

The n_TOF Collaboration, <u>www.cern.ch/n_TOF</u>

Eleventh International Topical Meeting on Nuclear Application of Accelerators

The n_TOF Facility at (CERN): neutron data for applications

Giuseppe Tagliente

Istituto Nazionale Fisica Nucleare, Sezione di Bari

Outline

- Motivations
- The n_TOF facility
- The experimental program
- Persectives
- Conclusions

The n_TOF Collaboration (~100 Researchers from 30 Institutes)

CERN

Technische Universitat Wien	Austria
IRMM EC-Joint Research Center, Geel	Belgium
Charles Univ. (Prague)	Czech Republic
IN2P3-Orsay, CEA-Saclay	France
KIT – Karlsruhe, Goethe University, Frankfurt	Germany
Univ. of Athens, Ioannina, Demokritos	Greece
INFN Bari, Bologna, LNL, Trieste, ENEA – Bologna	Italy
Univ. of Tokio	Japan
Univ. of Lodz	Poland
ITN Lisbon	Portugal
IFIN – Bucarest	Rumania
CIEMAT, Univ. of Valencia, Santiago de Compostela,	
University of Cataluna, Sevilla	Spain
University of Basel, PSI	Switzerland
Univ. of Manchester, Univ. of York	UK

The nuclear waste problem

n_TOF

The actinide problem

Most **minor actinides** are not fissile (fission threshold around 1 MeV). **Incineration** requires a **fast neutron spectrum** (E_n >10 keV).

Generation IV fast reactors and **dedicated burners** (Accelerator Driven Systems) are being proposed as a possible solution. Main problem in the nuclear waste are the transuranic actinides: Np, Pu, Am, Cm, ...

At present, only solution to high-level nuclear waste is storage in **geological repositories**

A more appealing solution: nuclear waste incineration by means of neutron-induced reactions (mostly fission).

The Th/U fuel cycle

Data on a large number of isotopes are needed for Nuclear Astrophysics, for design of advanced systems and for improving safety of current reactors.

Google

n_TOF is a spallation neutron source based on 20 GeV/c protons from the CERN PS hitting a Pb block (~360 neutrons per proton).

Experimental area at **185 m**.

n_TOF time line

The new spallation target

The cooling and the moderator systems in the target are separated, so to optimize neutron spectrum or minimize background

The facility

The n_TOF facility

Advantages of the PS proton beam: high energy, high peak current, low duty cycle.

Detectors for capture reactions ...

Total Absorption Calorimeter (TAC)

- High-efficiency 4π detector (40 BaF₂ • scintillators with neutron shielding)
- mostly used for fissile isotopes (actinides) •

Capture reactions are measured by detecting γ -rays emitted in the de-excitation process.

At n_TOF, two detection systems are used, for different purposes.

C₆D₆ (deuterated liquid scintillators)

- low neutron sensitivity device
- used for low cross-section samples

Several systems have been used for detecting fission fragments. The main problem in fission measurements is the **background** due to α -decay.

Micromegas chamber

Parallel Plate Avalanche Counters (PPAC)

- Fission fragments detected in coincidence
- Very good rejection of α -background

The n_TOF measurements

	C apture		C apture
Phase 1 (2001-2004)	¹⁵¹ Sm	Phase 2 (2009-2012)	²⁵ Mg
	²³² Th		⁸⁸ Sr
	^{204,206,207,208} Pb, ²⁰⁹ Bi		^{58,60,62} Ni, ⁶³ Ni
	^{24,25,26} Mg		^{54,56,57} Fe
	^{90,91,92,94,96} Zr, ⁹³ Zr		⁹² Zr, ⁹³ Zr
	^{186,187,188} Os		236,238U
	^{233,234} U		²⁴¹ Am
	²³⁷ Np, ²⁴⁰ Pu, ²⁴³ Am		Fission
	Fission		^{240,242} Pu
	233,234,235,236,238		²³⁵ U(n,γ/f)
	²³² Th		²³² Th, ²³⁴ U
	²⁰⁹ Bi		²³⁷ Np (FF ang.distr.)
	²³⁷ Np		(n,α)
n_TOF	^{241,243} Am, ²⁴⁵ Cm		³³ S, ⁵⁹ Ni

The neutron flux measurement

Reaction	Standard energy range	
H(n,n)	1 keV to 20 MeV	$-\frac{10}{10}B(n,\alpha)^{7}Li$
$^{6}\text{He}(n,t)$ $^{6}\text{Li}(n,\alpha)$	0.0253 eV to 50 keV 0.0253 eV to 1 MeV	
$^{10}{\rm B}(n,\alpha)$	0.0253 eV to 1 MeV	
137 Au (n, γ) 235 U (n, f)	0.0253 eV and 0.2 MeV to 2.5 MeV 0.0253 eV and 0.15 MeV to 200 MeV	
$^{238}\mathrm{U}(n,f)$	2 MeV to $200 MeV$	
		10^{-1}
Neutron bea	am Si-det ⁶ Li	10 B 235 U 2
	Drites B-10 Provide Automation Automat Automation Automation Aut	2U 225 m snh vint hor vinen himiniam ngs. 125 µm Kapton window hico-bulk

The neutron flux measurement

Simulations of the spallation process performed with **FLUKA** (down to 20 MeV neutron energy).

MCNPX used to transport neutrons from 20 MeV down.

Good agreement between measurements and simulations.

Agreement between various detectors from 1% (at low energy) to 3% (at higher energy).

A large **discrepancy** observed between **10 and 30 keV**, we believe because of a problem in the ²³⁵U(n,f) cross section.

Results relevant to nuclear technology

In the two campaigns, measured **capture** and **fission** cross sections for most **long-lived actinides**.

Plans to measure also short-lived actinides at the new "high flux" experimental area

The fission cross section of ²⁴⁵Cm

²⁴¹Am(n,γ): a difficult measurement

Half-life: **432 y** Sample: **32.2 mg** Activity: **3 GBq**

Measurements made with both C_6D_6 and TAC detectors, to minimize systematic uncertainties.

First time that complete region is covered **from thermal to MeV** in a single measurement.

Unprecedented resolution and statistics, to extend RRR above 150 eV

²³⁸U(n,γ) cross section: aiming at a very high accuracy

NEA request to measure 238 U(n, γ) cross section with 2% accuracy from 100 eV to 25 keV

Response from the community: measurements at n_TOF (x2), GELINA and LANSCE

²³⁸U sample (provided by JRC-IRMM)

- 6.125 (2) g
- High purity (99.99%)
- Rectangular: 53.90 x 30.30 mm

Used C₆D₆ and TAC to minimize systematic uncertainty related to detection effects

Overall (expected): 2-3% systematic uncertainty (depending on E_n)

Simultaneous measurement of capture and fission cross section

The second experimental area at n_TOF

Main features of EAR 2

The huge gain in signal-to-background ratio in EAR2 allows to measure radioactive isotopes with half lives as low as a few years.

The experimental program in EAR2

The EAR2 will allow to:

- measure samples of very small mass (<1 mg)
- measure short-lived radioisotopes (down to a few years)
- collect data on a much shorter time scale
- measure (n,charged particle) reactions with thin samples

Letter of intent for measurements in EAR2:

- (n,p) and (n, α) cross sections on ⁷Be, ²⁵Mg, ²⁶Al
- Fission cross sections of the short lived actinides ²³²U, ^{238,241}Pu and ²⁴⁴Cm
- Capture cross section of ⁷⁹Se, ²⁴⁵Cm
- Cross section and angular distribution of fragments from ²³²U(n,f)

Status of the EAR2:

- Approved by CERN, final design phase
- Start construction in May 2013
- Beam ready in mid-2014
- **Physics start** in 2015

- There is need of accurate new data on neutron cross-section both for astrophysics and advanced nuclear technology.
- Since 2001, n_TOF@CERN has provided an important contribution to the field, with an intense activity on capture and fission measurements.
- Several results of interest for **stellar nucleosynthesis** (Sm, Os, Zr, Ni, Fe, etc...).
- Important data on actinides, of interest for **nuclear waste transmutation**.
- To date, high resolution measurements performed in **EAR1** in optimal conditions (borated water moderator, Class-A experimental area, etc...).
- A second **experimental area at 20 m** for high flux measurements is in construction.
- The EAR2 (starting in 2015) will open **new perspectives** for frontier measurements on short-lived radionuclides.

Thank you