Introducción a la física nuclear con Núcleos exóticos

Dolores Cortina Universidad of Santiago de Compostela

Layout

 \checkmark 30 years of radioactive beams

- \checkmark Experimental investigation of the atomic nucleus
- ✓ Production of exotic beams
- ✓ Why different experimental approaches?
- ✓ Few selected examples

30 years of radioactive beam

Experimental investigation of the atomic nucleus

Experimental investigation of the atomic nucleus

✓ Ground-state properties.

- masses
- size: matter and charge radial distributions, deformation
- electromagnetic moments

✓ Radioactive decays.

- decay properties
- beta-delayed gamma emission
- beta-delayed particle emission

✓ Nuclear reactions.

- direct reactions
- compound nucleus reactions

Production of radioactive beams

IN-FLIGHT

- Low energy

ISOL

- ms preparation time
- good beam quality

- High energy
- μs flight path
- poor beam quality

Experiment with radioactive beams : detection

Direct kinematics

Light projectile impinging into a heavy target nucleus

- light jectiles can be detected
- target residue can only be idenfied using radiative processes

Inverse kinematics

Light projectile impinging into a heavy target nucleus

- light and heavy ectiles can be detected

Advantages

✓ Reactions induced by exotic projectiles

Advantages

- ✓ Reactions induced by exotic projectiles
- ✓ Improved charge identification of reaction ejectiles

Advantages

- ✓ Reactions induced by exotic projectiles
- ✓ Improved charge identification of reaction ejectiles
- \checkmark Heavy ejectiles fully identified in Z and A

$$B\rho \propto \frac{A}{q}\beta\gamma$$

Drawbacks

✓ Complex heavy-ion accelerators with limited beam intensities

Present acceleration technologies:

- proton accelerators $\sim 10^{16} \mbox{ p/s}$
- heavy-ion accelerators ~ 10^{12} ions/s

Exploring the nucleus

Advantages

Advantages

- ✓ Exotic nuclei can be produced in-flight
- \checkmark Detectors with smaller angular acceptance

Direct kinematics

 $V_z = 0$ $V_z = 0.8c$

Advantages

- ✓ Exotic nuclei can be produced in-flight
- \checkmark Detectors with smaller angular acceptance
- ✓ Thicker targets
- \checkmark Simpler description of the reaction mechanism

Glaubel picture:

- adiabatic approximation
- eikonal approximation (out-going plane wave): direct reactions
- participant-spectator picture: compound nucleus reactions

Drawbacks

- ✓ Gamma rays are Lorentz boosted
- ✓ Light ejectiles require complex detectors

Exotic phenomena

- Núcleos muy poco ligados 🗲 extensión espacial
 - Presentan topologías y efectos estructurales exóticos
- Accesibles experimentalmente 19

Knock-out reactions

This is a "quasi-free" scattering on the valence nucleons leading to a bound residual nucleus (A-1) not necessarily on its ground state

The accurate measurement of the longitudinal momentum of the residual nucleus in inverse kinematics, and the possible gamma rays emitted during the knock-out charactarize the ground state of the projectile nucleus.

Knock-out reactions

The accuracy in the measurement of the longitudinal mometum of the recoiling projectile residue requires the use of a high-resolving power magnetic spectrometer such as the FRS at GSI.

Knock-out reactions

1-n knock-out cross section and the width of the momentum distributions reveal halo structures and shell evolution.

Knock-out reactions

Knock-out with gamma tagging allow for detailed spectroscopic studies.

Exploring the nucleus

The use of low energy beams

TRIUMF –ISAC II

ISOL facility

.

The use of low energy beams

Sección eficaz de una reacción

La **sección eficaz** es una medida de la probabilidad de ocurrencia de una determinada reacción nuclear. Podemos distinguir los siguientes casos:

-Sección eficaz total: probabilidad de cualquier reacción entre dos núcleos.

-Sección eficaz parcial: probabilidad de una determinada reacción

-Sección eficaz diferencia: evolución de la probabilidad de reacción respecto de una variable continua (energía, ángulo, ...)

En una irradiación de un material blanco de espesor x y densidad de centros dispersores n, con un flujo N_o de partículas, el número total de reacciones es:

$$N_{reacción} = N_o - N = N_0 \left(1 - e^{-x\sigma n}\right) \approx N_o x\sigma n$$

El corto alcance de la fuerza nuclear nos permite calcular a primer orden la sección eficaz total de reacción como:

$$\sigma_{total} = \pi (R_p + R_b)^2 = \pi \cdot 1.2^2 (A_p^{1/3} + A_b^{1/3})^2 fm^2$$

 $1 \text{ barn} = 10^{-24} \text{ cm}^2 = 100 \text{ fm}^2$

18

The use of low energy beams

- Los datos de 9Li+208Pb son ajustados usando un modelo óptico donde la parte real se describe con el potencial de doble convolución de São Paulo (SPP) y la parte imaginaria un potencial de Woods-Saxon.
- Los datos para la dispersión de 11Li+208Pb serán comparados con cálculos CDCC a cuatro cuerpos.
- Evidencia experimental del halo del 11Li y éxito de la modelización de la reacción nuclear

Exploring the nucleus

Single particle versus collectivity

Nuclei are many-body quantal systems consisting on many nucleons, up to 300, resulting on a rich variety of quantum phenomena.

The shape of the nucleus

Shapes and dimensions from beta decay

We can also learn about deformation using the dependency of the strength distribution in the daughter nucleus depending on the shape of the parent.

Shapes and dimensions

