Nuclear Astrophysics @ n_TOF, CERN

Tagliente Giuseppe

Istituto Nazionale Fisica Nucleare, Sez. di Bari

The n_TOF Collaboration

(~100 Researchers from 30 Institutes)

CERN

Belgium
Czech Republic
France
Germany
Greece
Italy
Japan
Poland
Portugal
Rumania
Spain
Switzerland
UK

n_TOF Scientific Motivations

- Neutron cross sections relevant for Nuclear Astrophysics
- Measurements of neutron cross sections relevant for Nuclear Waste Transmutation and related Nuclear Technologies (ADS)
- Neutrons as probes for fundamental Nuclear Physics

n_TOF Time line

n_TOF Facility

27-28, 2014 G. Tagliente – INFN Bari

Detectors for capture reactions

Total Absorption Calorimeter (TAC)

- High-efficiency 4π detector (40 BaF₂ • scintillators with neutron shielding)
- mostly used for fissile isotopes (actinides) •

Capture reactions are measured by detecting γ -rays emitted in the de-excitation process.

At n TOF, two detection systems are used, for different purposes.

C₆D₆ (deuterated liquid scintillators)

- low neutron sensitivity device
- used for low cross-section samples

(n,γ) Total energy detection @ n_TOF

Improvements in the Experimental Setup & Data Analysis

Lowest neutron sensitivity
No neutron background corrections !

ATHENA Workshop – Brussels, January R. Plag et al., Nucl. Instr. & Methods A, 496 (2003) 425

(n,γ) Total energy detection @ n_TOF

Improvements in the Experimental Setup & Data Analysis

Lowest neutron sensitivity
No neutron background corrections !

- n_TOF: first facility with a neutron sensitivity optimized below measurable levels.
- All the (n, γ) measurements with C₆D₆ (since start in 2002) were made with this improved setup. ATHENA Workshop – Brussels, January
- R. Plag et al., Nucl. Instr. & Methods A, 496 (2003) 425

The experimental activity at n_TOF: Ph I

- In the period 2002-2004 measured long-needed **capture and fission** cross-sections for **36 isotopes**, 18 of which radioactive.
- The unprecedented combination of excellent resolution, unique brightness and low background has allowed to collect high-accuracy data, in some cases for the first time ever.
 ATHENA Workshop – Brussels, January 27-28, 2014 G. Tagliente – INFN Bari

n_TOF Phase II

The new spallation Target

The cooling and the moderator systems in the target are separated, so to optimize neutron spectrum or minimize background

The new spallation Target

The borated water as moderator reduces the background of a factor 10!! In the energy region 1-100 keV !

Work Sector of Type A

Since 2010 the n_TOF experimental area was transformed in work sector type A. It allows to measure sample with very high activity.

The experimental activity @ n_TOF: Ph II

Cross sections relevant in Nuclear Astrophysics

s-process: seeds isotopes

In the period 2009-2012 measured long-needed capture and fission cross-sections for 22 isotopes, 14 of which radioactive.

The experimental results: ¹⁵¹Sm

Measured for the first time at a time-of-flight facility Resonance analysis with SAMMY code.

Maxwellian averaged cross-section experimentally determined for the first time

s-process in AGB stars produces 77% of ¹⁵²Gd,

23% from p process

Maxwellian averaged (n,γ) cross section of the ¹⁵¹Sm and previous calculation (symbol)

NO PREVIOUS MEASUREMENTS!

The experimental results: ^{186,187}Os

Publications

Reference
PRC 85 (2012) 044615
PRC 89 (2014) 014605
Submitted to PRC
PRL 110 (2013) 022501
PRC 77 (2008) 035802
PRC 78 (2008) 045804
PRC 81 (2010) 055801 APJ 780 (2014) 95
PRC 87 (2013) 014622
PRC 84 (2011) 015801
PRC 84 (2011) 055802
PRC 75 (2007) 035807
PRL 93 (2004) 161103 – PRC 73 (2006) 034604
PRC 82 (2010) 015802 – PRC 82 (2010) 015804
PRC 75 (2007) 015806
PRC 76 (2007) 045805
PRC 74 (2006) 055802
PRC 74 (2006) 025807

The second Experimental ARea @ n_TOF

EAR 2 general view

Sketch of possible installation of Detectors

ATHENA Workshop – Brussels, January 27-28, 2014 G. Tagliente – INFN Bari

Sketch of possible installation of Detectors

Status of EAR 2

Main features of EAR 2

The huge gain in signal-to-background ratio in EAR2 allows to measure radioactive isotopes with half lives as low as a few years.

The experimental program EAR 2

The EAR2 will allow to:

- measure samples of very small mass (<1 mg)
- measure short-lived radioisotopes (down to a few years)
- collect data on a much shorter time scale
- measure (n,charged particle) reactions with thin samples

Letter of intent for measurements in EAR2:

- (n,p) and (n, α) cross sections on ⁷Be, ²⁵Mg, ²⁶Al
- Fission cross sections of the short lived actinides ²³²U, ^{238,241}Pu and ²⁴⁴Cm
- Capture cross section of ⁷⁹Se, ²⁴⁵Cm
- Cross section and angular distribution of fragments from ²³²U(n,f)

Status of the EAR2:

- Approved by CERN, final design phase
- Start construction in May 2013
- Beam ready in mid-2014
- **Physics start** in 2015

AstroPhysics program EAR | & EAR ||

lsot.	R	Comments
^{70,72,73} Ge	(n,γ)	s-process flow
¹⁷¹ Tm, ²⁰⁴ Tl	(n,γ)	Branching points

lsot.	R	Comments
¹⁴⁷ Pm	(n,γ)	Branching point
²⁶ AI	(n,p/α)	²⁶ Al galactic abundance
⁵³ Mn	(n,γ)	Explosive stage of stellar evolution
B,C, ¹⁴ N,O, ¹⁹ F	(n,α)	n capture in light nuclei
⁷⁹ Se	(n,γ)	Branching point

Conclusions

 There is need of accurate new data on neutron cross-section both for astrophysics and advanced nuclear technology.

- Since 2001, n_TOF@CERN has provided an important contribution to the field, with an intense activity on capture and fission measurements.
- Several results of interest for **stellar nucleosynthesis** (Sm, Os, Zr, Ni, Fe, etc...).
- Important data on actinides, of interest for nuclear waste transmutation.
- To date, high resolution measurements performed in **EAR1** in optimal conditions (borated water moderator, Class-A experimental area, etc...).
- A second **experimental area at 20 m** for high flux measurements is in construction.
- The EAR2 (starting in 2015) will open **new perspectives** for frontier measurements on short-lived radionuclides.

