The activity in Firenze

EXPERIMENT NAME: GAMMA

CONTACTS:

A. Nannini INFN Firenze

Coulomb excitation:
powerful type of
experiments to study
nuclear levels. First-day
SPES experiments (possible
even with low currents)

Thesis available:

CoulEx setup for SPES experiments

Data analysis and model comparisons

A simple Set-up

- · Ge crystals for gammas and
- Segmented Silicon detectors for projectile or target detection

Gamma spectroscopy

The activity in Firenze

EXPERIMENT NAME: NUCLEX/FAZIA

Strong overlap with LNL, Bologna, Naples

CONTACTS:

G.C. INFN Firenze

S. Piantelli INFN Fi

G.Pasquali Uni Fi

S. Barlini Uni and INFN Fi

SHORTLY:

- Isospin relaxation and nuclear EOS
- Clustering in nuclei
- From evaporating to multifragmenting systems
- Experiments with the GARFIELD array (LNL) and the advanced FAZIA array for ion identification
- Fast sampling electronics and ion identification
- Advanced detectors for charge particles

+ International collaborations

Two modules of the FAZIA array

Charged products and reactions

The activity in Firenze

EXPERIMENT NAME: NUCLEX/FAZIA

Strong overlap with LNL, Bologna, Naples

SUBJECTS FOR STUDENTS:

Experiments in various lab (LNL,LNS, GANIL) Detector tests, handling, mounting Digital algorithm developments Data analysis and MC simulations DAQ developments

Thesis available:

- Isospin transport studies
- Clustering effects at LNL and LNS
- Fusion-fission reactions at LNL
- FAZIA experiments at GANIL (France)
- Digital filtering and Pulse shape analysis
- Detector developments and test

+ International collaborations

Reactions and detectors

The activity in Napoli

EXPERIMENT NAME: NUCLEX/FAZIA

CONTACTS:

M.Vigilante, Uni Napoli I.Lombardo INFN and Uni Na

Strong overlap with LNL, Bologna, **Frenze**

+ International collaborations

SUBJECTS FOR STUDENTS:
Digital Electronics development
VHDL
Hardware construction
Data Analysis
Acquisition systems

Block card, power supply and half bridge

FEE cards

Detectors

INFN Naples project

IPN Orsay project

Thesis available:

Data analysis of FAZIA experiments
Electronics developments
DAQ systems
MonteCarlo simulations for particle
correlation studies

PISA2015 Student week, july20-24

Charged products and reactions

The activity in Napoli

EXPERIMENT NAME: EXOTIC

CONTACTS:

D.Pierroutsakou, INFN Napoli

in-flight inverse kinematics reactions induced by high intensity beams from the Legnaro Tandem on gas targets (p,d,3He).

SHORTLY:

- * Production line for light exotic nuclei
- * Experiments with these ions
 Structure and interactions of exotic
 species around the Coulomb Barrier
- Dynamical collective resonances
- Light particle segmented detectors

Production line installed at LNL

RIBs: 17F, 7Be, 8B, 8Li, 150

Beam production and reactions

The activity in Napoli

EXPERIMENT NAME: EXOTIC

SUBJECTS FOR STUDENTS:
Computing, simulations
Beam production
Gas target
Nuclear structure and dynamics
Detectors

Structure and reaction of light-exotic beams

Experimental set up: EXPADES (8 telescopes: IC+ 40 μm DSSD +300 μm DSSD)

Thesis available:

reaction mechanisms and structure of light exotic nuclei in experiments with the EXOTIC beam line

Dynamical Dipole excitation

(DD) a pre-equilibrium Giant Dipole Resonance excitation in charge asymmetric heavy-ion reactions

Experimental set up: detectors for high energy γ -rays, gas counters for fusion residue, telescopes for fragments

Thesis available:

In future using SPES n-rich beams

simulation of the best reactions to be studied by employing the SPES RIBs, combined with stable beams on different targets.

The activity in Napoli

Nuclear Astrophysics: to measure extremely low cross sections of the nuclear processes that fuel the stars and characterise the nucleosynthesis.

Maximise S/N is extremely important.

Two approaches may be followed:

Experiment name: ERNA intern. collaboration

METHOD: Kinematic signature of the events

→ Recoil separator.

Experiment name: LUNA intern. collaboration

METHOD Background minimization→ Underground exeperiments made under mountains in a silent location at LNGS.

The activity in Napoli

Experiment name: ERNA intern. collaboration

Contacts:

antonino.dileva INFN Napoli lucio.gialanella INFN Napoli

Thesis available:

- Kinematic signature of the events

Currently: radiative capture cross section measurements of $7Be(p,\gamma)8B$, $14,15N(\alpha,\gamma)18,19F$ and $12C(\alpha,\gamma)16O$

Another research line uses a dedicated detector assembly for charged particle spectroscopy, at present for 12C+12C and $23Na(p,\alpha)$ 20Ne reactions.

The **ERNA**Separator

Gamma probe

Alpha probe

The activity in Napoli and LNG

Experiment name: LUNA intern. collaboration

Contact:

gianluca.imbriani INFN Napoli

Thesis available:

Background minimization→ underground at LNGS.

At present the Naples Section is directly responsible for the measurements of

 $18O(p,\gamma)19F$ and $23Na(p,\gamma)$ 24Mg, and in the near future other reactions of the CNO, NeNa and MgAl cycles.

Proton beam 0.3mA

The activity in Padova and LNGS

Study of nuclear reactions responsible of the energy production and of stellar chemistry (H-burning)

Contact:

carlo.broggini UNI Padova

In the past most reactions on the typical solar cycle:

- •3He (3He,2p)4He (solar neutrino problem)
- •14N(p,g)15O (CNO neutrinos, Universe age)

Thesis available:

Preparation and test in Legnaro of targets measure @LNGS $6Li(p,\gamma)7Be$.

- •Low energy resonance?
- Analysis of previous collected data

The activity in Roma and US

EXPERIMENT NAME: PREX at Jeff Lab

CONTACTS:

G.M. Urciuoli, INFN Roma 1

SUBJECTS FOR STUDENTS:

Data Analysis
Polarized beams
Experiments in US

SHORTLY:

*Experiments at JLAB (USA) with longitudinally polarized electron beams

208Pb Neutron skin – PREX experiment

The activity in Roma and US

HallA, using 1 GeV electron beam, (till 70 uA);

highly polarized (90%) on 0.5 mm Pb target

Changing **e-** helicity

part-per-million precision

«left»-«right» asymmetry

APV (Z0 exchange) in

e+208Pb elastic scattering

$$R_n - R_p = 0.34_{-18}^{+16} \, fm$$

Thesis available:

New experiments approved to improve statistics and extend to other nuclei.

http://hallaweb.jlab.org/parity/prex/

EXPERIMENT NAME: NEWCHIM

CONTACTS:

Sara Pirrone and Giuseppe Cardella, INFN Catania Giuseppe Politi and Ninni Rizzo, Universita' di Catania

SHORTLY:

- Mulftigramentation, EOS and symmetry energy
- Experiments with LNS stable and unstable beams at cyclotron energies
- Big detector CHIMERA (almost 1200 "eyes")
- Construction of a powerful sensor for multiparticle correlations (R&D on DETECTORS)

Charged products and reactions

EXPERIMENT NAME: NEWCHIM

SUBJECTS FOR STUDENTS:

Detector calibrations

Data Analysis

Data Analysis

Models and Simulations

How a big system is produced and decays by changing the neutron/proton ratio?

E = 10 AMeV ⁷⁸Kr + ⁴⁰Ca -> ¹¹⁸Ba and ⁸⁶Kr + ⁴⁸Ca -> ¹³⁴Ba

analysis of an experiment (already done) with stable beams@LNS and on the preparatory phase to SPES experiment

SPES Letter Of Intent
Isospin dependence of compound
nucleus
formation and decay
systems with higher N/Z
90,94Kr + 40,48Ca 10 AMeV

ISOL (LNL) but not only... in-Flight (LNS) beams

@LNS, Catania

Refer to

Lecture by R.Raabe Louven and others

Primary Beam (e.g. from a Cyclotron)

Stable NucleiA ~ 10 - 100
E ~ 20 - 60 MeV/A

Primary Beam

Thin target_

9Be 500µm- 2500µm

Radiactive &/OR stable nuclei

For more info, among others:

D.Rifuggiato INFN LNS, Catania Accelerator G.Cardella INFN Ct, Catania, experiments

RIB @ Intermediate Energy

EXPERIMENT NAME: NEWCHIM

In-flight fragmentation beams

@ LNS with CHIMERA

¹⁸O + ⁹Be (1.5 mm) at 55 MeV/A

180 beam, 88W, 5.5x10¹¹ p/s

Among the various produced nuclides

⁸He 3 kHz

secondary beam 40-50 MeV/A

SUBJECTS FOR STUDENTS:

SUBJECTS TO STATE OF STATE OF

Thesis available:

Study of the ⁹He structure in one neutron trasfer reactions ⁸He +d → ⁹He+p

EXPERIMENT NAME: NEWCHIM

SUBJECTS FOR STUDENTS:

DETECTORS
DETECTRONICS
ELECTRONICS
LAB TESTS

Telescopes for fragments with High angular resolution (A9<1°) and low thresholds (<1 MeV/A)

Pulse-shape analysis in Silicon wide Dynamic range (>>20MeV) Modularity and Transportability Coupling to 4π detectors or spectrometers Integrated Electronics (GET)

Thesis available:

20 modules under CONSTRUCTION 2015-2019

The activity in Catania (and Canada)

EXPERIMENT NAME: LNS-STREAM

Contacts:

A.Di Pietro INFN LNS Catania

In many light N=Z nuclei clusters are formed by tightly bound nucleons (alpha particles). In n-rich nuclei clusters coudn't be stiff particles and Exotic cluster configurations may appear.

Thesis available:

9,11Li-α cluster states in 13,15B Experiment approved @ TRIUMF Canada

Resonance Scattering Technique: a beam hits an extended gas target (also it is an energy degrader). Elastic excitation functions are measured in a broad energy range in a single run. Very useful with RIBs to minimise the beam time requests.

gas target (1.5 m)

 ΔE -E for He,H separation

From Tof between MCP detector and ΔE-Si-detector

The activity in Catania (and Canada)

halo vs normal nucleus

ELASTIC SCATTERING AND BREAK-UP IN THE 9,11LI+64Zn reaction

- Weakly bound (easy to break-up)
- Easy to polarise (large B(E1) low energy strength)
- Suffer lower Coulomb barrier
- Higher transfer probability of valence nucleons

Experiment approved @ TRIUMF Canada

Thesis available:

Understand the dynamics of the reactions induced by halo nuclei (11Li)

Due to the low binding-energy of halo nuclei, g.s. lies close to the break-up threshold. Coupling to break-up states (continuum) affects the dynamics of the collisions. Also soft-resonances can occur

Elastic-scattering angular distribution

17/07/15

To keep in mind

People we have met!

camera @mi.infn.it GAMMA detectors Leoni @mi.infn.it GAMMA experiments Benzoni @mi.infn.it GAMMA and beta-decay Bracco @mi.infn.it GAMMA experiments Wieland @mi.infn.it GAMMA experiments Andrighetto @Inl.infn.it SPES beam develop. Fioretto @Inl.infn.it PRISMA spectrometre Corradi @Inl.infn.it PRISMA specttometre Montagnoli @pd.infn.it PISOLO separator Valiente-dobon @Inl.infn.it GAMMA array Mengoni @Inl.infn.it GAMMA particle array Recchia @pd.infn.it GAMMA experiments Lenzi @pd.infn.it GAMMA theory Pierroutsakou @na.infn.it EXOTIC exper. Morellil @bo.infn.it DYNAMICS experiment Igialanella @na.infn.it ASTROPHYSICS exps Dileva @na.infn.it ASTROPHYSICS exps Broggini @pd.infn.it ASTROPYSICS exps Casini @fi.infn.it DYNAMICS FAZIA exp. Piantelli @fi.infn.it DYNAMICS exp Pasquali @fi.infn.it PARTICLE detectors Pirrone @ct.infn.it DYNAMICS CHIMERA exp Cardella @ct.infn.it DYNAMICS CHIMERA exp Dipietro @Ins.infn.it DYNAMICS halo nuclei Urciuoli @roma1.infn.it neutron SKIN exp.