Radio-Guided Surgery for tumor resection exploiting β^- decays

<u>Elena Solfaroli Camillocci</u> CLNS@Sapienza, Istituto Italiano di Tecnologia, Roma

The Radio-Guided Surgery (RGS) technique.

Elena Solfaroli Camillocci – Sapienza November 17th, 2014

The Radio-Guided Surgery (RGS) technique.
 OUR PROPOSAL: RGS exploiting β⁻ decays.

The Radio-Guided Surgery (RGS) technique. \oslash OUR PROPOSAL: RGS exploiting β^- decays. Status of the project: \checkmark Identification of clinical case candidates and feasibility study. \checkmark Detector development and tests. \checkmark First clinical tests with patients. \checkmark Predictions for the β -RGS. "Ex-vivo" test during surgery (in progress). Development of new specific radio-tracer (in progress).

The Radio-Guided Surgery (RGS) technique. \oslash OUR PROPOSAL: RGS exploiting β^- decays. Status of the project: \checkmark Identification of clinical case candidates and feasibility study. \checkmark Detector development and tests. \checkmark First clinical tests with patients. \checkmark Predictions for the β -RGS. "Ex-vivo" test during surgery (in progress). Development of new specific radio-tracer (in progress). Conclusions.

- Administer to patient, before operation, (either systemically or locally) a drug which:
 - the tumor takes up significantly more than the healthy tissue;
 - is linked to a radio-nuclide that emits particles via nuclear decay.

- Administer to patient, before operation, (either systemically or locally) a drug which:
 - the tumor takes up significantly more than the healthy tissue;
 - is linked to a radio-nuclide that emits particles via nuclear decay.
- 2. Wait for the drug to diffuse to the margins of the tumor.

- Administer to patient, before operation, (either systemically or locally) a drug which:
 - the tumor takes up significantly more than the healthy tissue;
 - is linked to a radio-nuclide that emits particles via nuclear decay.
- 2. Wait for the drug to diffuse to the margins of the tumor.
- 3. Start operation
 - Remove the bulk of the tumor
 - Verify with an intraoperative probe that detects the emitted particles the presence of:
 - Tumor residuals
 - Infected lymph node

Radio-pharmaceutical

Basic concepts of Nuclear Medicine:

Injection of radioactive material inside the patient.

- If the emitted particles "escape" the patient
- Diagnostics: scintigraphy (SPECT), Positron Emission Tomography (PET), Radio-guided surgery (RGS)
 - \odot gamma radiation and β^+ decays.
 - Low Activity (MBq/kg).
 - Life time radionuclide: minutes/hours.

If the emitted particles interact inside the patient Therapy: Radio-Metabolic Therapy, Brachitherapy

- \odot β^- decays.
- High Activity (50–100MBq/kg).
- Life time radionuclide: days.

Elena Solfaroli Camillocci – Sapienza November 17th, 2014

isotope	symbol	Z	T _{1/2}	decay	gamma (keV)	positron (keV)
Imaging:						
fluorine-18	¹⁸ F	9	109.77 m	β*	511 (193%)	249.8 (97%) ^[15]
gallium-67	⁶⁷ Ga	31	3.26 d	ec	93 (39%), 185 (21%), 300 (17%)	-
krypton-81m	^{81m} Kr	36	13.1 s	п	190 (68%)	-
rubidium-82	82Rb	37	1.27 m	β*	511 (191%)	3.379 (95%)
nitrogen-13	13N	7	9.97 m	β*	511 (200%)	1190 (100%) [16]
technetium-99m	^{99m} Tc	43	6.01 h	п	140 (89%)	
indium-111	111In	49	2.80 d	ec	171 (90%), 245 (94%)	12
iodine-123	123 _I	53	13.3 h	ec	159 (83%)	-
xenon-133	¹³³ Xe	54	5.24 d	β	81 (31%)	0.364 (99%)
thallium-201	²⁰¹ TI	81	3.04 d	ec	69-83 [*] (94%), 167 (10%)	
тиктару.						
yttrium-90	90Y	39	2.67 d	β	1.5	2.280 (100%)
iodine-131	¹³¹ I	53	8.02 d	β	364 (81%)	0.807 (100%)

RGS: Clinical Applications

Many clinical applications:

- thyroid carcinoma lymph-node recurrence;
- sentinel-node mapping for breast cancer and melanoma.
- Minimizes the surgical invasiveness.

RGS: Clinical Applications

Many clinical applications:

- thyroid carcinoma lymph-node recurrence;
- sentinel-node mapping for breast cancer and melanoma.
- Minimizes the surgical invasiveness.

Critical for those tumors where a complete surgical resection is the only possible therapy.

Elena Solfaroli Camillocci – Sapienza November 17th, 2014

Established Technique

y emitting tracer + GAMMA CAMERA

Stypical radionuclide ^{99m}Tc (Eγ=140KeV)

Gamma

decays

- Uptake in nearby healthy tissue

→ non-negligible background.

Elena Solfaroli Camillocci – Sapienza November 17th, 2014

non-negligible background

RGS is critical for those tumors where a complete surgical resection is crucial both for recurrence-free survival and overall survival.

Ongoing Studies

β⁺ radio-tracer + PROBE detecting positrons

Be

Ongoing Studies

 β^+ radio-tracer + PROBE detecting positrons-

PROS

✓ Positrons travel 100 times less than gammas.
 ✓ High spatial resolution and sensitivity
 → clear delineation of radioactive tissue.
 ✓ PET tracers with known protocols can be used.

Beta

Ongoing Studies

β^+ radio-tracer + PROBE detecting positrons

PROS

✓ Positrons travel 100 times less than gammas.
 ✓ High spatial resolution and sensitivity
 → clear delineation of radioactive tissue.
 ✓ PET tracers with known protocols can be used.

CONS

- Limited by gamma background $e^++e^-\rightarrow\gamma\gamma$
 - Requires dual-mode devices for background subtraction.
 - Slow real-time performance.
 - Still limited range of applications.

Elena Solfaroli Camillocci – 27/05/2014

Beta+

β-shielded fiber

Our Proposal RGS exploiting ß⁻ decays

 β^- emitting tracer + PROBE detecting e⁻

Typical radionuclide ⁹⁰Υ (end-point 2.3MeV, τ_{1/2}=64h)

Very low γ background around the lesion:

Betadecays

Elena Solfaroli Camillocci – Sapienza November 17th, 2014

β⁻ emitting tracer + PROBE detecting e⁻
 Typical radionuclide ⁹⁰Y (end-point 2.3MeV, T_{1/2}=64h)

- Very low y background around the lesion: PROS
- low injected activity to detect tumor remnants;
- Iow exposure to radiation;
- simple and compact device.

Beta-

decays

 β^- emitting tracer + PROBE detecting e⁻

- Typical radionuclide 90 Y (end-point 2.3MeV, $\tau_{1/2}$ =64h)
- Very low y background around the lesion: PROS
- low injected activity to detect tumor remnants;
- Iow exposure to radiation;
- simple and compact device.
 CONS
- need to develop specific β⁻ tracer for each clinical case;
- low sensitivity to activated tissue in depth due to short range of electrons.

Beta-

decays

 β^- emitting tracer + PROBE detecting e⁻

- Typical radionuclide 90 Y (end-point 2.3MeV, $\tau_{1/2}$ =64h)
- Very low y background around the lesion: PROS
- low injected activity to detect tumor remnants;
- Iow exposure to radiation;
- simple and compact device.
 CONS
- need to develop specific β⁻ tracer for each clinical case;
- low sensitivity to activated tissue in depth due to short range of electrons.

Beta-

decays

May extend the technique to cases with a large uptake of nearby healthy organs: **abdominal** or **brain tumors**.

Applied Radiation Physics Group

Ĩ

SAPIENZA

SAPIENZA JNIVERSITÀ DI ROMA

Collaborations with bio-engineers, medicinal chemists, nuclear medicine physicians, oncologists, surgeons:

Istituto in tecnologie avanzate e modelli assistenziali in oncologia Istituto di Ricovero e Cura a Carattere Scientifico

Elena Solfaroli Camillocci – Sapienza November 17th, 2014

Different competences and expertise with wide-ranging specializations are crucial to be able to

Different competences and expertise with wide-ranging specializations are crucial to be able to

1. Identify the clinical cases that would most profit from the improvements of β - RGS.

Different competences and expertise with wide-ranging specializations are crucial to be able to

1. Identify the clinical cases that would most profit from the improvements of β^- RGS.

2. Evaluate the applicability in terms of availability of the radiopharmaceutical and uptake of the tumor with respect to the normal tissue.

Different competences and expertise with wide-ranging specializations are crucial to be able to

1. Identify the clinical cases that would most profit from the improvements of β^- RGS.

2. Evaluate the applicability in terms of availability of the radiopharmaceutical and uptake of the tumor with respect to the normal tissue.

3. Develop new specific medical devices.

Different competences and expertise with wide-ranging specializations are crucial to be able to

1. Identify the clinical cases that would most profit from the improvements of β^- RGS.

2. Evaluate the applicability in terms of availability of the radiopharmaceutical and uptake of the tumor with respect to the normal tissue.

3. Develop new specific medical devices.

4. Perform pre-clinical and clinical tests.

Clinical Case Candidates: Brain Tumors

GLIOBLASTOMA MULTIFORME

- The most common and most aggressive malignant primary brain tumor
 - rare: 2–3 cases/100,000/year in Europe and North America.
- Complete resection of neoplastic cells is crucial to raise the patient outcome.
- FDG (the most common tracer) is useless, due to great glucose avidity of normal brain tissue → very high y background

GLIOBLASTOMA MULTIFORME

- The most common and most aggressive malignant primary brain tumor
 - rare: 2–3 cases/100,000/year in Europe and North America.
- Complete resection of neoplastic cells is crucial to raise the patient outcome.
- FDG (the most common tracer) is useless, due to great glucose avidity of normal brain tissue → very high y background

β⁻ RGS

 pure β⁻ radionuclide ⁹⁰Y bounded to DOTATOC (synthetic somatostatine analogue) is much more specific.

Elena Solfaroli Camillocci – Sapienza November 17th, 2014

⁶⁸Ga-DOTATOC-PET scan

MENINGIOMA "proof-of-principle"

- Set of tumors arising from the meninges, usually benign
 - 20 cases/100,000/year more frequent in women
- Can cause symptoms depending on the size and location.
- Best candidate to validate the technique
 - large uptake for ⁹⁰Y-DOTATOC and well known since it is administrated for radio-metabolic treatment.

Meningioma: PET-CT scan

MENINGIOMA "proof-of-principle"

- Set of tumors arising from the meninges, usually benign
 - 20 cases/100,000/year more frequent in women
- Can cause symptoms depending on the size and location.
- Best candidate to validate the technique
 - large uptake for ⁹⁰Y-DOTATOC and well known since it is administrated for radio-metabolic treatment.

Meningioma: PET-CT scan

After considering the different tracer uptakes, the results of meningiomas will allow prediction on glioblastoma.

Elena Solfaroli Camillocci – Sapienza November 17th, 2014

Applicability of β - RGS

Diagnostic imaging exams allow us to quantify the uptake to the tracer from the **tumor** with respect to the **healthy tissue** around the lesion.

Meningioma: PET exam

⁶⁸Ga-DOTATOC

TNR: Target-to-Noise specific activity Ratio

DICOM

Digital Imaging and Communications in Medicine is a standard for handling, storing, printing, and transmitting information in medical imaging. **DICOM data object** consists of patient's attributes (name, ID, etc.) and special attributes containing the image pixel data (e.g. activity per voxel).

Target-to-Noise Ratio

Elena Solfaroli Camillocci – Sapienza November 17th, 2014

ID Lesion

2

∗

10

12

F. Collamati et al, accepted by Jour. Nucl. Med. (2014) 17
Clinical Case Candidates: Abdominal Tumors

SERVIZIO SANITARIO REGIONALE EMILIA-ROMAGNA Azienda Ospedaliera di Reggio Emilia

Arcispedale S. Maria Nuova

Istituto in tecnologie avanzate e modelli assistenziali in oncologia Istituto di Ricovero e Cura a Carattere Scientifico

Neuroendocrine Tumors

NETs arise from cells of the endocrine (hormonal) and nervous systems; commonly occur in the intestine but also in the rest of the body.

Rare but incidence increases over time

- >5 cases/100,000/year (USA 2004).
- Surgery is the main treatment.
- Radio-marked by ⁹⁰Y-DOTATOC.

Neuroendocrine Tumors

- NETs arise from cells of the endocrine (hormonal) and nervous systems; commonly occur in the intestine but also in the rest of the body.
- Rare but incidence increases over time
 - >5 cases/100,000/year (USA 2004).
- Surgery is the main treatment.
- Radio-marked by ⁹⁰Y-DOTATOC.
- β⁻ RGS would allow research and detection of
 - Non visible liver metastases and involved lymph nodes from NETs.
 - Gastro-entero-pancreatic neuroendocrine tumors (GEP-NET) difficult to be localized except by symptoms
 - ø pancreatic insulinoma;
 - colorectal bowel cancer.

Applicability to NETs

Patients affected by hepatic metastases from NETs

¹⁷⁷Lu-DOTATOC-SPECT scan

NET Target-to-Noise Ratio

TNR: Evolution in Time Study on the radio-tracer accumulation in tumor and washout from the healthy organs for 72h after injection:

TNR is maximized after 24h \rightarrow best moment for RGS

Intraoperative ß-Probe

Detector Development

- Requirements:
 - maximal reduction of injected activity
 - high sensitivity and fast response;
 - handy tool for the surgeon
 - ▶ compactness and small size.

Detector Development

- Ø Requirements:
 - maximal reduction of injected activity
 - high sensitivity and fast response;
 - handy tool for the surgeon
 - ▶ compactness and small size.
- Our best candidate: para-terphenyl
 - Mechanically robust (non-hygroscopic)
 - Light material (low $\rho=1.24$ g/cm³)
 - \circ scarce sensitivity to γ .
 - High signal

aromatic hydrocarbon isomer C₁₈H₁₄

- Light Yield 3.5 times larger than typical organic scintillators.
- suitable for detection of non-penetrating low energy radiation
 - Iight Attenuation Length $\lambda \sim 5$ mm

Elena Solfaroli Camillocci – Sapienza November 17th, 2014

M.Angelone et al. IEEE Trans. on Nucl. Sci. 61, 3 (2014)

B- Probe Prototypes Sipping

S1

Compatible with a standard sterile covering of sub-millimetric film for surgical environment.

ß- Probe Prototypes

- Core: cylindrical scintillator of p-terphenyl
 - S1 d=2.1mm, h=1.7mm
 - S4 d=5mm, h=3mm
 - SiPM d=10mm, h=3mm

0.4mm thick PVC layer in front

Compatible with a standard sterile covering of sub-millimetric film for surgical environment.

ß- Probe Prototypes

- Core: cylindrical scintillator of p-terphenyl
 - S1 d=2.1mm, h=1.7mm
 - S4 d=5mm, h=3mm
 - SiPM d=10mm, h=3mm
- Light detector:
 - optical fiber connected to a photo-multiplier tube
 - o PMT Hamamatsu H10721-210
 - directly coupled to a Silicon photo-multiplier
 - SiPM sensL B-series 10035

Compatible with a standard sterile covering of sub-millimetric film for surgical environment.

β- Probe Prototypes

- Core: cylindrical scintillator of p-terphenyl
 - S1 d=2.1mm, h=1.7mm
 - S4 d=5mm, h=3mm
 - SiPM d=10mm, h=3mm
- Light detector:
 - optical fiber connected to a photo-multiplier tube
 - o PMT Hamamatsu H10721-210
 - directly coupled to a Silicon photo-multiplier
 - SiPM sensL B-series 10035
- Probe mechanical:
- Cal:
 - Entrance window: 10μm Al sheet ensures the light-tightness.
 - Tip: PVC ring to be shielded against radiation from the sides;
 - Body: a thin aluminum body for easy handling;
 - Mass: 50–150g

Compatible with a standard sterile covering of sub-millimetric film for surgical environment.

Electronics Read-out

Electronics read-out is portable and customized to match the surgeon needs

time to take a decision~1s;
acoustic and visual alarm;
wireless data transfer;
user interface available both for PC or tablet.

No Danger of electric discharge on patient

Elena Solfaroli Camillocci – October 24, 2014

Performance of the Probe

Sensitivity to active spot

Sensitivity to β:
3.8 · 10⁵ counts/s/MBq
ε_β=40% E_β>300keV
Good sensitivity to active spot of V<0.1ml.
Very directional and local view.

Performance in water Probe in water to test the sensitivity in environment equivalent to the body

Sensitivity vs tip-source distance

sensitive until to 4mm depth (=maximal path of 1MeV electron in water).

Photon Transparency

GOAL: evaluation of the y background from Bremsstrahlung

Very low sensitivity to photons

Patient

also in a real case of Bremsstrahlung background

NIGI

- Injected activity (24h before)
 - ⁹⁰Y-DOTATOC 54mCi
 - 21MBq/kg therapeutic treatment
- Lesion of interest:
 - Hepatic metastasis from neuroendocrine tumor

B- Probe on Patients

GOAL: first look to the real Bremsstrahlung background and cross-check with a commercial y-probe Beta Probe (mean) Gamma Probe (mean)

NIGI

Background B

Background G

AREA

Cardiac Area

LEG

2000

1500

1000

500

90Y-DOTATOC Test on patient 2000 Neoprobe[®] GDS - y = 107.5 - 6.8298x R= 0.86694 SiPM prototype **SPLEEN Gamma Detection Probe** 1500 **HEPATIC METASTASIS** Count per second VS 1000 CARDIAC Comparable sensible area 500 $\sim 1 \text{ cm}^2$ Noise Background HepMetastasis Spleen Not surgery, probes outside the body!

 \checkmark Detected activity is related to electrons emitted in superficial tissue. \checkmark Verified transparency to photons from Bremsstrahlung. \checkmark Uptake by healthy organs around the lesion does not affect the count rate.

Personnel Exposure

PATIENT: ⁹⁰Y-DOTATOC Activity for therapy, after 24h: ~500MBq

Direct reading dosimeter ($\Delta t=15$ min) close to the patient:

	Distance from patient	Skin Dose [µSv]	Depth Dose [µSv]
Doc1	10cm	29	2
Doc2	1.5m	3	0
Doc3	1.5m	2	0

Indication that exposure in the surgical environment and with activity for diagnostic will be almost negligible.

Realization of "Ad-hoc" Phantoms

"Ad-hoc" Phantoms (I) To simulate tumor remnant embedded in healthy tissue.

embedded in

tissue with A/10

Motorized scans with S4-Probe

10	1 10	10 1
Isolated Residual	Embedded Residual	Over Background
10	1	1
1	10	10
Complete Inclusion	Hidden&Inclusion	Hidden Residual

Possible configurations of tumor residual embedded in healthy tissue.

"Ad-hoc" Phantoms (II) To test the discovery potential of the β⁻ probe in a "surgical cavity" after tumorous bulk removal

Counts stored in 10s per position

Human Factor

To include the human factor in the test colleagues were asked to simulate the surgeon:

Phantoms simulating tumor remnants embedded in healthy tissue with different TNRs

All people required at least 4–5 seconds per position to take a decision.

Next Steps for B- Probe

Optimization of the light collection to increase the probe sensitivity.

Integration with surgical system:
surgical devices (e.g. aspirator, scalpel);
endoscopic and/or laparoscopic tools;
minimally invasive robotic "da Vinci" Surgical System;
Multichannel probe for higher spatial resolution and directionality.

Predictions for the B⁻ RGS

Monte Carlo Simulation

Simulation using FLUKA code allows us to achieve:

- Probe prototype's geometry and detector shielding optimization.
- Setimation of the potentialities of β^- RGS.
- Predictions of dose delivered to surgeon.

DICOM imported in FLUKA

Expected Performance

Including in FLUKA simulation

- ✓ TNR from PET/SPECT DICOM images
- \checkmark performance of the probes measured in lab tests

we can predict performance of the β^- RGS:

- Iminiprobe minimum time needed by the probe to identify a 0.1ml tumor residual after administration of 3MBq/kg of radio-tracer
 - O.1ml is the minimal residual well identified by diagnostic imaging
 - → useful as reference during further clinical tests
- 3MBq/kg is comparable with activity for diagnostic (PET exam). at 95% C.L.
 - > Probability of False Positive FP<1%;
 - > Probability of False Negative FN<5%.

Predictions for β^- RGS

Predictions for β^- RGS

MENINGIOMA

TNR>10 Good sensitivity to residuals <0.1ml within 1s with an administered activity smaller than those for PET-scans (<3MBq/kg).

Medical Team Exposure

Equivalent dose for surgeon	βRGS (⁹⁰ Y) FLUKA simulation	γ-RGS (^{99m} Tc)
hands	<1 µSv∕h	24 µSv/h
total body	<0.1 µSv/h	6 µSv/h

Predictions for β - RGS

MENINGIOMA

TNR>10 Good sensitivity to residuals <0.1ml within 1s with an administered activity smaller than those for PET-scans (<3MBq/kg).

Medical Team Exposure

Equivalent dose for surgeon	βRGS (⁹⁰ Y) FLUKA simulation	γ-RGS (^{99m} Tc)
hands	<1 µSv∕h	24 µSv/h
total body	<0.1 µSv/h	6 µSv/h

HIGH GRADE GLIOMA

TNR>4

At least 5-6s to detect residuals <0.1ml with administered activity of 3MBq/kg.

To reduce the time, increase of the probe sensitivity would allow to avoid a larger activity administration.

Predictions for B- RGS

MENINGIOMA

TNR>10 Good sensitivity to residuals <0.1ml within **1s** with an administered activity smaller than those for PET-scans (<**3MBq/kg**).

Medical Team Exposure

Equivalent dose for surgeon	βRGS (⁹⁰ Y) FLUKA simulation	γ-RGS (^{99m} Tc)
hands	<1 µSv∕h	24 µSv/h
total body	<0.1 µSv/h	6 µSv∕h

HIGH GRADE GLIOMA

TNR>4

At least 5-6s to detect residuals <0.1ml with administered activity of 3MBq/kg.

To reduce the time, increase of the probe sensitivity would allow to avoid a larger activity administration.

HEPATIC METASTASIS from NET TNR>5

At least 4s to detect residuals <0.1ml with administered activity of 1MBq/kg.

NEXT STEP: "Ex-vivo" Tests

"Ex-vivo" Tests

To validate the whole chain of the technique we are going to perform "ex-vivo" test on volunteer patients affected by meningioma:

Elena Solfaroli Camillocci – Sapienza November 17th, 2014

Authorized by Ethic Commitment

"Ex-vivo" Tests

To validate the whole chain of the technique we are going to perform "ex-vivo" test on volunteer patients affected by meningioma:

1. Evaluation of TNR from PET scan: different radionuclide but same tracer (⁶⁸Ga-DOTATOC).

43

Elena Solfaroli Camillocci – Sapienza November 17th, 2014

Authorized by Ethic Commitment

"Ex-vivo" Tests

To validate the whole chain of the technique we are going to perform "ex-vivo" test on volunteer patients affected by meningioma:

- 1. Evaluation of TNR from PET scan: different radionuclide but same tracer (⁶⁸Ga-DOTATOC).
- 2. Administration to the patient of the β^- emitting tracer for RGS (⁹⁰Y-DOTATOC).

Elena Solfaroli Camillocci – Sapienza November 17th, 2014

Authorized by Ethic Commitment
"Ex-vivo" Tests

To validate the whole chain of the technique we are going to perform "ex-vivo" test on volunteer patients affected by meningioma:

- 1. Evaluation of TNR from PET scan: different radionuclide but same tracer (⁶⁸Ga-DOTATOC).
- 2. Administration to the patient of the β^- emitting tracer for RGS (⁹⁰Y-DOTATOC).
- 3. During surgery, extraction of small portions from both tumor and healthy tissue (normal prevention already present in protocols).

Elena Solfaroli Camillocci – Sapienza November 17th, 2014

Authorized by Ethic Commitment

"Ex-vivo" Tests

To validate the whole chain of the technique we are going to perform "ex-vivo" test on volunteer patients affected by meningioma:

- 1. Evaluation of TNR from PET scan: different radionuclide but same tracer (68Ga-DOTATOC).
- 2. Administration to the patient of the $\beta^$ emitting tracer for RGS (90Y-DOTATOC).
- 3. During surgery, extraction of small portions from both tumor and healthy tissue (normal prevention already present in protocols).
- 4. Measurement of the activity of "ex-vivo" specimens with the β^- probe prototype and comparison with the anatomo-pathological tests for cross-check.

Elena Solfaroli Camillocci - Sapienza November 17th, 2014

Authorized by

Ethic Commitment

NEXT STEP: Developments In Radio-Chemistry

New Radio-Tracers

To extend the range of application for $\beta^{\text{-}}$ RGS

- Collaboration with chemists and biomedical engineer to develop new tracers has just started
- To evaluate the possibility of replacing radio-nuclide in PET/SPECT tracer with ¹⁰Y (or suitable β⁻ emitters)
 - e.g. Is it possible to append ⁹⁰Y to MIBI or sestamibi commonly marked with ^{99m}Tc for SPECT scans?

a	Solfaroli	Camillocci –	Sapienza November	17th, 2014

Eler

	Isotope	¹ /2-life	Pure?
	⁹⁰ Y	64h	Y
	⁸⁹ Sr	50d	Y
	⁴⁹ Sc	1hr	Y
	³¹ Si	2hr	Y
	Zn	lhr	Y
8	⁴² K	12h	N
8	¹⁵³ Sm	46h	N
	¹³¹ I	8d	N
	Construction of the local division of the lo	the local property of the local data	STATUTO A COMPANY OF A DESCRIPTION OF A

Possible ^{β-}RGS Candidates

Parathyroid disease and micro-metastases from Head&Neck cancer:

- Treatment: parathyroidectomy (less invasive than traditional surgery) to remove the abnormal gland.
- γ radio-tracer for RGS: ^{99m}Tc-sestamibi
- Pheochromocytoma (2-8/million/year) and Paraganglioma (rare): neuroendocrine tumor originating from neural crest tissue
 - Treatment: surgical resection with the affected adrenal gland(s)
 - γ radio-tracer for imaging: ¹²³I^{/131}I-MIBG or ^{99m}Tc-sestamibi
- Neuroblastoma (11/million/year): the most common extracranial solid tumor in childhood, originates in the adrenal medulla or the paraspinal sites where sympathetic nervous system tissue is present
 - Treatment: generally curable but aggressive therapy has to be considered in children
 - γ radio-tracer for imaging: ¹²³I^{/131}I-MIBG

Elena Solfaroli Camillocci – Sapienza November 17th, 2014

Elena Solfaroli Camillocci – Sapienza November 17th, 2014

 Low background from β⁻ decays allows to extend the RGS to abdominal and brain tumors with obvious positive implications for patients.

Low background from β⁻ decays allows to extend the RGS to abdominal and brain tumors with obvious positive implications for patients.

Very interdisciplinary activity.

- Low background from β^- decays allows to extend the RGS to abdominal and brain tumors with obvious positive implications for patients.
- Ø Very interdisciplinary activity.
- Project in prototyping and proof-of-principle stage.

- Low background from β^- decays allows to extend the RGS to abdominal and brain tumors with obvious positive implications for patients.
- Ø Very interdisciplinary activity.
- Project in prototyping and proof-of-principle stage.
- Next steps
 - "ex-vivo" tests on meningioma cases;
 PROBE: different solutions for different clinical applications;
 development of new specific radio-tracers (and
 - radionuclides).

Elena Solfaroli Camillocci – Sapienza November 17th, 2014

Master and PhD students are welcome

Contacts

Prof. Riccardo Faccini riccardo.faccini@roma1.infn.it

Dott. Silvio Morganti silvio.morganti@roma1.infn.it

Dott. Elena Solfaroli Camillocci elena.solfaroli@roma1.infn.it