Possibilities for studies (Master and PhD theses) connected to the RIB physics

Rewriting Nuclear Physics textbooks: 30 years with RIB physics

20th-24th July, 2015 Pisa (Italy) Visit to LNL July, 24th, 2015

Maria Colonna
INFN - Laboratori Nazionali del Sud (Catania)

The ultimate goal of
nuclear structure is to develop a
simple, coherent, comprehensive
theory for understanding
nuclei and nuclear reactions
starting from the interaction
between free protons and
neutrons

supernova explosion:

 $N \approx 10^{56}!$

Some 'fundamental' questions

- What is the nature of the nuclear force that binds protons and neutrons into stable nuclei and rare isotopes?
- What is the origin of simple patterns in complex nuclei ?
- How to explain the observed, so different, reaction cross sections?
- O What is the origin of the elements in the cosmos?
- Which elements are still to be discovered (superheavy)?

Study of vast numbers of unstable nuclei far from the valley of stability -> interesting new phenomena!

New data will provide stringent boundaries to the present nuclear models making possible to answer fundamental questions

Light systems: Ab-initio few-body methods

Medium systems: Shell model

Medium-heavy systems:

Density functional theories Self-consistent mean-field

→ Nuclear matter **EOS**

Master/PhD theses

Structure and Reactions with light systems: Pisa, Padova, Trento

Efimov effect and universality

Universal character of low-energy processes in three-boson systems. Particle-dimer scattering and recombination

The plan is to extend this study to fermion systems, to describe light nuclei and halo nuclei

Study of four-nucleon continuum

Theoretical study of three- and four-nucleon continuum within the hyperspherical harmonics method, with different potentials (phenom., Chiral, low-k)

Ex: p-d and p-3 scattering observables at selected energies and comparison with the available experimental data

http://www.df.unipi.it/~marcucci/theses.html

marcucci@df.unipi.it kievsky@pi.infn.it viviani@pi.infn.it

o Electro-weak structure of ligh nuclei

Nuclear EW currents and nuclear interaction are derived consistently from Chiral Effective Theory

Study of p-p weak capture (to form deuterons) - astrophysical interest

Giant and pigmy dipole resonances in 4He, 16,22O, and 40Ca from chiral n-n interactions

Combine the Coupled-Cluster method and the Lorentz integral transform for the computation of inelastic reactions into the continuum

Response to electromagnetic probes

FIG. 12. (Color online) Comparison of the LIT-CCSD dipole cross section of ²²O with the photoneutron data of Ref. [2]. The gray curve starts from the theoretical threshold, while the dark (blue) curve is shifted to the experimental threshold.

Dipole cross section

pederiva@science.unitn.it orlandini@science.unitn.it

Trento

Master/PhD theses

Exotic nuclei studied with breakup and transfer to the continuum

Entering the world of exotic nuclei: probing the unbound by walking at the drip line.

- Can we do Nuclear Physics beyond the dripline?
- Extend our understanding of the residual nuclear force.
- Check the limits of validity of structure models such as the SHELL MODEL or "ab initio" models.
- Challenges in breakup reaction theory.

- 1) Elastic scattering and microscopic calculations of optical potentials including the breakup channel.
- 2) Folding potentials.
- 3) Breakup of neutron and proton rich nuclei like ⁹C e ⁷Be from the *hot pp*-chain of the explosive nucleosyntesis to understand the reaction mechanism and obtain spectroscopic information.

$$p(p, \beta + \nu)d(p, \gamma)^3He(\alpha, \gamma)^7Be(p, \gamma)^8B(p, \gamma)^9C(\beta^+\nu)^9B(p)^8B(\alpha)\alpha$$

4) Unbound nuclei studied via transfer to the continuum and/or projectile fragmentation also to obtain information on the pairing interaction.

Low energy transfer to $^{10}\mbox{Be}$ resonances, missing mass experiment.

D. Carbone et al., PRC 90, 064621 (2014)

Activity in PISA https://www.df.unipi.it/ angela/ Teaching: Nuclear Reaction Theory http://unimap.unipi.it/registri/registri.php

A.Bonaccorso, bonac@df.unipi.it

The core-target movement is treated in a semiclassical way, but neutron-target and/or neutron-core with a full QM method.

AB and DM Brink, PRC38, 1776 (1988), PRC43, 299 (1991), PRC44, 1559 (1991).

Early eikonal model: I. Tanihata, Prog. Part. Nucl. Phys. 35, 505 (1995), halo-core decoupling.

$$\frac{d\sigma}{d\xi} = C^2 \int_0^\infty d\mathbf{b_c} \frac{dP_{-n}(b_c)}{d\xi} P_{ct}(b_c)$$

Master/PhD theses

Padova (Master and PhD theses)

Nuclear structure:

- Cluster models for light nuclei
- Few-body models for nuclei far from the valley of stability
- Collective geometrical model applied to nuclear spectroscopy
- Methods to solve the many-body Schrödinger equation

Nuclear reactions:

- Break-up reactions in nuclei far from the valley of stability
- Semi-classical approach to neutron transfer close to the Coulomb barrier

http://www.pd.infn.it/~fortunat/teach.html

fortunato@pd.infn.it

A microscopic approach to nuclear structure: Realistic shell model

A nuclear system with A nucleons is described by the Schrödinger equation

$$H\psi_{\alpha} = [T + V_{NN} + V_{NNN} + \ldots)]\psi_{\alpha} = E_{\alpha}\psi_{\alpha}$$

Shell-model equation for N nucleons in a truncated space

$$H_{eff}\psi_{\alpha}' = E_{\alpha}\psi_{\alpha}'$$

where E_{α} belong to the set of eigenvalues of H and $H_{\rm eff}$ is derived from H by using many-body perturbative techniques

Needed tools

- Free nuclear potentials
- Effective theories
- Folded diagram expansion
- Shell-model codes

Napoli

Collaboration members: L. Coraggio,

A. Gargano, N. Itaco (INFN Napoli and UNINA),

T.T.S. Kuo (Stony Brook, USA)

Some examples of realistic shell-model calculations

Structure of medium nuclei: shell model

- Realistic shell-model calculations for exotic nuclei
- Microscopic studies of nuclear matter with chiral potentials
- Neutrinoless double beta decay: shell-model calculation of the nuclear matrix element

Napoli

itaco@na.infn.it
gargano@na.infn.it

- Isospin symmetry breaking in protonrich nuclei (realistic interactions)
- Nuclear structure in neutron-rich nuclei, far from the valley of stability

Padova

lenzi@pd.infn.it

Medium-heavy systems: self-consistent mean-field Some hot topics

- New effective interactions and pairing correlations
- Study of nuclear vibrations (monopole, dipole, quadrupole)
- Reactions with electro- and hadron probes: How to excite nuclear collective motion?
- Nuclear Field Theory: Particle-Vibration coupling
- Electro-weak decay (ex. β decay)

Connection to the nuclear EOS

Master and PhD theses

- Simple nuclear models with short-range phenomenological potentials (Master)
- Second-order perturbation theory for single-particle motion (M)

Milano colo@mi.infn.it

N=Z nuclei within the formalism of quartets (Master/PhD)

sambataro@ct.infn.it

- Coupling to the continuum in mean-field models (HF, RPA) (PhD)
- Collective excitations in exotic nuclei and deformed systems (PhD)

Catania

gambacurta@ct.infn.it

- Connection between PDR strength and symmetry energy (Master)
- The pygmy resonance in deformed nuclei (PhD)

lanza@ct.infn.it

Collective motion in semi-classical approaches (Master)

LNS-Catania

colonna@lns.infn.it

Nucleon number fluctuations

 New effective interactions and pairing correlations

New parameter-free effective interactions, including tensor forces, able to describe all nuclei at once (applications to exotic nuclei)

- Elastic and quasi-elastic scattering with electro-weak probes
 - extension to hadronic probes

RMF models for nuclear structure Ex: The weak charge density is closely connected to the neutron distribution

Phenomenology of Heavy Ion Collisions: A way to explore the nuclear matter phase diagram

Master and PhD theses

TDHF (and extensions)

Semi-classical approximation: time evolution of the one-body distribution function in phase space

$$f(r,p,t)$$
: $\frac{\partial}{\partial t} f + \{f,H\} = I_{coll}$

 Excitation of collective motion in low-energy collisions

 Isospin effects in fragment production (HIC at Fermi energies)

using **effective interactions**

Cluster formation in low-density matter

Nuclear Matter EOS and neutron stars:

3.0 J0348+0432 Steiner et al. HS(FSUgold) HS(TMA) HS(TM1) HS(DD2) HS(IUFSU) SFHo SFHx BHBA BHBA BHBA BHBA BHBA Radius R [km]

Milano, Catania, Ferrara, LNS

- The stability of neutron stars, their total mass (≈1.4-2 M_{Sun}) and their radius
 (≈ 1-10 km) are determined by the balance betwen gravitational and nuclear forces (symmetry energy).
- Nuclear Physics Inputs are important also for simulations of supernova explosion (cooling of proto-neutron stars ...)

These systems allow one to study "exotic" nuclear matter at densities equal 3-4 times normal density!

Master / PhD theses

- Magnetic-field effects on the neutron star crust
- Electron capture reactions
- Neutrino mean-free path (star cooling)

Milano

colo@mi.infn.it

- Pairing effects on low-density clustering phenomena
- Pairing effects on density fluctuations and neutrino mean-free path

drago@fe.infn.it

Many interesting subjects: from exotic nuclei to exotic nuclear matter!!

Strong synergies with experiments at

existing facilities and, in perspective, new facilities like SPES

Thanks for your attention!