Making radioactive ion beams Detecting reaction products

Riccardo Raabe KU Leuven, Instituut voor Kern- en Stralingsfysica

Rewriting Nuclear Physics textbooks 30 years with Radioactive Ion Beam Physics Pisa (Italy), July 20th – 24th, 2015

KU LEUVEN

Riccardo Raabe – KU Leuven

Overview

Introduction

Exotic nuclei: what and why

Production and handling of radioactive isotopes

- Methods: ISOL and in-flight
- Overview of facilities

Measurements with RIBs

- Detection of radiation
- Detection setups for reactions with RIBs
- New developments

Aims of the lecture

- Give a flavour of present-day research with RIBs: Still active? Clear direction?
- Learn (through examples) about the main techniques for production, manipulation and detection of unstable isotopes
- Pay attention to orders of magnitude!
- Very good reference: Nobel Symposium 152: Physics with Radioactive Beams in Physica Scripta T152 (2013)

For example

Y Blumenfeld, T Nilsson and P Van Duppen, Facilities and methods for radioactive ion beam production, Phys. Scr. T152 (2013) 014023

Riccardo Raabe – KU Leuven

30 Years of RIB Physics – Pisa, 20-24/07/2015

The chart of nuclei

KU LEUVEN

Riccardo Raabe – KU Leuven

The chart of nuclei

Riccardo Raabe – KU Leuven

Exotic nuclei: halo nuclei

Exotic nuclei: cluster structures, molecular-type bonds

Figures: M. Freer

Riccardo Raabe – KU Leuven

Exotic nuclei: shape coexistence

Riccardo Raabe – KU Leuven

30 Years of RIB Physics - Pisa, 20-24/07/2015

Exotic nuclei: role in reaction processes

თ **(mb)**

10

- 30 years ago: unstable nuclei become available for reactions
- Large interaction cross section, narrow momentum distribution of fragments
- Role in elastic scattering and fusion processes, role of the continuum

Exotic nuclei: the nucleon-nucleon interaction revealed

- Shell model describes well the properties of stable nuclei
- Far from stability:

new structures, new magic numbers

$$V_{\ell s}(r) = \frac{1}{r} \frac{d\rho}{dr} \overrightarrow{\ell} \cdot \overrightarrow{s}$$

O. Sorlin, M.-G. Porquet, PPNP 61 (2008) 602

KU LEUVEN

Riccardo Raabe – KU Leuven

Studying "exotic" states

Production

Reactions, Decay

Manipulation

Ionisation, selection, transport

Measurement: radiation

- Identification of channel
- Transition probability $\Gamma_{i \to f} = \frac{2\pi}{\hbar} |\langle f | \mathbf{T} | i \rangle|^2 \rho_f$

AΖ

Details depend upon

- The characteristics of the state(s) to be studied
- The chosen process(es)
- The kind of radiation

Production of radioactive species

- Decay of primordial nuclides (very long half lives)
- Neutron capture followed by decay
 - Nuclei in the vicinity of stability
 - Fission sources

The Isotope Separation-On-Line (ISOL) method

- Idea: create a source that can be "switched" on and off
- Process:
 - Irradiate a material with a beam to induce reactions
 - Extract the (reaction or decay) products
 - Manipulate them (ionise, separate, guide to detection station)

The "in-flight" method

- Heavy-ion accelerator, $E \approx$ some hundreds MeV/A
- Thin production target (light element, rotating wheel)
- Fragment separator
- Transport to the experiment

Projectile Fragmentation

Isotope Separators

ISOL

- Low-energy beam (30 to 60 keV), charge 1⁺
- Goal: selection of one mass, possibly separation of isobars $M/\Delta M \approx 5000$ to 10000
- Essentially a mass separator based on magnetic rigidity
- Sometimes: Wien filter (cross E and B fields), MR-TOF, traps for bunching

Riccardo Raabe – KU Leuven

Isotope Separators

In-flight

- High-energy beam (50 MeV/A to 1 GeV/A), fully stripped
- Goal: time and spatial separation particle-by-particle identification by ΔE and TOF
- Magnetic elements and degraders

Comparison ISOL – in flight

Challenges

- Low production cross sections
- Overwhelming presence of unwanted species
- (Very) short half lives for the species of interest

ISOL

- **High-quality beams** (purity, emittance)
- Depends on chemistry
- Slow (diffusion from the target)

In-flight

- Fast and universal
- Ions readily available at high energy
- Low-quality beams

KU LEUVEN

Riccardo Raabe – KU Leuven

RIB facilities: world map

In-flight: BEVALAC at Lawrence Berkeley Laboratory

- Combination of a low-energy heavy ion linear accelerator and a proton synchrotron
- Transfer line from the Linac to the Bevatron
- Heavy ion ¹¹B and ²⁰Ne beam at 800 MeV/A fragmented on a Be target

I. Tanihata et al Phys. Lett. 160B (1985) 380

Riccardo Raabe – KU Leuven

In-flight: Europe

GANIL (Caen, France)

- Two coupled cyclotrons E < 100 MeV/A
- Fragment separator LISE

D4

³⁶S 10¹³ pps, ⁴⁸Ca 2×10¹² pps

Riccardo Raabe – KU Leuven

CAVIAR

In-flight: Europe

Riccardo Raabe – KU Leuven

Facilities – 5/21

In-flight: National Superconducting Cyclotron Laboratory

NSCL at MSU, USA

- Two cyclotrons for the acceleration, E≈150 MeV/A
 ⁴⁰Ar 5×10¹¹ pps
- Liquid-cool
 Be production target
- A1900 fragment separator
- Example: Production of ⁷⁸Ni from 140 MeV/A ⁸⁶Kr

Morrissey et al., NIM B 204, 90 (2003) P. Hosmer et al., Phys. Rev. Lett. 94, 112501 (2005)

KU LEUVEN

Riccardo Raabe – KU Leuven

New generation in-flight: RIKEN

New generation in-flight: FAIR

Riccardo Raabe – KU Leuven

New generation in-flight: FRIB

Riccardo Raabe – KU Leuven

Combining ISOL and in-flight

KU LEUVEN

Riccardo Raabe – KU Leuven

ISOL: brief history

- 1951, Niels Bohr Institute Copenhagen Deuteron beam, neutron converter, n-induced fission on a uranium target. ^{89,90,91}Kr isotopes extracted
- 1965: Orsay

Protons on a stack of C foils. ^{6,7,8,9}Li extracted

 1964 start of the ISOLDE project 600 MeV protons (now 1.4 GeV) on fissile targets 1967 first measurements

ISOLDE at CERN

CERN's Accelerator Complex

LHC Large Hadron Collider SPS Super Proton Synchrotron PS Proton Synchrotron

AD Antiproton Decelerator CTF3 Clic Test Facility AWAKE Advanced WAKefield Experiment ISOLDE Isotope Separator OnLine DEvice

LEIR Low Energy Ion Ring LINAC LINear ACcelerator n-ToF Neutrons Time Of Flight HiRadMat High-Radiation to Materials

KU LEUVEN

Riccardo Raabe – KU Leuven

CERN

ISOLDE at CERN

KU LEUVEN

Riccardo Raabe – KU Leuven

ISOL method once again

KU LEUVEN

Riccardo Raabe – KU Leuven

Ion sources

Hot surface ion source

- The ioniser is a hot tube
- Material with a higher work function than the element of interest
- Heated up to 2400 degrees

Plasma ion source

- Plasma: gas mixture (Ar and Xe) ionised by accelerated electrons
- Hot or cool transfer line

Ion sources

Riccardo Raabe – KU Leuven

Isotopes produced at ISOLDE

Riccardo Raabe – KU Leuven

ISOL: Post-acceleration

Other ISOL + post-acceleration: HIE-ISOLDE

KU LEUVEN

Riccardo Raabe – KU Leuven

Other ISOL facilities

TRIUMF at Vancouver, Canada

- Primary beam: protons 500 MeV
 New: electrons, γ-induced fission
- Post-acceleration: LINAC, 10 MeV/A

SPIRAL at GANIL

- GANIL beams on carbon target
 → light beams
- Post –acceleration: cyclotron, 10 to 30 MeV/A

Future

- SPES at Legnaro:
 p 60 MeV, fission target, +LINAC
- SPIRAL2: LINAC injector, fission, +cyclotron

Ultimate goal: EURISOL

KU LEUVEN

Riccardo Raabe – KU Leuven

Progress in isotope production

Detection of radiation

Principle of detection: "transfer of all or a part of the radiation energy to the detector mass"

- General characteristics
- Ionization chambers
- Scintillators
- Semiconductors
- Magnetic analysers
- G.F. Knoll
 Radiation Detection and Measurement
 John Wiley & Sons, 2000
- W.R. Leo

Techniques for Nuclear and Particle Physics Experiments Springer-Verlag, 1987

Riccardo Raabe – KU Leuven

Mechanisms to detect radiation

Main mechanism:

atomic excitations and ionizations

Charged particles:

- inelastic collisions with atomic electrons
 (+ bremsstrahlung for electrons and positrons)
 statistical, formulas for dE/dx

- Photons: small cross sections
 - photoelectric effect (absorption)
 - Compton scattering
 - pair production
- Neutrons: capture (slow neutrons) elastic scattering (fast neutrons) reactions

Characteristics of detectors

Sensitivity

Which radiation and which energy range

Response Function

Recorded energy vs. incident energy

Resolution

 Depend on the number of elementary charges created by the radiation

Efficiency

Intrinsic and geometrical

Timing properties

Response time and dead time

Type of detectors – 1

Ionisation detectors (gases)

Electric field between a cathode (plate) and an anode (wire)

- Very versatile (different geometries)
- Used for charged particles; position information
 E_{loss} for particle identification
- Efficient but slow (count rate < 10⁴ pps)

Type of detectors – 2

Scintillation detectors

Materials that emit light when struck by radiation Light is collected and amplified

- Cheap, very fast, versatile different geometries different materials
- Used for

charged particles (low Z material) γ-rays (high Z) neutrons (proton recoil or capture)

- Allow discrimination between radiation
- Poor energy resolution

KUL

Type of detectors – 3

Semiconductor detectors

Incident radiation creates electron-hole pairs

- Large stopping power
- Very good resolution
 Used to measure energy spectra
- Good timing resolution (ns)
- Si for charged particles (res 30 keV)
 Ge for γ-rays (res 2 keV)
- Expensive, subjected to damage Germanium needs to be cooled

Reactions: detection setup when using RIBs

Keys:

- Efficiency
- Energy and position resolution
- Sensitivity (background suppression)

Riccardo Raabe – KU Leuven

Light particles

- Kinematics depends mainly on the masses
- Kinematic compression: very small differences in energy of the light particle for different E*

Riccardo Raabe – KU Leuven

Problems

Low beam intensity
 → increase target thickness

BUT

- Energy resolution is affected
- Kinematic compression: very small differences in energy of the light particle for different E*

Riccardo Raabe – KU Leuven

Resolution in E*

J.S. Winfield et al. | Nucl. Instr. and Meth. in Phys. Res. A 396 (1997) 147-164

Table 2

152

 Light beam: better detect beam-like particle (limit on angular resolution)

 Heavier beam: better detect light recoil (limit on E resolution from straggling in the target)

 In general: much worse than direct kinematics Major contributions in keV to the resolution of the excitation energy spectra of single neutron stripping and pickup reactions in inverse kinematics, where the heavy ion is detected in a spectrometer. The detection angle corresponds to 10°_{cm} . The last column is an approximate estimate as a sum in quadrature of the net effect of five non-Gaussian contributions. Other symbols are explained in the text

Reaction	E _i /A (MeV)	$\theta_{\rm lab}$	Origin of contribution					
			$\Delta \theta$	Δp	$E_{\rm stragg}$	$\Theta_{1/2}$	dE/dx	
p(¹² Be, ¹¹ Be)d	30	1.07°	172	147	101	74	23	259
p(12Be, 11Be)d	15	1.06°	84	71	99	74	37	169
p(⁷⁷ Kr, ⁷⁶ Kr)d	30	0.16°	1404	811	808	723	56	1952
p(⁷⁷ Kr, ⁷⁶ Kr)d	10	0.10°	334	143	502	570	268	883
d(⁷⁶ Kr, ⁷⁷ Kr)p	10	0.21°	1140	614	2177	1859	1321	3408

Table 3

Major contributions in keV to the resolution of the excitation energy spectra of single neutron pickup and stripping reactions in inverse kinematics, where the light particle is detected in a silicon detector. Symbols as described in text and Table 2

Reaction	E _i /A (MeV)	$\theta_{\rm lab}$	Origin of contribution					$\Sigma_{\rm quad}$
			$\Delta \theta$	ΔE_f	ΔE_i	$\Theta_{1/2}$	dE/dx	
p(¹² Be, d) ¹¹ Be	30	19.0°	136	74	114	96	649	685
p(12Be, d)11Be	15	17.8°	66	72	55	89	984	995
p(77Kr, d)76Kr	30	15.0°	124	55	64	63	186	249
p(77Kr, d)76Kr	10	6.0°	26	24	23	19	775	777
d(⁷⁶ Kr, p) ⁷⁷ Kr	10	155.3°	52	93	37	60	1309	1316
							+ +	

Examples of setups for reactions in inverse kinematics

GANIL: MUST2+SPEG

Riccardo Raabe – KU Leuven

Examples of setups for reactions in inverse kinematics

Examples of setups for reactions in inverse kinematics

The present and future: γ -ray detection

AGATA and GRETA

- Segmented Ge detectors
- Digital readout
- Tracking

Riccardo Raabe – KU Leuven

Dealing with kinematic compression: HELIOS

Riccardo Raabe – KU Leuven

30 Years of RIB Physics – Pisa, 20-24/07/2015

Dealing with kinematic compression: HELIOS

KU LEUVEN

Riccardo Raabe – KU Leuven

Dealing with kinematic compression: HELIOS

30 Years of RIB Physics – Pisa, 20-24/07/2015

Charged particle detection in an active target

Time-Projection Chamber (TPC) + gas is the target

- Electrons produced by ionization drift to an amplification zone
- Signals collected on a segmented
 "pad" plane ⇒ 2d-image of the track
- 3rd dimension from the drift time of the electrons
- Information:
 - angles
 - energy (from range or charge)
 - particle identification

Charged particle detection in an active target

ACTAR TPC Demonstrator

Riccardo Raabe – KU Leuven

A Storage Ring for nuclear reactions

TSR0190192

Physics programme

- Astrophysics
 Capture, transfer reactions
 ⁷Be half life
- Atomic physics
 Effects on half lives
 Di-electronic recombination
- Nuclear physics Reaction studies Isomeric states Decay of halo states Laser spectroscopy
- Neutrino physics

K. Blaum and many others

Aims of the lecture

- Give a flavour of present-day research with RIBs: Still active? Clear direction?
- Learn (through examples) about the main techniques for production, manipulation and detection of unstable isotopes

- Succeeded?
- Comments?