

Rewriting Nuclear Physics textbooks 30 years with Radioactive Ion Beam Physics Pisa (Italy), July 20th – 24th, 2015

Experimental methods and measured observables with Polarized Proton Targets: Understanding Spin-Orbit

Tomohiro Uesaka RIKEN Nishina Center for Accelerator-Based Science

uesaka@riken.jp

30-years research with radioactive isotope beams has revealed that "spin" plays more vital roles in exotic nuclei than expected!

Richness in nuclear structure is a manifestation of interplays among the spin-dependent interactions.

What is the origin of spin-orbit coupling in nuclei?

(Why does a nuclear density saturate?)

How does the spin-orbit coupling change as a function of N/Z?

1st Half: Story of Nuclear Spin-Orbit Coupling

2nd Half: Experimental Approaches to SO Coupling in Exotic Nuclei

Why is nuclear shell structure so special?

Concept of "strong" spin-orbit coupling introduced by Mayer and Jensen

Origins of the strong spin-orbit coupling

What we can expect in exotic nuclei

→ Sonia Bacca's lecture

5

 \rightarrow Sonia Bacca's lecture

→ Sonia Bacca's lecture

→ Sonia Bacca's lecture

\rightarrow Sonia Bacca's lecture

Nuclear magic numbers were mysterious

Strange Potentials

Figure 15.2. Three potentials considered by Elsasser [6].

All the efforts didn't succeed.

Magicity and spin-orbit coupling

Discovery of Spin-Orbit Coupling

D-line: ²³Na

The line splits into two. 589.592 nm 588.995 nm

 $\Delta E \sim 2 meV$

G.E. Uhlenbeck and S. Goudsmit, Nature 117 (1926) 264.

Spinning Electrons and the Structure of Spectra.

Spin-Orbit Coupling in Atoms

Magnetic term

Interaction between a magnetic field originating from orbital motion of electron(s) and an electron spin

Thomas term

Relativistic effects taking place in a system under an accelerated motion

$$V_{\rm LS} = -\frac{e\hbar^2}{m_e^2 c^2} \frac{g}{2} \left(1 - \frac{1}{g}\right) \frac{1}{r} \frac{dV}{dr} \vec{L} \cdot \vec{S}$$

Spin-Orbit Coupling in Atoms (*cont***.)**

1) Repulsive smaller J orbit (J=L-1/2) is more stable than J=L+1/2 orbit

The first study of Nuclear Spin-Orbit Coupling

D.R. Inglis, Phys. Rev. 50 (1936) 783. Investigation of spin-orbit coupling in nuclei, taking an analogy to the atomic spin-orbit coupling.

He considered that

the magnetic term should be negligibly small, and the Thomas term is dominating

 \rightarrow Inversion doublet a state with J = L + 1/2 is more stable.

But, the Thomas term is too weak to explain magic numbers.

Strong Spin-Orbit Coupling

is essential in the formation of magic numbers in nuclei

Woods-Saxon

Spin-orbit splitting

$$\Delta E_{LS} = rac{2\ell+1}{2\hbar^2} \langle V_{LS}
angle$$

Terminology around spin-orbit • •

Spin-orbit splitting

Energy interval between a spin doublet

Spin-orbit coupling

Coupling between spin and orbital angular momentum that produces a spin-orbit splitting

Spin-orbit potential

One-body potential to model spin-orbit coupling Usually written in the form proportional to a first derivative of a density distribution

Spin-orbit force

A term proportional to $L \cdot S$ in the nuclear interactions

Origin of the strong spin-orbit coupling?

PHYSICAL REVIEW

VOLUME 78, NUMBER 1

APRIL 1, 1950

Nuclear Configurations in the Spin-Orbit Coupling Model. I. Empirical Evidence

MARIA GOEPPERT MAYER Argonne National Laboratory, Chicago, Illinois (Received December 7, 1949)

There is no adequate theoretical reason for the large observed value of the spin orbit coupling. The Thomas splitting has the right sign, but is utterly inadequate in magnitude to account for the observed values. A proper type of meson potential can be made to predict splitting qualitatively similar to the Thomas splitting, and therefore qualitatively similar to the observed, but greater in magnitude than the Thomas splitting, although usually somewhat less than the observed value.

Microscopic origins of spin-orbit coupling

Scheerbaum, Nucl. Phys. A 257 (1976) 77. Ando and Bando, Prog. Theor. Phys. 66 (1981) 227. Pieper and Pandharipande, Phys. Rev. Lett. 70 (1993) 2541.

"Spin-orbit coupling in heavy nuclei" Fujita and Miyazawa, PTP 17 (1957) 366. Progress of Theoretical Physics, Vol. 17, No. 3, March 1957

Pion Theory of Three-Body Forces

Jun-ichi FUJITA and Hironari MIYAZAWA Department of Physics, University of Tokyo, Tokyo

(Received October 27, 1956)

366

Progress of Theoretical Physics, Vol. 17, No. 3, March 1957

Spin-Orbit Coupling in Heavy Nuclei

Jun-ichi FUJITA and Hironari MIYAZAWA Department of Physics, University of Tokyo, Tokyo

(Received October 27, 1956)

Progress of Theoretical Physics, Vol. 17, No. 3, March 1957

Spin-Orbit Coupling in Heavy Nuclei

Jun-ichi FUJITA and Hironari MIYAZAWA

Conclusions of this paper are:

i) The meson-theoretical two-body spin-orbit coupling has the effect about two or three times as large as the Thomas term. Of course, it may be somewhat increased because of the ambiguity with radial dependence of the interaction in the small distance between two nucleons and possible correlations between their positions.

ii) Our spin-orbit coupling derived from the meson-theoretical three-body force is about 4.3 times larger than the Thomas term. The existence of the correlations may also increase this magnitude further. It is probable that the higher-order corrections for three-body forces have a large effect.

iii) The experimental spin-orbit coupling³⁾ is 40 times larger than the Thomas term with the magnitude as evaluated in Sec. 2. The net effect of Thomas term, two-body spin-orbit coupling and many-body interaction, which have the common correct sign, seems to be only about one fifth of the experimental one. Although we have underestimated the effects of many-body forces or two-body spin-orbit couplings because of the roughness of the Fermi gas model and the ambiguity in the small distance region, a considerable fraction of the strong spin-orbit coupling should probably be attributed to some other causes.

* This kind of spin-orbit coupling was suggested by Prof. Y. Nambu in private communication.

Microscopic origins of spin-orbit coupling

Scheerbaum, Nucl. Phys. A 257 (1976) 77. Ando and Bando, Prog. Theor. Phys. 66 (1981) 227. Pieper and Pandharipande, Phys. Rev. Lett. 70 (1993) 2541.

3N force

"Spin-orbit coupling in heavy nuclei" Fujita and Miyazawa, PTP 17 (1957) 366.

Tensor force

Wigner & Feingold, PR 79 (1950) 221. Terasawa, PTP 23 (1960) 87.

Tensor Force Effects

Progress of Theoretical Physics, Vol. 23, No. 1, January 1960

Spin-Orbit Splitting and Tensor Force. I*

Tokuo TERASAWA**

The Institute for Solid State Physics, University of Tokyo, Tokyo

Fig. 1. Figures (a), (b), (c) and (d) show configurations (I), (II), (IIIa) and (IIIb) in He⁵, respectively.

87

A Key to understand Tensor-force effects in nuclei

Core polarization/ Configuration mixing/ 2particle-2hole excitation Different wording, but the same meaning

A virtually excited *p*-*n* pair is mixed in the ground state.

This is the origin of nuclear stability (⇔unstableness of exotic nuclei), saturation property, quenching of spectroscopic factors...

Schrödinger equation for deuteron

$$\left[-\frac{\hbar^2}{M}\frac{1}{r}\frac{d^2}{dr^2}r - \frac{\hbar^2}{M}\frac{\ell(\ell+1)}{r^2} + V_{\rm c} + V_{\ell s}\ell \cdot s + V_{\rm t}S_{12}\right]\varphi_d = \varepsilon_d\varphi_d$$

In deuteron, a D-state, where p-n relative orbital angular momentum (L) is two, is mixed to a S-state with L=0. origin of deuteron quadrupole moment

$$egin{aligned} &r arphi_{
u_d}^d \ = \ m{u}(r) \mathcal{Y}_0^{
u_d} + m{w}(r) \mathcal{Y}_2^{
u_d} \ & \mathcal{Y}_\ell^{
u_d} = \sum\limits_\mu (2 \ 1 \
u_d - \mu \ \mu | 1 \
u_d) Y_\ell^{
u_d - \mu} \chi_\mu \end{aligned}$$

Tensor operator mixes the state with the same J but different L by a unit of two.

$$S_{12}egin{pmatrix} \mathcal{Y}_{J-1,J} \ \mathcal{Y}_{J,J} \ \mathcal{Y}_{J+1,J} \end{pmatrix} = rac{1}{2J+1}egin{pmatrix} -2(J-1) & 0 & \mathbf{6}\sqrt{J(J+1)} \ 0 & 2(2J+1) & 0 \ \mathbf{6}\sqrt{J(J+1)} & 0 & -2(J+2) \end{pmatrix}egin{pmatrix} \mathcal{Y}_{J-1,J} \ \mathcal{Y}_{J,J} \ \mathcal{Y}_{J+1,J} \end{pmatrix}$$

Schrödinger equation for deuteron (cont.)

$$\left[-\frac{\hbar^2}{M}\frac{1}{r}\frac{d^2}{dr^2}r - \frac{\hbar^2}{M}\frac{\ell(\ell+1)}{r^2} + V_{\rm c} + V_{\ell s}\ell \cdot s + V_{\rm t}S_{12}\right]\varphi_d = \varepsilon_d\varphi_d$$

S-state $\left[\frac{\hbar^2}{M}\frac{d^2}{dr^2} - (V_{\rm c} - \varepsilon_d)\right]u(r) = \sqrt{8}V_Tw(r)$

D-state $\left[\frac{\hbar^2}{M}\frac{d^2}{dr^2} - \left(\frac{\hbar^2}{M}\frac{6}{r^2} + V_{\rm c} - 3V_{\ell s} - 2V_{\rm t} - \varepsilon_d\right)\right]w(r) = -\sqrt{8}V_T u(r)$

Schrödinger equation for deuteron (cont.)

$$\left[-\frac{\hbar^2}{M}\frac{1}{r}\frac{d^2}{dr^2}r - \frac{\hbar^2}{M}\frac{\ell(\ell+1)}{r^2} + V_{\rm c} + V_{\ell s}\ell \cdot s + V_{\rm t}S_{12}\right]\varphi_d = \varepsilon_d\varphi_d$$

S-state
$$\left[\frac{\hbar^2}{M}\frac{d^2}{dr^2} - \left(V_{\rm c} + \sqrt{8}V_T\frac{w(r)}{u(r)} - \varepsilon_d\right)\right]u(r) = 0$$

D-state $\left[\frac{\hbar^2}{M}\frac{d^2}{dr^2} - \left(\frac{\hbar^2}{M}\frac{6}{r^2} + V_c - 3V_{\ell s} - 2V_t - \sqrt{8}V_T\frac{u(r)}{w(r)} - \varepsilon_d\right)\right]w(r) = 0$

V_{S,D}(r) w/o mixing
V'_{S,D}(r) contribution of
 the mixing
Sum

Tensor force and saturation

Tensor Force Effect to Spin-Orbit Coupling

Case of ⁵He : ⁴He+ one neutron in *p*-shell

From angular-momentum algebra, it can be shown that

Microscopic origins of spin-orbit coupling

Scheerbaum, Nucl. Phys. A 257 (1976) 77. Ando and Bando, Prog. Theor. Phys. 66 (1981) 227. Pieper and Pandharipande, Phys. Rev. Lett. 70 (1993) 2541.

3N force

"Spin-orbit coupling in heavy nuclei" Fujita and Miyazawa, PTP 17 (1957) 366.

Tensor force

Wigner & Feingold, PR 79 (1950) 221. Terasawa, PTP 23 (1960) 87.

NN LS interaction σ and ω exchange isoscaler in nature

R. Machleidt, Adv. Nucl. Phys. 19 (1989) 189.

Contributions from each meson

Microscopic origins of spin-orbit coupling

Scheerbaum, Nucl. Phys. A 257 (1976) 77. Ando and Bando, Prog. Theor. Phys. 66 (1981) 227. Pieper and Pandharipande, Phys. Rev. Lett. 70 (1993) 2541.

3N force

"Spin-orbit coupling in heavy nuclei" Fujita and Miyazawa, PTP 17 (1957) 366.

Tensor force

Wigner & Feingold, PR 79 (1950) 221. Terasawa, PTP 23 (1960) 87.

NN LS interaction σ and ω exchange isoscaler in nature

Spin-orbit splittings in Exotic Nuclei

3N

Tensor

NN LS

Mean-field effect

Weakening of spin-orbit coupling due to diffuse surface etc.

$$V_{LS}\sim rac{1}{r}rac{d}{dr}
ho$$

J. Dobaczewski et al., Phys. Rev. C 53, 2809 (1996)

Theoretical Predictions for Exotic Nuclei

Three nucleon force effect gets weaker in ⁷n than in ¹⁵N.

				<u> </u>	
	⁸ n(0 ⁺) (MeV)	⁷ n SOS (MeV)	Magic nuclei $ \Delta E/E _{\rm rms}\%$	(MeV)	<i>W</i> _{<i>ls</i>} (MeV ⁵)
GFMC	-37.6(3)	1.1(3)	inconsistent		
CVMC	-35.5(1)	1.4(1)	<u> </u>	6.1 ^b	
SkM	-47.4	3.0	1.1	6.3	130
FPS-21	-42.2	3.0	1.1	6.7	110
Skyrme 1'	-38.7	2.9	1.8	6.9	120
FPS	-32.5	3.5	1.2	6.7	110
^a Experimental value 6.9 MeV deduced from Ref. [6]				consistent	

TABLE I. Comparison of microscopic and Skyrme-model energies.

^aExperimental value 6.9 MeV deduced from Ref. [6]. ^bWith Argonne v_{14} , Ref. [6].

In contrast, the three-body interaction and clusters give a very small contribution to the SOS in ^{7}n in CVMC calculations.

B. S. Pudliner et al., Phys. Rev. Lett. 76, 2416 (1996)
Tensor-force effects

First-order effects by T. Otsuka

T. Otsuka et al., Phys. Rev. Lett. 95, 2325

Second-order effects in exotic nuclei

Spin-orbit splittings in Exotic Nuclei

Neutron-number dependences of LS splitting

Why don't we extend this interesting research to unstable nuclei?

BREAK

Polarization Study of Exotic Nuclei Polarized target for RI-beam experiments

Proton elastic scattering

Experimental approaches to spin-orbit splitting in nuclei Transfer reactions Knockout reactions Proton resonant scatterings

> I will show some examples. But, so far, little has been done. Much is left for future (you)!

How to Polarize Nuclei

Atomic Beam Method

Long history since 1950's

Adopted in many polarized p/d ion sources

Optical Pumping Method

Polarized p/d ion sources (ex., RHIC) ³He gas target (high density)

Polarization of heavy ions

Dynamic Nuclear Polarization (DNP) Method

Standard technique to polarized nuclei in solid Used in many high-energy labs (CERN, SLAC, JLab)

Brute Force Method

HD target (only for photon/neutron beams)

Nuclear Reaction Method

Standard method to polarize RIs

Kastler

Rabi

Abragam

Polarized Target in the market

"TRIPLET" target at RIKEN-CNS

The FIRST Polarized Proton Target applicable to RI beam exp.

Material: $C_{10}H_8 (+ C_{22}H_{14})$ Thickness:1 mm (120 mg/cm²)Size: $\phi 14$ mmPolarization:P=15-20%Temperature:100 KMag. field:0.1 T

T. Wakui et al., NIM A <u>550</u> (2005) 521. TU, M. Hatano et al., NIM A <u>526</u> (2004) 186. A. Obertelli and TU, EPJ A <u>47</u> (2011) 105.

10cm

50cm

ORNL-PSI Polarized Proton Target

Spin-frozen operation of traditional DNP target another promising way to prepare pol. target for RI-beam exp.

Target material Frozen spin operation polystyrene plastic (> 0.1 mg/cm²) 0.3K, 0.4–0.8 T

J.P. Urrego-Blanco, A. Galindo-Uribarri et al., NIMB 261, 1112 (2007).

"TRIPLET" target at RIKEN-CNS

The FIRST Polarized Proton Target applicable to RI beam exp.

Material: $C_{10}H_8 (+ C_{22}H_{14})$ Thickness:1 mm (120 mg/cm²)Size: $\phi 14$ mmPolarization:P=15-20%Temperature:100 KMag. field:0.1 T

T. Wakui et al., NIM A <u>550</u> (2005) 521. TU, M. Hatano et al., NIM A <u>526</u> (2004) 186. A. Obertelli and TU, EPJ A <u>47</u> (2011) 105.

10cm

50cm

Polarization in Proton Elastic Scattering

Mayer & Jensen claimed in 1948 Strong spin-orbit coupling: necessary to account for the magic numbers one-order of magnitude stronger than the Thomas term

Several groups tried to measure spin asymmetry A_y for p-A elastic scattering

What is spin asymmetry (A_y)

A_y: spin asymmetry (analyzing power)

In elastic scattering, Ay is a measure of magnitude of LS coupling

Mayer & Jensen claimed in 1948 Strong spin-orbit force: necessary to account for the magic numbers one order stronger than the Thomas term

Several groups tried to measure spin asymmetry A_y

for p-A elastic scattering → direct evidence of spin-orbit force

Theoretical analysis of the data

E. Fermi, Nuovo Cimento 10 (1954) 407.

V_{LS} deduced from the scattering experiment is consistent with that required by the shell model

Polarization of High Energy Protons Scattered by Nuclei.

E. FERMI

University of Chicago - Institute for Nuclear Studies - Chicago

(ricevuto il 22 Febbraio 1954)

What we can expect in neutron-rich nuclei

Spin-orbit coupling: surface phenomena

1) could be modified in neutron-rich nuclei where neutron and proton have different surfaces.

$$V_{LS} \sim \frac{1}{r} \frac{d}{dr} \rho$$

$$V_{LS}(p) \qquad V_{LS}(n)$$

r

2) extended distribution of neutrons may affect the shape of LS potential.

Experiments at RIPS, RIKEN

p-⁶He @ 71 MeV/u in : 2.5×10⁵ pps *p*-⁸He @ 71 MeV/u in : 1.7×10⁵ pps

Results of $d\sigma/d\Omega$, A_y

T. Uesaka et al., PRC 82 (2010) 021602(R). 49

S. Sakaguchi et al., PRC 84 (2011) 024604.

S. Sakaguchi et al., PRC 87 (2013) 021601(R).

Phenomenological Optical Model analysis

Radius and diffuseness parameters

SHALLOW Spin-orbit potential

52 S. Sakaguchi, TU et al. PRC 87 ('13) 021601(R)

Spin-orbit potentials of ^{6,8}He are considerably shallower and have larger radii, compared with other light nuclei!

Direct experimental evidence for shallowing of spin-orbit potential. Effectiveness of polarized protons!

Experimental study of spin-orbit splitting (on-going and future works)

Experimental study of spin-orbit splitting

Fragmented strength of single-particle levels with J=L+1/2 and J=L-1/2 state-by-state assignment of L, J, and spectroscopic amplitudes

Experiments for stable targets

Reactions to selectively populate single-particle states

Transfer reactions: stripping reactions pickup reactions (*d*,*p*), (³He,*d*)... (*p*,*d*), (*d*,³He/t)...

Knockout reactions: (p,pN)

Proton resonant scattering

→ Obertelli's lecture

→ Charity's lecture

Observables to determine J^{π} , spectroscopic amplitude

I will concentrate on how to determine "J".

(p,pN) Quasi-free Scattering

NN scattering in nuclear medium, without serious disturbance to the residual nucleus. Reaction mechanism is considered to be reasonably simple at E/A > 200 MeV.

Selectively populate one-nucleon hole state and scattering observables are directly connected to properties of the nucleon (momentum distribution, spectroscopic factor, L, J, . . .).

R3B @GSIAumann, Panin et al.HIMACKobayashi et al.RIBFUesaka, Kawase, et al.

(p,pN) QFS experiments

Panin, Aumann et al.

Spin Polarization in (*p*,*pN*) Reaction

- Momentum dependence of d $\sigma/d\Omega$
- Analyzing power (A_y)

⇒ L and spectroscopic amplitude
 ⇒ J

¹⁸O(p,2p) experiment @RCNP

Kawase, TU et al.

¹⁸O(p,2p) experiment @RCNP

Kawase, TU et al.

Proton resonant scattering of unstable nuclei

Low-energy secondary beams of < ~5 MeV/nucleon

Thick Target method in Inverse Kinematics (TTIK) Excitation function can be obtained by using beam energy loss in the thick target Detection of recoil protons at forward angles

Courtesy of Teranishi V.Z. Goldberg and A.E. Pakhomov, Phys. At. Nucl. 56, 1167 (1993).

Example: ¹³N+p experiment at CRIB/CNS

Polarization in Resonant Scattering

Sensitivity test with R-matrix calculations

Two possibilities: 1) ${}^{13}N(1/2^{-}) + \pi d_{5/2}$ 2) ${}^{13}N(1/2^{-}) + \pi d_{3/2}$

No difference in cross section . . .

A_y is sensitive to the configuration!

T. Teranishi, S. Sakaguchi et al., AIP Conf. Proc. 1525, 552 (2013)

Transfer reactions

Evolution of the p_{3/2}-p_{1/2} SO splitting

No change in $p_{3/2}$ - $p_{1/2}$ splitting between ⁴¹Ca and ³⁷S Large reduction of $p_{3/2}$ - $p_{1/2}$ splitting between ³⁷S and ³⁵Si, no change of $f_{7/2}$ - $f_{5/2}$

Courtesy of Sorlin

G. Burgunder et al., Phys. Rev. Lett. 112, 042502 (2014)

³⁴Si(d,p) reaction in inverse kinematics at GANIL

³⁴Si(d,p) reaction in inverse kinematics at GANIL

³⁴Si(d,p) reaction in inverse kinematics at GANIL

Polarization in transfer reactions

Fig. 2. Cross sections and vector analysing powers for $l_n = 1$ transitions in ${}^{52}Cr(d, p){}^{53}Cr$ leading to final states of known spin. Solid symbols are data taken with poor resolution and crosses are data taken with good resolution.

30-years research with radioactive isotope beams has revealed that "spin" plays more vital roles in exotic nuclei than expected!

Richness in nuclear structure is a manifestation of interplays among the spin-dependent interactions.

My Last Message

Experiments with polarized targets are essential in clarifying roles played by spin degrees of freedom in exotic nuclei.

Experiments with polarized targets are essential in clarifying roles played by spin degrees of freedom in exotic nuclei.

