n           | number of microchannels       | 13          |
| q [W/m^2]   | beam specific thermal power   | 4420970,641 | q [W/m^2]   | beam specific thermal power   | 11052426,6  |
| q [W/cm^2]  | beam specific thermal power   | 884,1941283 | q [W/cm^2]  | beam specific thermal power   | 2210,485321 |
| q [W]       | beam thermal power on target  | 1000        | q [W/]      | beam thermal power on target  | 2500        |
| Ts [ºC]     |                               | 77,30937992 | Ts [ºC]     |                               | 103,113599  |
| Tbeam [ºC]  | temperature on beam surface   | 124,6909261 | Tbeam [ºC]  | temperature on beam surface   | 122,7516388 |
| Tin [ºC]    | fluid inlet temperature       | 20          | Tin [ºC]    | fluid inlet temperature       | 20          |
| Q [m^3/s]   | fluid volumetric flow         | 4,63287E-05 | Q [m^3/s]   | fluid volumetric flow         | 1,54429E-05 |
| Tus [ºC]    | fluid outlet temperature      | 25,17728529 | Tus [ºC]    | fluid outlet temperature      | 89,70382393 |
|             | lithium thickness [m]         | 0,00004     |             | lithium thickness [m]         | 0,00004     |
| Ts(Li) [≌C] |                               | 126,7787516 | Ts(Li) [ºC] |                               | 127,9712027 |
| λιι [W/m K] | gold thermal conductivity     | 84,7        | λιi [W/m K] | gold thermal conductivity     | 84,7        |



Expected a gain in term of specific Power of about 1.5 Specific power [W/d

### **LENOS: Lithium target**

#### The target has been successfully manufactured at LNL



This production method limits too much the sizes, shapes and the use of other materials

Micro-channels produced with electro-erosion drilling machine.



### The new version of the μ-channels target

#### Micro-channels are produced trough micro-tubes

• Grooves are produced in the target backing (one or both faces)



• Micro-tubes are inserted in the grooves



• Interference is produced in order to have a full thermal contact



tubes:

- 0.6 mm internal diameter
- 0.8 mm external diameter
   Copper substrate 1.2 mm thickness, 2x2 cm
   Wall thickness tube distance 0.5 mm
   Number of tubes: 13

# INFN international patent APPLICATION n. PCT/IB2014/067156

With this new method of production we have no more limitations on channels length, geometry (flat, curved etc..), and use of different materials (both for substrate and tubes)

First improvement under test: replace the copper substrate with diamond one

Thermal conductivity:

- Cu=390 W/m K
- Diamond (thermal grade) >8000 W/mK

### **PCD** machinable with electro erosion !!

Tubes can be made of different materials for different applications (steel for corrosive fluids, Nb for liquid metals, etc...)

### Tomography

#### Interference between tubes and grooves is fundamental:



Certified an almost perfect contact (no defect at the 1 µm level precision)



### Target : beam tests at Birminghamm University

In July 2014 the target has been tested at Birmingham University.

#### 2.8 MeV proton beam, with different current and beam spot has been used

 Delivered beam power has been measured by measuring the mass flow and difference of temperature at inlet and outlet

Surface temperature has been measured by thermo camera (IRISYS model 4000)





Thermocouple has been used for cross check

• Inserite foto Ita chiuso

Target has been accommodated in a Carbon fibre chamber (emissivity close to 1)

- Thermo camera has been calibrated in a dedicated experiment:
  - An heat bath has been used to warm up the water (at 40,50 and 70 °C)







- Reflected temperature has been measure for each point with Lambert reflect meter
- Real emissivity is calculated assuming the previously calculated reflected temperature, by tuning e in order to reproduce the fixed target temperature
- The 3 points (40,50 and 70 °C) agree well with 30.7
   °C reflected temperature and 0.21 emissivity



### **Target : beam tests at Birminghamm University**

Mass flow: 2.94 l/min

T<sup>in</sup>water=13.0 °C

250<P<1360 W

0.064<beam spot area<0.2 cm<sup>2</sup>

Conservative beam spot diameter calculations (FWHM)

sumanti k calib tharma k tast misra shannal k day 2 k run 22 File Modifica Vista Utensili Aiuto 🛎 🖬 👩 📴 🖶 🕂 🗗 🚹 🚮 Ft 💡 163.6 °C Visualizza Cursori Impostazioni Proprietà Sequenza -1.\$ °C a 163.6 ℃ Ampiezza: Portata Auto Tavolozza: Alto Contrasto • Interpolazione: x4 (640x480) Ŧ 219.2 °C Fattore di • x1 moltiplicazione: Controllo Panoramico -1.\$ °C 201.1 °C -1.\$ °C 163.6 °C 71.1 °C 88.2 °C Pronto 11.

### **Experimental results**

#### Range of 2.8 MeV protons on copper is 30.73 um



### **SUMMARY AND CONCLUSIONS**

- A micro-channel target has been developed, constructed and tested.
- A non optimized version of a bare target shows to be able to dissipate a specific power of 3.5 kW/cm<sup>2</sup> keeping the peak surface temperature below 150 °C (Li target application)
- Next step will be the validation of the target with metal Lithium layer
- Applications under study cover a wide range of applications: SPES beam dump (50 kW), radioisotope production, BNCT
- It is a deposited INFN international patent n.
   PCT/IB2014/067156
- Other improvement using different materials for tubes and backing are planned

## THANK YOU FOR YOUR ATTENTION