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Abstract. Reactions with atomic nuclei play a pivotal role in the experimental study of nuclei. They are a
tool in order to obtain crucial information on nuclear structure of nuclei, in particular for unstable nuclei
far off the valley of stability. Besides the investigation of nuclear properties, nuclear reactions can be used
as indirect methods to extract cross sections of astrophysical interest that cannot be measured directly in
the laboratory. After an overview over the variety of nuclear reactions and their major characteristics, the
basic formalism of reaction theory is introduced and essential concepts are presented in order to describe
direct reactions. The main challenges in the future development of reaction theory are addressed.

PACS. 24.10.-i Nuclear reaction models and methods – 24.50.+g Direct reactions – 24.87.+y Surrogate
reactions

1 Introduction

The detailed study of nuclear properties relies mostly on
reaction experiments in the laboratory. The interpretation
of their results requires a comparision with theoretical cal-
culations utilizing reaction theory that is appropriate for
the considered processes. Besides the investigation of nu-
clear structure, nuclear reactions itself are of interest, e.g.
in astrophysical applications. Many approaches in reac-
tion theory have been developed over the last decades.
They were successfully applied in the analysis of experi-
mental data and deep insights into the mechanisms of a
large variety of reactions were attained.

The interest in reaction theory has been revived in re-
cent years due to the investigation of unstable, neutron
or proton rich nuclei far off the valley of stability. The
advent of radioactive beam facilities made it possible to
study these short-lived nuclei, which were not accessible
before. The unique pecularities of exotic nuclei demand to
reassess the validity of widely used theoretical approaches
and to develop new methods that are suitable for the con-
ditions of the employed reactions.

This contribution serves as an introduction to the basic
methods and concepts in reaction theory so that a compre-
hension of current developments and applications becomes
possible. Here it should suffice to give the essence of the
theoretical description. An in-depth delineation of the for-
malism with a full derivation of the relevant formulas can
be found in many excellent textbooks on reaction theory,
see, e.g., references [1–15]. In this work, completeness can
not be achieved and many topics have to be left out. This
paper is not a review of recent results or specific theoreti-
cal approaches for individual cases. For that purpose, the
interested reader is invited to explore the relevant liter-
ature himself/herself. Since there is such a multitude of

reactions and similarly a large number of theoretical ap-
proaches, only a selection of topics, mainly connected to
direct reactions, will be covered. Other types of reactions,
e.g. compound nucleus reactions or heavy-ion collisions,
are not dealt with here. Some additional restrictions ap-
ply in this presentation. Nonrelativistic kinematics will
be supposed and antisymmetrization is not considered ex-
plicitly. Weak interaction processes are not treated and
the spins of particles are neglected in most cases with a
few exceptions.

There are two major parts in this work. General as-
pects of reaction theory are presented in the first section
with an overview over the main theoretical approaches.
More details are considered in the second section, which
contains a selection of applications. It is followed by a
short summary.

2 Fundamentals of reaction theory

All processes that occur if two or more particles collide
within an interaction zone can be considered as reactions.
The extent of this zone in coordinate space depends on
the range of the interaction and thus can be very different.
If the reaction mechanism is ruled by the long-range elec-
tromagnetic forces, particles can interact over much larger
distances than in processes with the short-range strong or
weak interactions. In many instances different types of in-
teractions compete in a reaction and interference effects
can occur.

Distinct notations for reactions have been established
in the past. In laboratory experiments, in most of the cases
it is only possible to study reactions with two particles
(X1, X2) in the initial state. With n − 2 particles (X3,
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. . . , Xn) in the final state, the form

X1 +X2 → X3 +X4 + . . .+Xn (1)

can be used as in chemistry. If one wants to distinguish the
projectile X1, the target X2 and the (detected) ejectiles
X4, . . . , Xn, the alternative notation

X2(X1, X4 . . . Xn)X3 (2)

is often employed. If X2 is an instable nucleus it is usu-
ally not possible to produce a target from this material.
Then inverse kinematics are used, i.e. X1 and X2 are in-
terchanged leading to

X1(X2, X4 . . . Xn)X3 (3)

with projectileX2 and targetX1. Even with the limitation
to reactions with only two colliding particles, there is large
variety of reaction types. The most simple process is the
elastic scattering

a+A→ A+ a (4)

without a change of the particles identities. In an inelastic
scattering

a+A→ A∗ + a′ (5)

one particle can be excited (denoted by the asterisk) and
the other one loses a part of its energy (indicated by the
prime). Rearrangement reactions

a+A→ B + b (6)

with b 6= a and B 6= A are usually realized be the exchange
of nucleons in a transfer reaction. A particular case is a
radiative capture reaction

a+A→ C + γ (7)

where two nuclei fuse to form a compound nucleus C with
the emission of a photon. Instead of two particles in the
final state as above, there is a large number of possible
final states in many-body reactions

a+A→ B + b1 + b2 + . . . (8)

with more than two ejectiles. As an example, the collision
of a proton with a 7Li nucleus

p+ 7
3Li →



























7
3Li + p
7
3Li

∗ + p
7
4Be + n
α+ α
8
4Be + γ (→ α+ α+ γ)
α+ t+ p

(9)

produces a number of different final states.

2.1 Length, time and energy scales

Every reaction can be characterized by specific length and
time scales. It is useful to consider the radius R of a nu-
cleus (assumed to be spherical), the corresponding area
of a circle S = πR2, and the time t = 2R/c for light
to transverse the nucleus. The radius of a stable nucleus
of mass number A can be estimated to be R ≈ r0A

1/3

with r0 = 1.25 fm = 1.25 · 10−13 cm. For a 208Pb nu-
cleus the values R ≈ 7.4 fm, S ≈ 172 fm2 = 1.72 b and
t ≈ 14.8 fm/c ≈ 4.9 ·10−23 s are found. Here, the unit barn
for areas in nuclear reaction theory with 1 b = 10−28 m2

or 1 fm2 = 10 mb has been introduced. The time scales
for reactions can vary substantially. Fast reactions pro-
ceed within a period of approx. 10−22 s. These are typi-
cally direct reactions where few nucleons are involved in
single-step processes. Multistep reactions take somewhat
longer and more complicated reaction mechanisms are in-
volved. In slow reactions with a duration much longer than
10−22 s a compound nucleus is formed and many nucleons
take part in the process, often inducing collective exci-
tations. In most cases the memory of the initial state is
lost and the reaction is dominated by statistical features.
Evidently, the theoretical description of fast and slow re-
actions will be less involved than that of intermediate re-
actions.

Nuclear reactions can also be distinguished according
to the typical collision energies. A very large range is actu-
ally covered in experiments from reactions with thermal
neutrons of approx. 25 meV, via astrophysical reactions
with a few 10 or 100 keV, direct nucleon transfer reac-
tions with a few MeV per nucleon, to Coulomb excitation
reactions with a few 10 or 100 MeV per nucleon or even
relativistic heavy-ion collisions with a few GeV or TeV
per nucleon. This can be compared to the typical energy
scales for nuclear binding and excitation energies in the or-
der of a few MeV or that of the involved potentials, e.g.,
the heigth of the Coulomb barrier EC = ZaZAe

2/RC with
the charge numbers Za, ZA of the colliding nuclei and the
square of the electric charge unit e2 ≈ 1.44 MeV fm. The
distance RC can be estimated as the sum Ra +RA of the
nuclear radii. Clearly, the magnitude of the collision en-
ergy will have a major impact on the reaction mechanism
and the choice of the theoretical description.

Another important quantity is the Q value, defined by

Q = (ma +mA −mb −mB) c
2 (10)

for a reaction A(a, b)B. It is determined by the masses mi

(i = A, a, b, B) of the participating nuclei. A generaliza-
tion to other types of reactions is obvious. Reactions with
positive Q value are exothermic, i.e. there is an release of
kinetic energy due to a larger binding of the nuclei in the
final state than in the initial state. Elastic reactions are
characterized by Q = 0 and for negative Q values the reac-
tion is endothermic. In this case there is a energy thresh-
old in the initial state below which the reaction cannot
proceed.
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Fig. 1. Attenuation of a uniform beam of particles hitting a
thick target of density ρ due to reactions.

2.2 Conservation laws

Not every reaction that can be imagined can actually oc-
cur in reality. There is a limitation due to the existence of
several conservation laws, which are consequences of sym-
metries that apply to nuclear reactions. The most promi-
nent is probably the law of energy conservation. If we
consider again a reaction A(a, b)B, it can be expressed
as follows. The total energy in the initial state

E(a+A) = Ta + TA + (ma +mA)c
2 , (11)

containing kinetic energies Ti and massesmi of the nuclei,
has to be identical to that in the final state

E(b +B) = Tb + TB + (mb +mB)c
2 . (12)

Similarly, there is a conservation of the total momentum

P (a+A) = pa + pA = pb + pB = P (b+B) (13)

and of the total angular momentum

J(a+A) = Ja + JA (14)

= Jb + JB = J(b+B)

where Ji contains the intrinsic angular momentum or spin
of a particle i as well as the orbital angular momentum
with respect to a given reference point in space, usually
choosen as the center of mass. Besides these kinematic
quantities, the particles carry some additional quantum
numbers that give rise to additional conservation laws.
Examples are the parity

P (a+A) = Pa · PA · (−1)laA (15)

= Pb · · ·PB · (−1)lbB = P (b+B) ,

with orbital angular momenta of relative motion laA and
lbB, which is a multiplicative quantum number because of
a discrete symmetry, and the total isospin

T (a+A) = T a + TA = T b + TB = T (b+B) (16)
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Fig. 2. Scattering of a beam of particles on a single target
with detection at a distance r under a scattering angle θ.

that is analogous to the total angular momentum but in
an abstract isospin space. In addition, there is a conser-
vation of charge, baryon and lepton numbers. However,
depending on the type of interaction that mediates the
reaction, not all conservation laws apply to all reactions.
E.g., in electromagnetically induced reactions, there is no
conservation of the total isospin T but only the projection
Tz on a single axis in isospin space.

2.3 Definition of cross sections

Independent of the theoretical description of a reaction,
may it be with classical, semiclassical or quantal methods,
observables have to be defined that can be measured in
experiments and compared to theory. The essential quan-
tities are cross sections that measure the strength of a
reaction. In the most simple case, the following situation
can be imagined. A uniform beam of particles moving in
positive z-direction, see figure 1, hits a thick target of
constant number density ρ at z = 0. The occurence of
reactions reduces the intensity of the beam depending on
the penetration depth z inside the target. The reduction
of the current J over an infinitesimally small length dz is
proportional to the current itself and the target density ρ.
This can be formulated mathematically as a simple first
order differential equation

dJ

dz
= −σJ(z)ρ (17)

with a proportionality constant σ, the (interaction) cross
section. The solution of equation (17) is simply given by
the law of exponential decrease

J(z) = J(0) exp(−σρz) . (18)

Denoting with L and T the dimensions of length and time,
respectively, one has the dimensions of the current [J ] =
L−2T−1 and number density [ρ] = L−3. Hence, the unit of
the cross section [σ] = L2 is an area, usually measured in
barns in nuclear physics, see section 2.1. The cross section
depends on the energy E of the incident beam and σ(E)
is called the excitation function.

More detailed information on the reaction process is
obtained when the final products are detected and the
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Fig. 3. Classical trajectory of a particle a with impact param-
eter b scattered at a target A under a scattering angle θ.

dependence on the scattering angle θ is considered leading
to the definition of a differential cross section dσ/dΩ. The
initial state is again given by a uniform beam of particles
moving in z direction with current Ji that interacts with
a single target at a fixed position. Ejectiles are observed
in a detector with area dS at a distance r from the target,
see figure 2. With the current Jf in the final state at the
detector in radial direction, the cross section is defined as

dσfi =
JfdS

Ji
. (19)

Introducing the solid angle dΩ via

dS = r2dΩ (20)

the differential scattering cross section is found as

dσfi
dΩ

=
Jfr

2

Ji
(21)

with the currents Ji and Ji that can be calculated, e.g., in
a quantal description of the scattering process, see section
2.4.

2.3.1 Classical description

In classical physics, the differential cross section for elastic
scattering is given by

dσ

dΩ
=

b

sin θ

∣

∣

∣

∣

dθ

db

∣

∣

∣

∣

−1

(22)

with the deflection function θ(b) depending on the impact
parameter b when azimuthal symmetry, i.e. independence
on the angle φ, is presumed. The relation between θ and
b, see figure 3, is obtained by determining the classical
trajectories of the scattered particle. They are found by
solving the Newtonian equations of motion

mir̈i = F i (23)

with the position depending force F i for given initial con-
ditions, i.e. position and velocity or momentum of the par-
ticle i. Thus a set of coupled ordinary time-dependent dif-
ferential equations has to be solved. Alternatively conser-
vation laws for energy, momentum and angular momen-
tum can be used. A simple example is the elastic scattering
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Fig. 4. Coulomb excitation of a projectile a in the electric field
E of a target A during the scattering with angle θ.

of a particle a with energy E and impact parameter b on
a target A. With the Coulomb force

F a =
ZaZAe

2

r2
r

r
(24)

acting on a the deflection function

θ(b) = 2 arccot

(

2bE

ZaZAe2

)

(25)

is deduced. With relation (22) the classical Rutherford
cross section for elastic scattering

dσR
dΩ

=

(

ZaZAe
2

4E

)2
1

sin4
(

θ
2

) (26)

is obtained.

2.3.2 Semiclassical description

In the classical approach, only the elastic scattering of a
particle under the action of a potential or force can be
treated. The excitation of the scattered particle a, how-
ever, requires to include a quantal description. A promi-
nent example of this approach is the Coulomb excitation of
a nucleus during the quasi-elastic scattering on a charged
target. In this case, the projectile a at position r(t) expe-
riences a time-dependent potential

V (t) =
∑

i∈a

ZiZAe
2

|r(t) + xi|
−
ZaZAe

2

|r(t)|
(27)

that depends on the positions xi of nucleons i inside a.
The differential excitation cross section can be factorized
as

dσfi
dΩ

=
dσR
dΩ

× Pfi (28)

with the elastic Rutherford cross section and an excita-
tion probability Pfi that describes the likelihood of the
excitation of a from the initial ground state |i〉 to a final
state |f〉. This quantity is determined as

Pfi = |afi|
2 (29)
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with the excitation amplitude

afi =
1

ih̄

∫ ∞

−∞

dt e−iωt〈f |V (t)|i〉 (30)

in first-order time-dependent perturbation theory with ex-
citation energy h̄ω. The Coulomb excitation method has
been widely applied to study the properties of excited
states of stable nuclei [16,17]. It also has become a valu-
able tool to investigate electromagnetically induced reac-
tions and the structure of nuclei with a low threshold for
the excitation to unbound states in the continuum [18,
19]. In this case, the projectile a breaks up into pieces
that can be detected individually. This Coulomb dissoci-
ation method is applied favorably to the study of exotic
nuclei.

The combination of classical and quantal methods in
the semiclassical approach, however, is not valid in all
cases. A condition for the validity is that the Sommer-
feld parameter η of the a+A scattering, see section 3.1.1
for the definition, is sufficiently larger than one. Otherwise
a fully quantal approach has to be used.

2.3.3 Quantal description

The most general description of reactions is based on a
fully quantal treatment. This requires to determine the
complete wave function ψ of the system by solving the
many-body Schrödinger equation for the specific bound-
ary conditions of scattering. There are two possible paths
that are explored in actual calculations. The first method
tries to solve the time-dependent Schrödinger equation

ih̄
∂

∂t
ψ = Ĥψ (31)

with Hamiltonian Ĥ . This is usually done by following
the time evolution of a wave packet that describes the
projectile interacting with the target. Despite its merits,
this approach is not considered in the following.

In the second method, the stationary Schrödinger equa-
tion

Ĥψ = Eψ (32)

for a fixed energy E is solved for the appropriate bound-
ary conditions. They can be formulated as ’plane-wave +
outgoing (ingoing) spherical waves’. This will be elabo-
rated in more detail below. There are two possible formu-
lations. The first one directly tries to use the stationary
Schrödinger equation (32) as a partial differential equa-
tion. But it is also possible to reformulate the problem as
an integral equation. Both approaches will be presented
in section 2.4.

In the quantal description of reactions it is convenient
to define channels c that characterize the asymptotic states
of the system when the particles are well separated and
their mutual interaction becomes sufficiently small. These
channels are characterized by a partition, e.g., A+a, B+b,
or C + γ and by specifying additional quantum number
that are needed to identify the state completely. This in-
cludes, e.g., the energies and momenta of the particles.

2.4 Stationary scattering theory

The theoretical formulation for reactions with nuclei a and
A in the initial channel starts with the definition of the
total Hamiltonian. It reads

Ĥ = Ĥa + ĤA + T̂aA + V̂aA (33)

with the Hamiltonians Ĥa and ĤA in the Schrödinger
equations

Ĥaφa = Eaφa (34)

and
ĤAφA = EAφA (35)

for the colliding particles with total energies (including
rest masses)Ea and EA, respectively. Thus, the wave func-
tions φa and φA describe the internal structure of the nu-
clei. The kinetic energy operator of relative motion

T̂aA = −
h̄2

2µaA
∆raA

(36)

in equation (33) acts on the relative coordinate

raA = ra − rA (37)

and contains the reduced mass

µaA =
mamA

ma +mA
. (38)

V̂aA denotes the interaction potential between a and A.
In general, it depends on the coordinates of all nucleons
inside the interacting nuclei and not only on raA. For the
Hamiltonian

Ĥ
(i)
0 = Ĥa + ĤA + T̂aA = Ĥ − V̂aA (39)

in the initial state without the interaction potential V̂aA
the solutions of the Schrödinger equation

Ĥ
(i)
0 Φi = (Ea + EA + EaA)Φi (40)

are easily found as plane waves

Φi = φi exp (iki · ri) (41)

with
φi = φaφA , (42)

ri = raA, and the relative momentum

ki = kaA = µaA

(

ka

ma
−

kA

mA

)

, (43)

which enters in the energy

EaA =
h̄2k2i
2µaA

(44)

of relative motion. The above quantities can be introduced
in a similar manner for all possible final channels of a
reaction.
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The full solutions of the Schrödinger equation

ĤΨ
(±)
i = EΨ

(±)
i (45)

with initial channel i are denoted by Ψ
(±)
i where the ’+’

(’−’) solution corresponds to a wave function with asymp-
totically outgoing (ingoing) spherical waves in all final
channels. The meaning of these boundary conditions be-

comes more apparent when the asymptotic form of Ψ
(±)
i

for large radii is written as

Ψ
(±)
i → Φi +

∑

f

φff
(±)
fi

exp (±ikfrf )

rf
(46)

with scattering amplitudes f
(±)
fi for all final channels f .

The wave function Φi is the plane-wave solution (41) of
equation (40) and φf is the product of the individual par-
ticle wave functions in the final state, e.g., φf = φbφB for
the channel f = b+B.

The differential cross section for the reaction from an
initial channel i to a final channel f can be calculated
according to equation (21) if the currents Ji and Jf of rel-
ative motion are known. In nonrelativistic quantum me-
chanics the current of a particle m with wave function ψ
is given by

J =
h̄

2mi
[ψ∗ (∇ψ)− (∇ψ∗)ψ] . (47)

This relation can be applied to the current case. The mass
m is replaced by the reduced mass and ψ by the appropri-
ate wave function. In the initial state, the wave function
of relative motion

ψ = exp (iki · ri) (48)

leads to the current

J i =
h̄ki

µi
= vi = vaA , (49)

which is simply the velocity of relative motion. For an
outgoing spherical wave

ψ = f
(+)
fi

exp (ikfrf )

rf
(50)

the leading term of the asymptotic form of the current

Jf →

∣

∣

∣
f
(+)
fi

∣

∣

∣

2

r2f

h̄kf
µf

rf

rf
=

∣

∣

∣
f
(+)
fi

∣

∣

∣

2

r2f
vf (51)

contains the modulus square of the scattering amplitude
and decreases proportional to the inverse square of the rel-
ative distance rf . Combining these result, the differential
reaction cross section can be expressed as

dσfi
dΩ

=
Jfr

2
f

Ji
=
vf
vi

∣

∣

∣
f
(+)
fi

∣

∣

∣

2

. (52)

Thus the knowledge of the scattering amplitude f
(+)
fi , i.e.,

the asymptotic form of the total wave function Ψ
(+)
i is

sufficient for the calculation of dσfi/dΩ. In constrast to
the discussion in section 2.3, the dimension of the currents
(49) and (51) is LT−1 since the wave functions are not nor-
malized to the number of particles per volume. However,
the result for the differential cross section is unaffected by
this difference.

There are different avenues to determine scattering
amplitudes in theoretical descriptions of reactions. Two
major approaches are delineated in the following two sec-
tions.

2.4.1 Partial wave expansion

A widely used method to represent the full scattering wave
function is based on an expansion in partial waves. Con-
sidering an elastic scattering reaction A(a, a)A in a simple
spherical short-range potential VaA(r), the single-channel
form1

Ψ
(+)
i =

∞
∑

l=0

l
∑

m=−l

ϕ
(+)
l (r)

r
Ylm(r̂)φi (53)

with a summation over orbital angular momenta l and
their projection m is the appropriate ansatz. For a gen-
eralisation with arbitrary spins of the particles see, e.g.,
reference [20]. The wave functions of radial motion are

denoted by ϕ
(+)
l and Ylm are spherical harmonics depend-

ing on the direction r̂ = r/r. The factor φi is again the
product of the internal wave functions of the scattered
particles. A seperation of variables in equation (45) leads
to the radial Schrödinger equation

EaAϕ
(+)
l (r) = (54)

[

−
h̄2

2µaA

d2

dr2
+
l(l + 1)

r2
+ V̂aA(r)

]

ϕ
(+)
l (r)

to determine the functions ϕ
(+)
l . Solutions of this second-

order differential equation have to be found with the cor-
rect boundary conditions. Continuity of the total wave

function at the origin requires ϕ
(+)
l (r) = 0 for r = 0.

For r → ∞ the radial wave functions have to be solu-
tions of equation (54) with vanishing potential V̂aA. Hence
they must be linear combinations of regular and irreg-
ular spherical Bessel functions [21]. This is only correct
for short-range potentials. Modifications apply, e.g., for a
long-range Coulomb potential, see section 3.1.1 for details.
As noticed before, solutions of the full Schrödinger equa-

tion (45) with V̂aA = 0 are given by equation (41) with
the expansion

Φi = 4π
∑

l,m

iljl(kir)Ylm(r̂)Y ∗
lm(k̂i)φi (55)

1 The index i of ri is suppressed in the following.
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Fig. 5. Radial wave function in partial wave l = 0 without the
action of potential (blue line) and with potential (red line).

with k̂i = ki/ki and regular spherical Bessel functions jl.
For l = 0 one has

j0(z) =
sin z

z
=
eiz − e−iz

2iz
. (56)

For angular momenta l > 0 the spherical Bessel functions
can be determined as derivatives

jl(z) = zl
(

−
1

z

d

dz

)l

j0(z) . (57)

Similar as for j0, they can be written as a difference

jl(z) =
1

2iz

[

u
(+)
l (z)− u

(−)
l (z)

]

(58)

with functions u
(±)
l which have the asymptotic behavior

u
(±)
l (z) → exp

[

±i
(

z − l
π

2

)]

(59)

for arguments z → ∞. Using this representation, the ex-
pansion of the plane-wave solution becomes

Φi =
4π

2ikir

∑

l,m

il
[

u
(+)
l (kir)− u

(−)
l (kir)

]

(60)

×Ylm(r̂)Y ∗
lm(k̂i)φi .

The action of the scattering potential V̂aA modifies the

form of the radial wave functions ϕ
(+)
l (r). For large dis-

tances, however, they still have to be a linear combination

of spherical Bessel functions or the functions u
(±)
l . Since

u
(−)
l corresponds to an ingoing spherical wave that can-

not be affected by the scattering process, only the out-
going spherical wave can be modified. Hence a complex
factor Sl, which generally depends on the momentum ki,
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Fig. 6. Dependence of the scattering phase shift δl in par-
tial wave l on the energy EaA in the initial state for a elastic
scattering process A(a, a)A.

is introduced in front of u
(+)
l in the asymptotic form

Ψ
(+)
i →

4π

2ikir

∑

l,m

il
[

Sl(ki)u
(+)
l (kir) − u

(−)
l (kir)

]

(61)

×Ylm(r̂)Y ∗
lm(k̂i)φi

of the solution of the full Schrödinger equation (45). The

difference between the full solution Ψ
(+)
i and the plane

wave Φi corresponds to the scattered part

Ψ
(+)
i − Φi →

4π

2ikir

∑

l,m

il [Sl(ki)− 1]u
(+)
l (kir) (62)

×Ylm(r̂)Y ∗
lm(k̂i)φi

of the wave function. Comparing with equation (46) for
f = i yields the expression

f
(+)
ii (θ) =

∑

l

2l + 1

2iki
[Sl(ki)− 1]Pl(cos θ) (63)

for the elastic scattering amplitude with Legendre poly-
nomials Pl, which depend on the cosine of the scattering

angle cos θ = r̂ · k̂i. They were introduced with help of the
relation

(2l+ 1)Pl(cos θ) = 4π
∑

m

Ylm(r̂)Y ∗
lm(k̂i) . (64)

One sees that the scattering amplitude is determined by
the so-called S matrix elements Sl that can be conve-
niently written as

Sl = exp (2iδl) (65)

with scattering phase shifts δl.
In the case of elastic scattering on a real potential V̂aA,

the S matrix elements are complex numbers of unit mod-
ulus such that the ingoing and outgoing fluxes in each
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partial wave l are identical. In this case the phase shifts
δl are real quantities that can be limited to the interval
[0, π] (or [0◦, 180◦]). The asymptotic form of the radial
wave functions

ul =
1

2i

[

Slu
(+)
l − u

(−)
l

]

(66)

in equation (61) is then given by

ul(kir) → exp (iδl) sin
(

kir + δl − l
π

2

)

. (67)

Thus the phase shifts have a simple interpretation, see
figure 5. The action of the scattering potential leads to a
shift of the phase of the asymptotic radial wave function.
The phase shifts δl depend on the momentum ki or the
energy EaA in the initial state. In most cases one finds a
smooth variation where an increase (decrease) of δl usu-
ally signifies an attractive (repulsive) potential, see figure
6. A sharp increase of the phase shift from values near
0◦ through 90◦ to 180◦ corresponds to a resonant behav-
ior that can be observed in the cross section. According
to equation (52), the differential cross section for elastic
scattering (vi = vf ) assumes the form

dσii
dΩ

=

∣

∣

∣

∣

∣

∑

l

2l+ 1

2iki
[Sl(ki)− 1]Pl(cos θ)

∣

∣

∣

∣

∣

2

(68)

including the full angular dependence. An integration over
all solid angles gives the total elastic scattering cross sec-
tion

σel =

∫

dΩ
dσii
dΩ

=
π

k2i

∑

l

(2l+ 1) |Sl(ki)− 1|
2

(69)

where the orthogonality of Legendre polynomials

∫ 1

−1

dz Pl(z)Pl′(z) =
2

2l + 1
δll′ (70)

has been used. One easily recognizes that the contribu-
tion of a partial wave l to the total elastic cross section is
maximal if Sl = −1 or δl = π/2.

If the current Jf in the cross section (52) is calculated

from the full scattering wave Ψ
(+)
i instead of the the scat-

tering part Ψ
(+)
i − Φi, the absorption cross section

σabs =
π

k2i

∑

l

(2l+ 1)
[

1− |Sl(ki)|
2
]

(71)

is obtained after performing the angular integration. For
real scattering phase shift δl, the modulus of the S matrix
elements is one, i.e.,

|Sl(ki)| = |exp (2iδl)| = 1 (72)

and the absorption cross section (71) vanishes. A finite
value for σabs is found for complex phase shifts with pos-
itive imaginary part Im(δl) > 0 since then

|Sl(ki)| = exp [−2Im (δl)] < 1 . (73)

A positive absorption cross section is connected to the re-
moval of flux from the elastic scattering channel. This can
be realized phenomenologically by introducing an optical
potential U = V + iW for VaA with real and imaginary
contributions (V ,W real) [26,27]. The total reaction cross
section

σtot = σel + σabs =
2π

k2i

∑

l

(2l+ 1) Re [1− Sl(ki)] (74)

is given by the sum of the elastic and absorption cross
sections. It is related to the imaginary part of the forward

scattering amplitude, i.e. f
(+)
ii (θ) for θ = 0, by the so-

called optical theorem

σtot =
4π

ki
Im

[

f
(+)
ii (0)

]

(75)

because Pl(1) = 1.
The resonant behavior of the elastic phase shift in a

partial wave l can be parametrized near a resonance at
energy Er with narrow width Γ ≪ Er by an energy de-
pendence of the S matrix element in the form

Sl(E) =
E − Er − iΓ2
E − Er + iΓ2

. (76)

It is evident that |Sl(E)| = 1. Using

Sl(E)− 1 = −i
Γ

E − Er + iΓ2
(77)

the contribution of this partial wave to the elastic scatter-
ing cross section

σ
(l)
el =

π

k2i
(2l + 1)

Γ 2

(E − Er)
2
+ Γ 2

4

(78)

shows the typical Breit-Wigner shape with a maximum at
E = Er with Sl(Er) = −1 and δl(Er) = π/2. A general
formulation of cross sections with many resonances and
many channels including effects of the Coulomb potentials
in realized in the so-called R matrix theory [22–24]. The
relevant parameters are formal resonances energies and
reduced widths.

2.4.2 Operator formalism

An alternative approach to obtain the full scattering wave
function relies on a reformulation of the problem as an in-
tegral equation. For the simplification of the notation, the
internal structure of the scattered particles is not explic-
itly indicated in the following. Thus one sets φa = φA = 1
and Ea = EA = 0. The full Schrödinger equation is writ-
ten as

ĤΨ (±) =
(

T̂ + V̂
)

Ψ (±) = EΨ (±) (79)

with energy E = Ei = EaA = h̄2k2i /(2µaA). The Hamilto-

nian without interaction potential V̂ reduces to the kinetic
contribution of relative motion

Ĥ0 = T̂ = −
h̄2

2µaA
∆ (80)
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with the plane-wave solution

Φ0 (ki) = exp (iki · r) (81)

for the Schrödinger equation Ĥ0Φ0 = EΦ0. The full equa-
tion (79) can be rearranged in the form

V̂ Ψ =
(

E − Ĥ0

)

Ψ . (82)

This motivates to define the operator

G
(±)
0 =

(

E − Ĥ0 ± iǫ
)−1

(83)

to reformulate the problem. The imaginary term with ǫ is
introduced in order to circumvent the singularity on the
real axis and to incorporate the correct boundary con-
ditions. It is always to be understood that all equations
have to be taken in the limit ǫ → 0. Then the equivalent
to equation (79) is obtained as

Ψ (±) = Φ0 (ki) + G
(±)
0 V̂ Ψ (±) , (84)

often called Lippmann-Schwinger equation. More explic-
itly, this equation reads

Ψ (±)(r) = Φ0 (ki, r) (85)

+

∫

d3r′ G
(±)
0 (r, r′)V̂ (r′)Ψ (±)(r′)

with the Green’s function

G
(±)
0 (r, r′) = −

2µaA

h̄2
exp (±iki |r − r′|)

4π |r − r′|
(86)

depending on two arguments r and r′. For a vanishing
potential V̂ the correct solution is immediately found with
equation (84). In the general case, however, it is an implicit
relation in order to determine Ψ (±) since it appears on
both sides of the equal sign. By repeated insertions, the
explicit formal solution

Ψ (±) = Φ0 (ki) + G
(±)
0 V̂ Φ0 + G

(±)
0 V̂ G

(±)
0 V̂ Φ0 + . . . , (87)

called Born series, with the integral operator

G
(±)
0 [. . .] =

∫

d3r′ G
(±)
0 (r, r′) [. . .] (88)

is obtained. Unfortunately, it is difficult to make definite
statements about the convergence of this series and hence
this solution is not really helpful in actual calculations.

The connection with the scattering amplitude is found
by considering the limit of large r = |r| in the Green’s
function (86). For r ≫ r′ (the relevant range of r′ is limited

by the range of the potential V̂ ) one has

ki |r − r′| ≈ kir − kf · r′ + . . . (89)

with kf = kir/r and the asymptotic relation

Ψ (±) → Φ0 (ki, r)−
2µaA

h̄2
exp (±ikir)

4πr
(90)

×

∫

d3r′ exp (−ikf · r′) V̂ (r′)Ψ (±)(r′)

is derived. A comparison with equation (46) enables to
identify the scattering amplitude

f
(±)
fi = −

µaA

2πh̄2

∫

d3r′ exp (−ikf · r′) V̂ (r′)Ψ (±)(r′) (91)

as an integral containing the full wave function, the po-
tential and a plane wave. This relation can also be written
as

f
(±)
fi = −

µaA

2πh̄2
Tfi (92)

with the so-called T matrix element

Tfi = 〈Φ0(kf )|V̂ |Ψ (+)(ki)〉 . (93)

One sees that the knowledge of the T matrix element is
sufficient to calculate the cross section, however, the full
solution Ψ (+) of the scattering problem is still required.

In some cases it is possible to introduce a potential Û
such that the solution χ(±) of the Schrödinger equation

(

Ĥ0 + Û
)

χ(±) = Eχ(±) (94)

is explicitly known. With help of the operator identity

1

A
−

1

B
=

1

B
(B −A)

1

A
(95)

the T matrix element can be split into two contributions

Tfi = 〈Φ0(kf )|Û |χ(+)(ki)〉 (96)

+〈χ(−)(kf )|V̂ − Û |Ψ (+)(ki)〉 .

The potential Û is often chosen as an optical potential for
the relative motion of the scattering particles. The two-
potential formula (96) can be generalized to the descrip-
tion of reactions A(a, b)B as

Tfi = 〈φbφBΦ0(kf )|ÛaA|φaφAχ
(+)
aA (ki)〉 (97)

+〈φbφBχ
(−)
bB (kf )|V̂bB − ÛbB|Ψ

(+)
aA (ki)〉

using the Gell-Mann–Goldberger relation [25]. For reac-
tions with aA 6= bB and suitable choice of the potential
ÛaA that cannot cause a transition from A + a to B + b,
one has

〈φbφBΦ0(kf )|ÛaA|φaφAχ
(+)
aA (ki)〉 = 0 (98)

and only one contribution to the T matrix element (97)
remains. Therefore one arrives at exact expressions for
rearrangement reactions in the ’post form’

Tfi = 〈φbφBχ
(−)
bB (kf )|V̂bB − ÛbB|Ψ

(+)
aA (ki)〉 (99)

and an equivalent ’prior form’

Tfi = 〈Ψ
(−)
bB (kf )|V̂aA − ÛaA|φaφAχ

(+)
aA (ki)〉 . (100)

They are the starting point of many approximations in
theoretical models and calculations of specific types of re-
actions. The potentials V̂aA and V̂bB depend on the coor-
dinates of all nucleons in the nuclei A+a and B+b, respec-
tively. They should be chosen consistently with those used
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in microscopic descriptions of the nuclei themselves. In ac-
tual calculation, however, this is rarely the case. It will be
a challenge in future applications to combine structure
and reaction calculations selfconsistently with the same
microscopic potentials.

Optical potentials that are used in calculations of T
matrix elements can be taken from different sources, see,
e.g., reference [28]. There are systematic potentials from
fits of elastic scattering cross sections for a large range
of targets and energies. They are mostly available for the
scattering of nucleons and light nuclei, e.g. deuterons and
α-particles. However, for exotic nuclei, these systematic
potentials are not available. Here, other approaches are
more commonly used such as single- or double-folding po-
tentials or potentials derived with the help of dispersive
methods. The imaginary part of the optical potential de-
scribes the loss of flux to open channels in a particular
reaction. It should be treated consistly when open chan-
nels are taken explicitly into account in the determination
of the scattering wave function.

2.4.3 General cross sections

There is a general formalism to derive expressions for cross
sections of arbitrary reactions if the T matrix element is
given. It is closely related to Fermi’s golden rule that is
employed in processes that describe the transition between
different states. In the following, spins of the particles are
included in the formulas, however only cross sections with
unpolarized particles are considered. In a nonrelativistic
framework it is useful to work in the center-of-mass (c.m.)
system and to introduce relative and c.m. coordinates. In
the initial channel of a reaction A(a, b)B, one defines the
vectors

raA = ra − rA , (101)

R =
mara +mArA

ma +mA
(102)

in coordinate space and conjugate vectors

paA = µaA

(

pa

ma
−

pA

mA

)

, (103)

P = pa + pA (104)

in momentum space. Similar expressions can be given for
the final state. Then, the energies in the initial and final
state (including rest masses) can be written as

Ei = Ea + EA +
p2aA
2µaA

(105)

and

Ef = Eb + EB +
p2bB
2µbB

, (106)

respectively, with relative momenta paA and pbB . The
cross section in the c.m. system has the general form

dσ(a+A→ b+B) = (107)

2π

h̄

µaA

paA

1

(2Ja + 1)(2JA + 1)

∑

Ma,MA

∑

Mb,MB

×

∫

d3pbB
(2πh̄)3

∣

∣T(bB)(aA)

∣

∣

2
δ (Ei − Ef +Qa+A→b+B)

where every term has a clear meaning. The factor µaA/paA
is the inverse of the relative velocity or flux in the initial
channel. The summation over the projectionsMa andMA

and division by (2Ja + 1)(2JA + 1) corresponds to an av-
eraging over all possible spin states in the initial channel.
The summation over Mb, MB is performed since there
is usually no discrimination of particular spin states in
the detection. The integration over all momenta pbB with
corresponding normalization factor (2πh̄)3 covers the full
phase space in the final state. Finally, the δ function en-
codes the conservation of energy. The conservation of the
total momentum is guaranteed by the formulation with
relative momenta only in equation (107). Using

d3pbB = p2bBdpbBdΩbB (108)

and
dEf

dpbB
=
pbB
µbB

(109)

the integration over the modulus of the final state momen-
tum pbB gives the final expression

dσ

dΩbB
(a+A→ b+B) =

µaAµbB

(2π)2h̄4
pbB
paA

(110)

×
1

(2Ja + 1)(2JA + 1)

∑

Ma,MA

∑

Mb,MB

∣

∣T(bB)(aA)

∣

∣

2

consistent with previous results in sections 2.4.1 and 2.4.2.
The cross section for the reaction with two particles in
the final state depends on two independent angles corre-
sponding to the direction of the final relative momentum
p̂bB = pbB/pbB. The number of six independent kinemat-
ical quantities in the final state (three for each particle)
reduces to three because of the choice of the c.m. system
and further to two due to energy conservation. Hence,
dσ/dΩbB depends on two independent angles. With the
dimension [Tfi] = EL3, E denoting an energy, the di-
mension of the cross section becomes [dσ/dΩbB ] = L2 as
expected. The case of a reaction with three particles in
the final state will be treated below.

The expression for the cross section of the inverse re-
action B(b, a)A is easily found as

dσ

dΩaA
(b +B → a+A) =

µaAµbB

(2π)2h̄4
paA
pbB

(111)

×
1

(2Jb + 1)(2JB + 1)

∑

Mb,MB

∑

Ma,MA

∣

∣T(aA)(bB)

∣

∣

2

in full analogy to equation (110). Time-reversal symmetry
of the two reactions connects the corresponding T matrix
elements such that

∣

∣T(bB)(aA)

∣

∣

2
=

∣

∣T(aA)(bB)

∣

∣

2
. (112)
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A combination of the expressions leads to the theorem of
detailed balance

(2Ja + 1)(2JA + 1)p2aA
dσ

dΩbB
(a+A→ b+B) (113)

= (2Jb + 1)(2JB + 1)p2bB
dσ

dΩaA
(b+B → a+A) ,

which can be used to relate cross section of two mutually
inverse reactions. See section 3.1.2 for an application.

The situation is more complex if there are more than
two particles in the final state. For a reaction A(a, Cc)b
with three ejectiles, there are three possible choices to de-
fine relative or so-called Jacobi coordinates. One option is
to introduce the relative vector for the system C + c first
as

rcC = rc − rC (114)

and then that for the third particle b relative to the B =
C + c system with

rb(cC) = rbB = rb − rB (115)

where

rB =
mcrc +mCrC

mc +mC
(116)

is the c.m. coordinate of the system B. Finally, the c.m.
vector of the total system is given by

R =
mbrb +mcrc +mCrC

mb +mc +mC
. (117)

The conjugate momenta are defined as

pcC = µcC

(

pc

mc
−

pC

mC

)

, (118)

pb(cC) = pbB = µbB

(

pb

mb
−

pB

mB

)

(119)

and
P = pb + pc + pC (120)

with
pB = pc + pC (121)

and the masses mB = mc +mC and µbB = mbmB/(mb +
mB). The energy in the final state

Ef = Eb + Ec + EC +
p2cC
2µcC

+
p2bB
2µbB

(122)

contains two kinetic contributions. Formula (107) for the
cross section is easily generalized to

dσ(a+A→ b+ c+ C) = (123)

2π

h̄

µaA

paA

1

(2Ja + 1)(2JA + 1)

∑

Ma,MA

∑

Mb,Mc,MC

×

∫

d3pbB
(2πh̄)3

d3pcC
(2πh̄)3

∣

∣T(bcC)(aB)

∣

∣

2

×δ (Ei − Ef +Qa+A→b+c+C)

with an additional momentum space integration, the Q
value

Qa+A→b+c+C = (ma +mA −mb +mc +mC)c
2 , (124)

and the T matrix element T(bcC)(aB). With

d3pcC = p2cCdpcCdΩcC (125)

and
dEcC

dpcC
=
pcC
µcC

(126)

one integration can be performed explicitly and the result

d3σ

dEcCdΩcCdΩbB
(a+A→ b+ c+ C) = (127)

µaAµbBµcC

(2π)5h̄7
pbBpcC
paA

×
1

(2Ja + 1)(2JA + 1)

∑

Ma,MA

∑

Mb,Mc,MC

∣

∣T(bcC)(aB)

∣

∣

2

is obtained. This cross section depends on one energy and
two solid angles. The dimension is [d3σ/dEcCdΩcCdΩbB] =
L5E−1 because [T(bcC)(aA)] = EL6 for the T matrix ele-
ment, in which an integration over an additional coordi-
nate appears as compared to T(bB)(aA). The cross section
(127) contains valuable information on the correlation be-
tween the particles b, c, and C in the final state. With
a different choice of Jacobi coordinates, formulas for the
cross section depending on another set of variables can be
derived. Integration over the energy or angles leads to less
highly differential cross sections.

3 Applications

Reaction theory is relevant for a large number of appli-
cations in nuclear physics. Here, only a few selected ex-
amples will be mentioned. This will give an idea about
the variety of cases. On the one hand, cross sections of
reactions are of interest themselves. Examples are the pre-
diction of production rates of exotic nuclei that are cre-
ated in fragmentation reactions or the determination of
reaction rates for nucleosynthesis in astrophysical models.
On the other hand, reactions serve as a tool to study the
structure of nuclei. Gross properties like radii and density
distribution can be extracted from the analysis of elastic
scattering with electrons, protons, etc. or absorption re-
actions. More detailed investigations of nuclear structure
require the use of particularly chosen reaction processes.
Specific states can be populated by the excitation with
the electromagnetic or nuclear interaction. Transfer and
breakup reactions are chosen in order to study the single-
particle structure of nuclei. Reaction studies with exotic
nuclei pose particular challenges. Continuum states have
to be treated correctly and consistently with bound states.
Reaction theory needs to be combined with modern struc-
ture models in a novel way. A particular question is the
choice of the nuclear interaction that should be based on
the most recent advances in that field. In the following,
two applications will be discussed in more detail since they
exhibit important features of reaction theory.
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Fig. 7. Reactions in the chart of nuclei that are relevant for
the pp chains and CNO cycles of stellar burning. Stable nuclei
are indicated by grey squares.

3.1 Indirect methods for nuclear astrophysics

Nuclear reaction rates are an essential input for several
astrophysical models, in particular in the study of nucle-
osynthesis through various processes [29]. Examples are
the pp chains and CNO cycles, see figure 7, which are im-
portant in stellar burning, or s, r, p, or rp processes, which
are connected to the creation of heavy elements. In many
cases unstable nuclei are involved and the reaction cross
sections are needed at very low energies where a direct
measurement in the laboratory is practically impossible.
Indirect methods offer an alternative to determine the re-
quired cross sections.

In an astrophysical environment, nuclei are immersed
in a hot plasma and they acquire a temperature or energy
dependent distribution of velocities. The relevant quantity
is the Maxwellian-averaged reaction rate

raA =
ρaρA

1 + δaA
〈σv〉 (128)

with the integral

〈σv〉 =

√

8

πµaA

∫

dE

(kT )3/2
Eσ(E) exp

(

−
E

kT

)

(129)

that contains the energy dependent cross section σ(E).
The Maxwellian energy distribution and the cross section
exhibit a very different energy dependence, leading to a
well-peaked integrand in equation (129) as depicted in fig-
ure 8. For reactions with charged particles, the most effec-
tive energy, at which the integrand reaches its maximum,
can be estimated to be

Eeff = 0.1220 µ
1/3
aA (ZaZAT9)

2/3
MeV (130)

with the effective mass µaA in atomic mass units (amu)
and the temperature T9 = T/(109K). Only energies close
to Eeff inside the Gamov window are significant in the

0 0.5 1 1.5 2
E/E

eff
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20

40

60

80

100

[a
.u

]

E exp(-E/(kT))

σ(E)

σ E exp(-E/(kT))

Gamov window

Fig. 8. Energy dependence of the Maxwellian energy distribu-
tion (black), cross section (blue) and total integrand (red) in
the integral (129).

calculation of the integral. The strong suppression of the
cross section σ(E) at low energies is a result of the Coulomb
repulsion of the colliding nuclei. Effects of the Coulomb
potential in scattering can be incorporated rather easily
in the theoretical description since the nonrelativistic two-
body problem can be solved analytically.

3.1.1 Scattering with Coulomb interaction

Due to the long range of the Coulomb potential

VCoul =
ZaZAe

2

r
(131)

between two nuclei with charge numbers Za and ZA at
distance r, the standard description of scattering has to
be modified as compared to the formulation that was pre-
sented in section 2.4.1. The asymptotic form of the radial
wave functions (66) has to replaced by

ul →
exp(2iσl)

2i

[

Slu
(+)
l − u

(−)
l

]

(132)

with new functions

u
(±)
l (kir) = exp(∓iσl) [Gl(kir) ± iFl(kir)] (133)

in terms of the regular and irregular Coulomb functions
Fl and Gl [21]. Their asymptotic behavior if given by

u
(±)
l (kir) → (134)

exp
{

±i
[

kir − 2η ln(kir) + σl − l
π

2

]}

with the Coulomb phase shifts

σl = arg Γ (l + 1 + iη) . (135)
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They depend on the Sommerfeld parameter

η =
ZaZAe

2

h̄vaA
(136)

containing the relative velocity vaA = paA/µaA. The partial-
wave expansion of the elastic scattering amplitude takes
the form

f
(+)
ii (θ) =

∑

l

2l+ 1

2iki
[exp(2iσl)Sl(ki)− 1]Pl(cos θ)

(137)
with the appearance of an additional factor in front of the
nuclear S-matrix element Sl. It is convenient to split the
scattering amplitude into two contributions

f
(+)
ii = f

(+)
C (θ) + f

(+)
N (θ) (138)

with the pure Coulomb part

f
(+)
C (θ) =

∑

l

2l+ 1

2iki
[exp(2iσl)− 1]Pl(cos θ) (139)

= −
η

2ki sin
2
(

θ
2

) exp

[

−iη ln sin2
(

θ

2

)

+ 2iσ0

]

and the nuclear part

f
(+)
N (θ) = (140)
∑

l

2l + 1

2iki
exp(2iσl) [Sl(ki)− 1]Pl(cos θ) .

From (139) the Rutherford scattering cross section (26)
is immediately obtained. In the case of scattering with
Coulomb and nuclear interactions, an interference terms
appears in the elastic scattering cross section

dσii
dΩ

=
∣

∣

∣
f
(+)
C

∣

∣

∣

2

+ 2Re
(

f
(+)
C f

(+)∗
N

)

+
∣

∣

∣
f
(+)
N

∣

∣

∣

2

(141)

that can dramatically change the angular dependence.
The amplitudes of the wave functions (133) at infin-

ity and a finite distance R between the particles are not
identical. Their comparison leads to the defition of the
penetrability factor

Pl(R) =
limr→∞

∣

∣

∣
u
(±)
l (η; kir)

∣

∣

∣

2

∣

∣

∣
u
(±)
l (η; kiR)

∣

∣

∣

2 (142)

=
1

F 2
l (η; kiR) +G2

l (η; kiR)
,

which is depicted in figure 9 for the example of elastic
p + 7Be scattering as a function of R for partial waves
l = 0, 1 and 2 and six different energiesE = h̄2k2i /(2µpBe).
Several important observations can be made. The penetra-
bility factor decreases rapidly with decreasing distance R,
decreasing energy E, and increasing orbital angular mo-
mentum l. For l = 0, finite values are found in the limit
R → 0 with the explicit result

lim
R→0

P0(R) =
2πη

exp(2πη)− 1
, (143)
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Fig. 9. Penetrability factor Pl(kiR) in partial waves l = 0 (full
lines), l = 1 (dashed lines), and l = 2 (dotted lines) in elastic
p+ 7Be scattering as a function of the particle distance R for
six energies E, decreasing from top to bottom for each set of
lines.

which shows a strong decrease with increasing Sommerfeld
parameter η. This effect translates into a correspondingly
strong energy dependence of the cross sections for reac-
tions with charged particles and explains the extreme dif-
ficulties to measure them directly at very low energies in
the laboratory. In order to remove the dominating energy
dependence due to the Coulomb repulsion, the astrophys-
ical S factor

S(E) = σ(E) E exp(2πη) (144)

is introduced in order to obtain a quantity that shows
much less variation with energy and can be used for ex-
trapolations of measured data to low energies. However,
care has to be taken in this process. Inserting the defini-
tion (144) into the integral (129) and assuming a constant
value of S(E) leads to the estimate of the most effective
energy (130).

3.1.2 Surrogate methods

Because the measurement of low-energy cross sections is
so difficult, several methods have been developed to ob-
tain the data in an indirect way. The basic idea is to re-
place the astrophysically relevant reaction with a closely
related surrogate reaction and to make use of reaction the-
ory to extract the required data. The actual realization,
of course, depends on the type of reaction that needs to
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a=(b+x) b

x

AA

Fig. 10. Diagram of the Coulomb breakup reaction A(a, bx)A
with the transfer of a photon (dashed line) between target A

and projectile a.

be explored. Here, the following three approaches are con-
sidered:

– The Coulomb dissociation (CD) method [18] is used
to extract the absolute S factor S(E) as a function of
the energy E of a radiative capture reaction b(x, γ)a.
by studying the breakup of particle a in the Coulomb
field of a highly-charged target nucleus.

– The asymptotic normalization coefficient (ANC) method
[30,31] tries to determine the zero-energy S factor of a
radiative capture reaction b(x, γ)a from a calculation
that uses information on the asymptotic behavior of
the bound state wave function of particle a.

– The Trojan-horse (TH) method [32,33] aims at ex-
tracting the energy dependence of the S factor for a
rearrangement reactionA(x, c)C by using a transfer re-
action A(a, Cc)b with three particles in the final state.

In the following, the basic ideas of these methods are dis-
cussed in more detail. In general, the three approaches
have several common features. A two-body reaction at low
energies is replaced by a three-body reaction at ’high’ en-
ergies. The surrogate reactions can be considered as pro-
cesses with the transfer of a virtual particle, a photon γ
or a nucleus x. Peripheral reactions are studied where the
asymptotics of the wave functions is relevant and a selec-
tion of suitable kinematic conditions in the experiments is
important. Furthermore, approximations are essential in
the theoretical description.

The CD method exploits the correspondance of a spec-
trum of virtual photons with a time-dependent electro-
magnetic field that a projectile a experiences during the
scattering on a highly charged target nucleus A. Thus a
breakup reactionA(a, bx)A of a projectile a into fragments
b and x is studied experimentally, usually at energies of
several hundred MeV per nucleon. The reaction is depicted
in diagrammatic form in figure 10 with the transfer of
a photon from the target A to the nucleus a. In order
to avoid nuclear interactions, large impact parameters or
small scattering angles have to be selected. The Coulomb
excitation process has been used for a long time to excite
stable nuclei in order to study properties of their excited
bound states [16,17]. The method is also ideally suited to
investigate exotic nuclei since they are usually produced
as high-energy beams. Furthermore, their weak bindung
allows to cross the breakup threshold easily and to access

continuum states. The Coulomb breakup cross section

d2σ

dEbxdΩaA
=

1

Eγ

∑

πλ

σπλ(a+ γ → b+ x)
dnπλ

dΩaA
(145)

can be expressed with the help of photo absorption cross
sections σπλ(a + γ → b + x). It contains contributions
from different electromagnetic multipolarities π = E,M
and λ = 1, 2, . . . with different weights that depend on
the virtual or equivalent photon numbers dnπλ/dΩaA. The
latter depend on the charge number of the target ZA and
the kinematics of the reaction, the scattering angle θaA or
impact parameter b, the projectile velocity v and the ex-
citation (or photon) energy Eγ = h̄ω. They are calculated
theoretically in semiclassical approximation, c.f. section
2.3.2, or with quantal methods using scattering wave func-
tions in partial-wave expansion or eikonal approximation.
The photon absorption cross sections in equation (145) are
finally related to the wanted cross section of the inverse
radiative capture reaction via the theorem of detailed bal-
ance

σπλ(a+ γ → b+ x) = (146)

(2Jb + 1)(2JB + 1)

2(2Ja + 1)

k2bx
k2γ

σπλ(b + x→ a+ γ) ,

cf. equation (113). Since the phase space factor

k2bx
k2γ

=
2µbxc

2Ebx

(Ebx + Sbx)2
(147)

with separation energy Sbx for the breakup of a into b
and x is very large for not too small relative energies
Ebx in the b + x system and the virtual photon num-
bers dnπλ/dΩaA are sizeable for large ZA and not too
high Ebx, the Coulomb dissociation cross section is much
larger than those of the interesting radiative capture reac-
tion. Hence it is much easier to measure in an experiment.
Expression (145) is only valid in the limit of one-photon
exchange. Higher-order effects with multi-step transitions
or Coulomb post-acceleration in the final state with three
charged particles can complicate the application of the
method. In order to treat these effects theoretically, bet-
ter approximations of the full three-body scattering wave
function are needed than those employed in the standard
approach.

The ANC method and the TH method are applica-
tions of transfer reactions. Instead of a photon as in the
CD method, a nucleus x is transferred from one nucleus a
to another nucleus A. In the final state of the ANC case,
see figure 11, particles x and A form a nucleus B in a
bound state. In contrast, A and x form a scattering state
with two nuclei C and c in the TH approach, see figure
12. Since energy and momentum of particle x are not re-
lated by the usual dispersion relation of a free nucleus, it
has to be seen as a virtual particle. In the theoretical de-
scription of the transfer reaction, which will be detailed in
section 3.2, the two vertices in figure 11 contain the infor-
mation about the breakup of nucleus a into b and x and
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A B=(A+x)

a=(b+x) b

x

Fig. 11. Diagram of the reaction A(a, b)B for the ANCmethod
with the transfer of a particle x from nucleus a to nucleus A

and two particles in the final state.

the breakup of B into A and x. More precisely, the asymp-
totic part of the ground state wave function of a (A) enters
in the calulation. It determines the cross section of the ra-
diative capture reaction b(x, γ)a (A(x, γ)B) in the limit of
zero energy in the state b+x (A+x). Since the functional
form of the asymptotic wave function is universally given,
only its normalization, thus the name of the method, has
to extracted from the measured cross section of the trans-
fer reaction A(a, b)B. Since two vertices are involved in
the process, one of them has to be known from other ex-
periments. In the TH method, the reaction of interest is
the rearrangement reaction A(x, c)C at low energies. A
Trojan horse a if formed by attaching a spectator b to the
transferred nucleus x. Then the reaction A(a, Cc)b is stud-
ied in the laboratory. In the most simple approximations,
the cross section for the TH reaction with three particles
in the final state can be factorized in three terms. Besides
a kinematic factor, there is one factor that is related to the
lower vertex in figure 12, describing the breakup of a into
b and x, and one factor that corresponds to the upper ver-
tex representing the reaction of interest A(x, c)C. Finally,
a connection between the cross sections of the reactions
A(a, Cc)b and A(x, c)C can be established. An important
feature of the TH method is the removal of the Coulomb
suppression of the cross section in the former reaction al-
lowing to access very low energies in the latter reaction.
For the application, specific kinematical conditions have
to be selected such that the momentum transfer to the
spectator b is almost negligible. These quasi-free scatter-
ing conditions cause particular correlations in the angles
of the outgoing particles.

3.2 Transfer reactions

Transfer reactions are a very versatile tool in the applica-
tion of nuclear reactions. They are used for indirect meth-
ods as discussed in the previous section, but are most of-
ten applied in the study of nuclear structure. One can
distinguish pickup reactions, e.g. (p, d), (d, t), (d, 3He), or
(d, 6Li), where the projectile picks up a nucleon or nu-
cleus from the target, and stripping reactions, e.g. (d, p),
(d, n), or 3He, p), where the projectile deposits a nucleon
or nucleus on the target. Apart from these rearrangement

a=(b+x)

A C

b

c
x

Fig. 12. Diagram of the reaction A(a,Cc)b for the TH method
with the transfer of a particle x from nucleus a to nucleus A

and three particles in the final state.

reactions, the theoretical formalism also applies to knock-
out and breakup reactions.

The full information on the reaction process is con-
tained in the T matrix elements. An exact calculation of
the cross section requires the knowledge of the full scatter-
ing wave function Ψ (±), see section 2.4.2, which generally
is a complicated many-body state. Depending on the type
of process, appropriate approximations have to be intro-
duced in order to arrive at manageable calculations. In re-
actions with stable nuclei, a transfer to bound states with
two particles in the final state is often considered. When
exotic nuclei are involved, it is frequently the case that
three (or more) particles in the final state are emerging
and a transfer to continuum states has to be modeled. In
the following only the former case A(a, b)B with Aa 6= Bb,
a+ b+ x and B = A+ x is treated, which corresponds to
the process depicted in diagram 11.

3.2.1 Distorted wave Born approximation and spectroscopic
factors

The exact T matrix element is given by the post or prior
form in equations (99) or (100), respectively. It still con-

tains the exact scattering wave functions Ψ
(+)
Aa or Ψ

(−)
Bb .

In the widely used distorted-wave Born approximation
(DWBA), they are replaced by the products

Ψ
(+)
Aa → φAφaχ

(+)
Aa (148)

or
Ψ

(−)
Bb → φBφbχ

(−)
Bb (149)

with distorted waves χ
(+)
aA or χ

(−)
bB that are generated from

optical potentials ÛaA or ÛbB, respectively, see section
2.4.2. Then, for the T matrix elements the approximations

T(Bb)(Aa) ≈ 〈φBφbχ
(−)
Bb |V̂Bb − ÛBb|φaφAχ

(+)
aA 〉 (150)

and

T(Bb)(Aa) ≈ 〈φbφBχ
(−)
bB |V̂Aa − ÛAa|φAφaχ

(+)
Aa 〉 (151)

are found that only differ in the operators but not in the
wave functions. It is beneficial to introduce the overlap
integrals

Φa
bx = 〈φb|φa〉 (152)
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and
ΦB
Ax = 〈φA|φB〉 (153)

where the integration includes only the coordinates of the
nucleons inside b and A, respectively, and the remaining
coordinates of the nucleons inside x are left untouched.
Hence the overlap integrals can be interpreted as the wave
function of the transferred particle. This leads to the ex-
pressions

T(Bb)(Aa) ≈ 〈ΦB
Axχ

(−)
Bb |V̂Bb − ÛBb|Φ

a
bxχ

(+)
aA 〉 (154)

and

T(Bb)(Aa) ≈ 〈χ
(−)
bB ΦB

Ax|V̂Aa − ÛAa|Φ
a
bxχ

(+)
Aa 〉 (155)

for the T matrix elements which are still high-dimensional
integrals because the functions Φa

bx and ΦB
Ax depend on the

internal coordinates of the transferred particle x and the
coordinate of relative motion rbx and rAx, respectively. In
principle, they can be obtained from the full many-body
wave fuctions φb and φa or φA and φB . However, this is
rarely the case and it is common practice to approximate
them as products

Φa
bx ≈ Aa

bxϕ
a
bx(rbx)φx (156)

and
ΦB
Ax ≈ AB

Axϕ
B
Ax(rAx)φx (157)

with spectroscopic amplitudes Aa
bx and AB

Ax and simple
’single-particle’ wave functions ϕa

bx(rbx) and ϕ
B
ax(rAx) that

are calculated by solving Schrödinger equations for the
relative motion with standard potentials, e.g. of Woods-
Saxon type. They are normalized to one, i.e.

〈ϕa
bx|ϕ

a
bx〉 = 〈ϕB

Ax|ϕ
B
Ax〉 = 1 . (158)

Because the reaction cross section is proportional to the
squared modulus of the T matrix element

dσ ∝
∣

∣T(Bb)(Aa)

∣

∣

2
(159)

the cross section can be written as

dσ(A+ a→ B+ b) ≈ Sa
bxS

B
Axdσsp(A+ a→ B+ b) (160)

with spectroscopic factors

Sa
bx = |Aa

bx|
2

(161)

and
SB
Ax =

∣

∣AB
Ax

∣

∣

2
(162)

and a single-particle cross section dσsp. The latter is cal-
culated with the single-particle T matrix elements

T
(sp)
(Bb)(Aa) ≈ (163)

〈ϕB
Ax(rAx)χ

(−)
Bb |V̂Bb − ÛBb|ϕ

a
bx(rbx)χ

(+)
Aa 〉

or

T
(sp)
(Bb)(Aa) ≈ (164)

〈ϕB
Ax(rAx)χ

(−)
Bb |V̂Aa − ÛAa|ϕ

a
bx(rbx)χ

(+)
Aa 〉 .

In this approximation, the integration involves only two
independent vectors in coordinate space.

A comparison of experimentally measured cross sec-
tion with calculated single-particle cross sections allows
to extract experimental spectroscopic factors. They can
be compared to theoretical spectroscopic factors that are
derived directly from the overlap functions as

Sa
bx = 〈Φa

bx|Φ
a
bx〉 (165)

and
SB
Ax = 〈ΦB

Ax|Φ
B
Ax〉 (166)

using microscopic nuclear structure models. Since the over-
lap wave functions are obtained from a projection of the
full many-body wave functions of the compound nuclei,
they are not necessarily normalized to one. The deviation
from one is a measure of the correlations inside the many-
body wave functions. It has to be emphasized that spec-
troscopic factors are model depended quantities and not
real observables [34]. Thus, a comparison of experimental
and theoretical spectroscopic factors has to be carried out
with caution. Another concern is related to the choice of
the potentials in the T matrix elements. The potentials
V̂aA and V̂bB are often not consistent with those used to
generate the many-body wave functions φa, φA, φb and
φB. Similarly, questions arise whether the choice of the
optical potentials ÛaA and ÛbB is appropriate and how
sensitive the matrix elements (163) and (164) are to this
choice. Other problems can emerge when the bound state
B is replaced by a continuum state c + C as in the TH
method. Can spectroscopic factors be defined reasonably,
e.g., for resonances, and is the representation of the three-
body scattering wave function in the product form (153)

with a two-body scattering wave function φB = Ψ
(−)
Cc suf-

ficient?

3.2.2 Coupled-channel approach

In reactions with weakly-bound nuclei the usual DWBA
approach is often not satisfactory. Channels beyond those
in the initial and final state, in partcular if they are open to
decay, have to be included explicitly in the determination
of the full many-body scattering wave function. Hence the
full scattering wave function is represented as a sum

Ψ
(+)
aA =

∑

c

ψc (167)

with contributions from different channels c in addition to
i and f . These have the appropriate asymptotic behavior

ψc → φcf
(+)
c(aA)

exp(ikcrc)

rc
(168)

with function φc that describe the internal structure of
the nuclei in the relevant partition, i.e. φc = φaφA, φbφB ,
etc. The total Hamiltonian can be likewise partitioned

Ĥ = Ĥc + T̂c + V̂c (169)
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according to the channels, e.g., Ĥc = Ĥa + ĤA, T̂c =
T̂Aa, V̂c = V̂aA in the channel c = a + A. The stationary

Schrödinger equation ĤΨ
(+)
aA = EΨ

(+)
aA changes into a set

of coupled differential equations

〈φc|T̂c + V̂c + Ec − E|ψc〉 = −
∑

c′ 6=c

〈φc|Ĥ − E|ψc′〉 (170)

with, e.g., Ec = Ea + EA, c = a + A, in the diagonal
part, if it is projected onto the individual channels. One
problem of this approach is the infinitely large number of
channels (different partitions, excited states and partial
waves). Hence, a truncation to the most relevant channels
is needed. In channels with three or more unbound nu-
clei, the asymptotic solution of the problem is most often
not known and different approximations have to be intro-
duced. Sometimes it is possible to utilize hyperspherical
coordinates or suitable product wave functions. For con-
tinuum states, there is a continuous spectrum of energies
E and the wave functions are not normalizable. A pos-
sible way out is the discretization of the continuum by
introducing energy bins. For instance, normalizable wave
functions

φbcC = φb

∫ Emax

Emin

dE w(E) Ψ
(+)
cC (E) (171)

are constructed with adequate weigth functions w(E). This
rather complex approach as been implemented with suc-
cess in the continuum-discretized coupled-channel (CDCC)
method [35]. Both single-particle and collective states can
be considered in the structural part of the wave functions.
The binning of the continuum can be adapted to reso-
nances and the numerical convergence can be tested. In
general, this approach is computationally expensive and
can hardly be implemented for high-energy reactions but
many succesfull applications of the method have demon-
strated the usefulness of the approach.

4 Summary

In this contribution basic concepts of nonrelativistic re-
action theory were delineated. At first the notation, the
variety of nuclear reactions, typical scales of the problem
and conservation laws were presented. Cross sections were
introduced as fundamental observables, which can be cal-
culated theoretically in various approaches using classical,
semiclassical or fully quantal methods. Stationary scatter-
ing theory was discussed in detail in the framework of par-
tial wave expansions and an integral operator formalism.
The basic quantities, such as scattering amplitudes, S and
T matrices, were defined and the connection to cross sec-
tions for reactions with two or three particles in the final
state was established.

Indirect methods for nuclear astrophysics and trans-
fer reactions were discussed as typical examples for the
application of reaction theory. Three prominent surrogate
approaches, the Coulomb dissociation method, the ANC

method and the Trojan horse method, were outlined af-
ter examining the effect of the Coulomb interaction in
reactions with charged particles. The distorted wave Born
approximation, the notion of spectroscopic factors and
the description of reactions with coupled-channel meth-
ods were covered in connection with the description of
rearrangement reactions.

Despite the long history of reaction theory with many
seminal developments and successful applications in the
analysis of experimental data, there is still the need for
a further refinement and evolution of the methods, in
particular for the specific conditions of experiments with
unstable nuclei. Main challenges are the consistent de-
scription of nuclear structure and reactions in unified and
more microscopic models, the choice of appropriate and
well founded nuclear interactions, as well as the treatment
of continuum states, particularly in many-body systems
with Coulomb interaction. The availability of extensive
computational capabilities will allow to implement also
more complex theoretical approaches. A wealth of new
and exciting results from radioactive ion beam facilities
will challenge the theoretical understanding. This will re-
quire to develop novel methods in reaction theory with
bright prospects for the future.
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