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Abstract. The role of resonances in exotic nuclei is investigated. This encompasses one and two nucleon
emitters for ground-state nuclei beyond the drip lines to compound nuclei formed at higher excitation
energies which, in some cases, can decay to produce these ground-state emitters. The role of barrier
penetration and configuration mixing are both considered in explaining the long lifetimes observed in
narrow resonances. Finally, two experimental techniques for studying exotic resonances are presented.
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1 Introduction

Resonances are an essential ingredient for understanding
nuclear phenomena both for the stable and more exotic
nuclei. However as one approaches either the proton or
neutron drip line, even the low-lying excited states of ex-
otic nuclei are in the continuum, i.e., unbound to particle
decay and thus are resonances. Eventually beyond the drip
lines, even the ground states are themselves resonances.
Clearly resonances have an especially important role for
exotic nuclei.

We will start our exploration of resonances with some
very simple ideas which illustrate some basic features of
this phenomena and then gradually add more complexity
associated with real nuclear resonances. In addition, we
will consider many different types of resonances, for exam-
ples those with strong single-particle character, those in
the region of overlapping resonances where configuration
mixing is extreme, and those with three-body exit chan-
nels. These illustrate the diversity of current resonance
studies and the continued interest in the field.

2 Basic Resonance Properties

2.1 One-Dimensional single-particle model

Many of the properties of resonances and their relevance
for exotic nuclei can be illustrated by a simple one-dimensional
single-particle model. By single-particle one means that
each nucleon moves in an average potential generated by
its interactions with the other nucleons. Otherwise, all
other aspects of their interactions are ignored. For fur-
ther simplicity we also assumed that these 1-d nuclei are
composed of just one type of nucleon.
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Fig. 1. Simplistic one-dimensional potential used in this work.

Once the mean field is defined, the Schrödinger equa-
tion can be solved to obtain the single-particle energy lev-
els, i.e. the quantum energy states of nucleons within the
nucleus. For our purposes we start with the very simple
mean field displayed in Fig. 1. Note three important fea-
tures of this mean field.

1. A potential well of depth V0.
2. A barrier of height Vb separating the well from the

continuum.
3. A continuum, i.e., the potential remains at zero out to
x= ∞.

For simplicity we have assumed both a square well and
a square barrier and, in addition, the potential goes to
infinity at x=0 so as to only consider positive x values.
The exact shape of the potential is not important in what
follows, just the presence of these three features.
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Fig. 2. Single-particle bound states obtained from the simple
potential of Fig. 1. Bound state energies are indicated by the
horizontal lines (blue) and the corresponding wavefunctions
(red) are plotted relative to these lines.

With this simple potential, one can easily solve the
Schrödinger equation for bound-states (E < 0). In the
region x < x0, the solution is

ψ(x) = A sin(k0x) + B cos(k0x) (1)

= A sin(k0x), (2)

whereA and B are integration constants and k0 =
√
2m(E + V0)/h̄

where m is the nucleon mass. The second term must drop
out (B=0) as ψ(0) = 0 because V (0) = ∞. In the conti-
mum region (x > xb)

ψ(x) = E exp(κ∞x) + F exp(−κ∞x) (3)

= F exp(−κ∞x) (4)

where κ∞ =
√
2m|E|/h̄. In this case the first term must

drop out (E=0) in order for the wave function to be local-
ized and normalizable. In the barrier region (x0 < x < xb),

ψ(x) = C exp(κbx) +D exp(−κbx), (5)

where κb =
√
2m(Vb − E)/h̄. Only at discreet energies E

can one find values of C, D, and F (as functions of A)
such that the value of ψ and its derivative are continuous
at both x = x0 and x = xb. Figure 2 shows the three
bound eigenstates and their wavefunctions for the poten-
tial of Fig. 1. The ground state of the 1-d A=5 nucleus, is
obtained by filling up these levels with nucleons with the
lowest possible total energy as in Fig. 3. As we are deal-
ing with Fermions, only two nucleons per level are allowed
(spin up and spin down). In this case we have two com-
pletely filled levels and one partially filled (valence) level
which is weakly bound. Particle-bound excited states of
this nucleus can then be obtained by promoting one of
the more deeper-bound nucleons to this valence level.

Now imagine we are at liberty to modify the potential
by decreasing the depth of the well (V0). The result of such
a modification is to push all the single-particle levels up in
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Fig. 3. The ground state of the A=5 nucleus in this simple
1-d single-particle model.

energy. If we keep decreasing the depth of the well, even-
tually our least-bound valence level will cross zero energy.
So what does our formally bound state turn into when its
crosses zero energy? What kind of states is it?

To answer these questions, consider the classical case
of a nucleon with positive energy (0 < E < Vb) located
inside of the barrier. It will of course bounce backwards
and forwards between x = 0 and x = x0 forever. Now al-
low quantum tunneling to a occur. Each time the nucleon
attacks the barrier, there is a probability it will tunnel
through and escape from the system. Thus, the probabil-
ity that the particle stays behind the barrier is reduced
by a constant scaling factor for each attack and therefore
this probability decreases exponentially with time.

Gamov first considered exponentially-decaying solu-
tions of the Schrödinger equation. As we are interested
in a time-dependent solution we must start with the time-
dependent Schrödinger equation

ih̄
∂

∂t
Ψ(x, t) =

[
−h̄2

2m

∂

∂x2
+ V (r)

]
Ψ(x, t). (6)

Let us look for a solution where Ψ is separable in the time
and position coordinates, i.e.,

Ψ(x, t) = exp

(
−iEt
h̄

)
ψ(x). (7)

If we use a complex energy E = Er − iΓ/2, then the
modulus squared of the wave function,

|Ψ(x, t)|2 = exp

(
−Γt
h̄

)
|ψ(x)|2 , (8)

decays exponentially. In general, exponentially-decaying
(or increasing) solutions can be obtained by solving the
time-independent Schrödinger equation with a complex
energy. We still have to choose the boundary condition at
large x to solve the problem. As there is no flux coming
into the potential, then in the region x > xb, the solution
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Fig. 4. Bound and exponentially decaying states obtained for
the potential of Fig. 1, but with a somewhat shallower well.
The exponentially decaying wavefunction has both real and
imaginary components, while the bound-state wavefunctions
are only real.

must be just an outgoing wave:

Ψ(x, t) = H exp

[
i

(
−Et
h̄

+ k∞x

)]
, (9)

k∞ =
√
2mE/h̄. (10)

Otherwise, the solutions for x < x0 and x0 < x < xb are
again given by Eqs. (2) and (5). By again demanding the
wavefunction and its derivation are continuous at both
x = x0 and x = xb, we now find solutions only at dis-
crete complex energies. Such states are single-particle res-
onances and if a nucleon is placed in such a single-particle
state it produces a nuclear resonance in this simplistic
model. Figure 4 shows the bound and resonance solutions
for a potential which is somewhat shallower than that in
Figs. 1 and 2. Notice that the third bound single-particle
state in Fig. 2 that turned into a resonance in Fig. 4
has similar character in the two figures with two nodes
inside of the potential well. As the state has a finite life-
time ∆t = h̄/Γ , then it has an energy uncertainty ∆Er.
By Heisenberg’s uncertainty principle

∆Er∆t ∼ h̄ (11)

and thus ∆Er is of order Γ .
Historically, resonances have a stronger relationship

with scattering phenomenon. Indeed in our simple model,
resonances can also be probed by scattering as well. Con-
sider first the very simple case of scattering where the
potential well and barrier are both missing as illustrated
in Fig. 5.

The solution to the time-independent Schrödinger equa-
tion with positive energy is just a single sine curve, i.e.,

ψ(x) = A sin(k∞x) (12)

=
A
2i

[exp(ik∞x)− exp(−ik∞x)] . (13)
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Fig. 5. Scattering wave function (red) obtained for the simple
case where the potential well and barrier of Fig. 1 are missing.
Here the potential (black) is uniform above x >0. The classical
motion is indicated by the arrow showing a reflection at the
x=0 wall.

This solution can be considered as a standing wave due
to the interference of ingoing and outgoing waves. These
become obvious in the expansion of the sine function into
exponentials in Eq. (13). The exp(−ik∞x) term is the in-
coming wave while the exp(ik∞x) term in the outgoing
wave. Classically as indicated by the arrow in Fig. 5, a par-
ticle coming in from large x gets reflected off the V = ∞
boundary at x = 0 and goes back out again.

Now let us consider scattering when the potential well
and barrier of Fig. 4 are included. Classically if the scat-
tering energy is less than the barrier (E < Vb), then an
incoming particle is reflected by the barrier and never en-
ters the potential well. However, with quantum tunneling,
there will be a non-zero probability of it being in the well.
Let us define this probability as

Pwell =

∫ x0

0

|ψ(x)|2 dx. (14)

In addition, the wavefunction in the exterior region (x >
xb) will no longer be just a sine wave, but a cosine wave
solution can also contribute, i.e..

ψ(x) = A sin(k∞x) + B cos(k∞x) (15)

=
√
A2 + B2 sin(k∞x+ δ) (16)

=

√
A2 + B2

2i
exp(−δ) [exp(ik∞x+ 2δ)− exp(−ik∞x)] .(17)

In Eq. (16), this is also expressed in terms of a phase shift
δ = atan(B/A) relative to the standing wave solution of
Eq. (13) without the potential well and barrier. Notice
from Eq. (17) this leads to a phase shift of 2δ between the
incoming and outgoing waves.

The quantity Pwell and the phase shift δ for the same
potential as in Fig. 4 are shown in Fig. 6 as a function of
scattering energy. In Fig. 6(a), the relative probability of
getting a particle inside of the potential well has a strong
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Fig. 6. Energy dependence for scattering. (a) shows the rela-
tive probability that the nucleon is inside of the well while (b)
shows the phase shift. At the resonance energy, the phase shift
shows a sharp jump of π radians.

resonant peak. For narrow peaks, the centroid of such a
peak has the same value as Er, the real energy obtained
in the exponentially-decaying solution (Fig. 4). The peak
shape is given by a Breit-Wigner form:

Pwell ∝
Γ 2

(E − Er)2 + (Γ/2)2
(18)

where here Γ is the full width at half maximum (FWHM)
of the peak. Again in the limit of a narrow resonance, the
value of Γ obtained from the FWHM is the same as that
obtain for the exponentially-decaying solution in Eq. (8).

The phase shift in Fig. 6(b) shows a sudden change of
magnitude π radians relative to the more slowly decreasing
background phase. This is a defining feature of all narrow
resonances. As the resonance becomes very wide it can be
difficult to differentiate the phase shift of the resonance
from that associated with the slowly varying background.

Our simple model has documented three important
features of resonances

1. If a resonance state of the nucleus is created, it will
decay with a exponential time distribution with a life-
time of h̄/Γ .

2. The resonance can also be probed in scattering ex-
periments, where the scattering cross section (which is

related to Pwell) peaks at the resonance energy with a
FWHM of Γ .

3. As the energy is scanned across a resonance, the phase
shift in the exterior region of the scattering wave func-
tion undergoes a jump of π radians relative the more
slowly varying background phase.

There three feature are quite general and apply for more
complicated resonances which are not adequately described
by our simple 1-d single-particle model.

2.2 Three-dimensional single-particle model

Let us now make a first step towards a more realistic model
by considering three-dimensions. Consider a wavefunction
corresponding to a plane wave traveling along the z axis.
In polar coordinates, the partial wave expansion of this
plane wave is

ψ(z) = exp(ik∞z). (19)

=
∞∑
ℓ=0

(2ℓ+ 1)iljl(k∞r)Pℓ(cos θ), (20)

where Pℓ are Legendre polynomials and the spherical Bessel
functions have the asymptotic form

jℓ(k∞r) →
sin(k∞r − ℓπ2 )

kr
for r → ∞ (21)

and thus at large r, Eq. (20) becomes

ψ →
∞∑
ℓ=0

2ℓ+ 1

2ik∞r
Pℓ(cos θ)

[
exp(ik∞r)− (−1)ℓ exp(−ik∞r)

]
(22)

which is just the sum of ingoing [exp(−ik∞r)] and outgo-
ing [exp(ik∞r)] spherical waves. Now remember this ex-
pansion is just for a plane wave with no scattering po-
tential. If we add a spherical symmetric potential, we can
now write the solution as

ψ →
∞∑
ℓ=0

2ℓ+ 1

2ik∞r
Pℓ(cos θ)

×
[
Sℓ,j exp(ik∞r)− (−1)ℓ exp(−ik∞r)

]
(23)

where the outgoing wave is modified by the factor Sℓ,j

called the S-matrix. The S-matrix depends on the orbital
angular and the total angular momentum which is com-
prised of ℓ and the spin of the scattered nucleon. We will
ignore any coupling to the target spin in this work. For
processes like we investigated in the 1-d model (Sec. 2.1),
there is no absorption, so the modulus of Sℓ,j is unity and
is just related to the phase shift as in Eq. (17) and

Sℓ,j = exp(2iδℓ,j). (24)

If there is some absorption of the incoming flux then |S|2 <
1. Such absorption can be incorporated theoretically by
use of an imaginary component to the potential.
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Fig. 7. Schematic illustrating the scattering wave function
components.

The final asymptotic wavefunction with a scattering
potential can also be written as

ψ → exp(ik∞z)+ (25)
∞∑
ℓ=0

2ℓ+ 1

2ik∞r
(Sℓ,j − 1) exp(ik∞r)Pℓ(cos θ), (26)

i.e, the incidence plane wave plus a sum of scattered spher-
ical waves as shown schematically in Fig. 7. In calculating
the angular distribution of the scattered particle one must
also consider the interference between these two compo-
nents.

Note that at a resonance, the probably that a parti-
cle enters the potential well is large as demonstrated in
Sec. 2.1. When such particles eventually tunnel back out
they are emitted in all directions. Therefore there are two
ways to observed such resonances in experiments.

1. Observe their scattering to finite angle away from the
beam axis. The detected particle must have the same
energy as the beam (elastic scattering) to differentiate
this from other processes.

2. Observe the loss of particles traveling in the beam di-
rection. The magnitude of this loss is related to the
total cross (σtot). This total cross is only useful for
neutron scattering, as it is infinite for charge-particle
scattering due to the long-range nature of the Coulomb
potential.

As an example of resonances in real nuclei, we start
with a non-exotic case and focus on the levels of 13C. Its
level scheme is shown in Fig. 8 and the lowest three excited
states are particle stable and decay to the ground state by
γ-ray emission. In the single-particle model, these levels
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Fig. 8. The level scheme of 13C and the total n+12C cross
section [16] showing the correspondence between the n+12C
resonance peaks and particle unstable levels of 13C.

would be obtained from configurations where nucleons are
in bound single-particle levels only. The neutron separa-
tion energy for 13C is 4.94 MeV and this is the threshold
for breakup into the n+12C channel. All the 13C levels
above this energy are resonances. The next highest sepa-
ration energy is for α particles at 10.64 MeV, so between
between 4.94 and 10.64 MeV, the only open particle de-
cay mode is neutron emission. Above 10.64 MeV, neutron
and α decay are possible and at 17.53 MeV, proton decay
channels are open as well.

In Fig. 8, the total neutron cross section on 12C as a
function of neutron energy from Ref. [16] is also shown.
This cross sections has many peaks or resonances, both
narrow and wide, and one can see that these correspond di-
rectly to excited states in 13C. Note, not all excited states
above the neutron threshold have visible resonances asso-
ciated with them. Such peaks do not have strong single-
particle structure. The α+9Be scattering data also shows
resonance peaks, but these correspond to highly lying level
above the the α separation energy of 10.64 MeV.

2.3 Symmetry Dependence of mean field potential

So far we have largely ignored the fact that nuclei are
composed of two types of nucleons. In this section we will
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discuss a consequence of this for resonances. In Sec. 2.1
we discussed what happens when we modify the depth
of the potential well in Fig. 1. This well is produced by
the mean potential that a nucleon feels from all the other
nucleons in the nucleus. It turns out we can indeed modify
the depth of this well quite easily. Given that the proton-
neutron interaction is stronger than the proton-proton or
the neutron-neutron interactions, then if we keep the same
number of nucleons but change the ratio of protons to
neutrons, the mean fields felt by the two nucleon types
will change. Their depths have been found to have the
form

V0 = V ′ + vsym
N − Z

A
protons (27)

= V ′ − vsym
N − Z

A
neutrons. (28)

where V ′ and vsym are constants. Compared to N ∼ Z
nuclei, for neutron-rich systems where the symmetry pa-
rameter (N − Z)/A is large, protons are surrounded by
more neutrons and thus the depth of their mean field is
larger. On the other hand, neutrons have less protons sur-
rounding them and therefore the depth of their mean field
in smaller.

This symmetry dependence of the mean field contributes
about 50% of the symmetry energy in the semi-empirical
mass formula used to fit and predict the binding energies
of nuclei

Ebinding(Z,A) = avolA− asurA
2/3

− aCoul
Z2

A1/3
− aasy

(N − Z)2

A
. (29)

The terms here are called the volume, surface, Coulomb,
and symmetry energies and ai coefficients are fit to exper-
imental data. Remember protons are more bound if there
are more neutrons around while neutrons are more bound
if there are more protons around. The symmetry term in-
cludes both of these two effects plus a kinetic contribution.
As a compromise, the symmetry term gives the strongest
binding for equal numbers of protons and neutrons.

To illustrate the importance of the symmetry force for
the single-particle energies, Fig. 9 shows a schematic of
the proton and neutron single-particle levels in fluorine
isotopes. As 19F is the only stable fluorine isotope, its
neutron and proton separation energies must be similar.
By moving towards the proton drip line (decreasing the
number of neutrons) the proton mean field become shal-
lower while the neutron mean field becomes deeper. At
18F this change in mean fields has made a significantly
difference in the two separation energies and in this case,
the difference is large enough that energetically the weak
interaction can turn a valence proton into a neutron and
thus this isotope is β unstable.

At 17F, the valence proton level (highest occupied level)
is just below the continuum (zero energy) and at 16F, this
level is now in the continuum. Thus by decreasing the
number of neutrons we have made a proton resonance. Of
course if we decreased the number of protons, we could
make a neutron resonance instead.
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Fig. 9. Schematic showing the evolution of neutron and proton
single-particle levels with mass number A for fluorine isotopes.
For each isotope, neutron (proton) single-particle levels and
the mean field as a function of radius r are shown on the left
(right)

3 Beyond the Single-Particle Model

In the single-particle picture, nuclear resonances are cre-
ated by placing one or more of the nucleons in single-
particle resonance states. To produce a single-particle res-
onance we need a barrier to constrain the nucleon close
to the nucleus for a significant time. Thus in this sim-
ple picture, ℓ=0 neutrons should not be able to produce
resonances as they have no Coulomb and no centrifugal
barrier. Therefore for neutrons incident on spin-zero tar-
get nuclei (even Z and even N) we should not see any
J=1/2+ resonances (total angular momentum just equal
to the neutron spin as ℓ=0). However such resonances are
quite common.

Also even if there is a barrier, resonances are not possi-
ble at high excitations energies in this model as the energy
of the nucleon must be less that the barrier height for it to
be temporarily trapped. However resonances do not dis-
appear at higher excitation energies. Clearly this points
a major failure of the single-particle model. While some
low-lying states do have strong single-particle character,
many other states do not, especially at high excitation
energies.

How does one create long-lived nuclear states when
there is no barrier or the barrier is too low to trap the in-
coming nucleon? The answer lies in the fact that real nu-
clear states are admixtures of these single-particle config-
urations. For some nuclear states, one particular or a cou-
ple of a single-particle configurations dominate and these
are said to have strong single-particle character. Other
states are admixtures of many single-particle configura-
tions. Consider a nucleon scattering; when the nucleon
and target start to touch, this initial single-particle config-
uration can couple to other more complex configurations
which are bound or at least constrained by a barrier. The
system can eventually recouples back to the original en-
trance channel configuration and the nucleon can then es-
cape from the target. Configuration mixing thus provides
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a mechanism for the incidence nucleon to be held in the
target thus giving the resonance a lifetime.

In addition to allowing for a finite lifetime, configura-
tion mixing allows for a resonance to have multiple decay
paths if such channels have components in the resonance’s
wavefunction. If a resonance C couples to open channels
a+ b and c+ d, then we can observed the following scat-
tering reactions with their associated cross sections:

a+ b→ C → a+ b, σ = G
Γ 2
a+b

(E − Ea+b
r )2 + (Γtot/2)2

(30)

a+ b→ C → d+ e, σ = G
Γa+bΓd+e

(E − Ea+b
r )2 + (Γtot/2)2

(31)

d+ e→ C → a+ b, σ = G
Γd+eΓa+b

(E − Ed+e
r )2 + (Γtot/2)2

(32)

d+ e→ C → d+ e, σ = G
Γ 2
d+e

(E − Ed+e
r )2 + (Γtot/2)2

(33)

Here G = π/k2∞(2JC + 1)/(2J1 + 1)/(2J2 + 1) and JC is
the spin of the resonance, while J1 and J2 are the spins
of the two particle in the entrance channels. Ea+b

r and
Ed+e

r are the resonance energies above the appropriate
thresholds. For example in reaction (30), J1 and J2 are
just the spins of particles a and b. Each open decay channel
has a partial decay width associated with it. In the above
example, these are Γa+b and Γd+e and the total decay
width is of course the sum of these partial widths, i.e.,
Γtot = Γa+b+Γd+e. The cross section of Eqs. (30) and (31)
should be interpreted as follows: the total cross section for
the formation of the resonance is

σ = G
Γa+bΓtot

(E − Ea+b
r )2 + (Γtot/2)2

(34)

Once the resonance is created, it has a probability or
branching ratio of Γa+b/Γtot for decay to the a+ b chan-
nel and Γd+e/Γtot for decay to the d + e channel. These
branching ratios apply no matter how the resonances was
created.

In R-matrix theory [11], the partial decay width for a
channel λ is

Γλ = 2k∞RPℓΘ
2
λγ

2
λ (35)

whereR is the channel radius, Pℓ is the angular-momentum-
dependent barrier penetration probability, γ2λ = 3h̄2/2MR2

is the reduced single-particle width, and Θ2
λ is the frac-

tional reduced width. For a pure single-particle state,Θ2
λ =

1, and the final width is determined from the barrier pen-
etration probability. For states of mixed configurations,
Θ2

λ < 1. Nuclear resonances with energies above the bar-
rier such that Pℓ → 1 can be narrow if Θ2

λ is small (large
mixing).

4 Experimental techniques to measure exotic
resonances

Resonances can be probed experimentally by a number
of techniques. In this section we will discuss just two ex-
amples, one that involves scattering and one that looks
directly at the resonance decay products.

4.1 Resonance elastic scattering

There is a long history of probing resonances with stable
targets using elastic scattering. By elastic one means that
the projectile is just deflected without losing any energy.
At low energies, elastic scattering is dominated by reso-
nance scattering. Using beams of neutrons, protons, or α
particles one measures the cross section for these particles
to be scattered at one or more angles and then modifies
the beam energy in small increments to scan an energy re-
gion and map out the resonance peaks. Such a technique
does not work for exotic nuclei near and beyond the drip
lines as no stable target nuclei exist. The appropriate tar-
get isotopes have short half-lives making the fabrication
of physical targets impossible.

The solution to problem is to turn the reaction around
and use exotic beams rather than exotic targets. Isotopes
with half-lives greater than 1 ms can readily be made
into beams. For example, instead of shooting protons on
an exotic target, we can shoot an exotic beam on hydrogen
target nuclei. Although pure hydrogen targets are some-
times used, they are not always necessary, one can often
use a polyethylene [(C2H4)n] or methane (CH4) targets
and from measuring appropriate quantities separate out
products produced with the hydrogen and carbon com-
ponents of these targets. This technique of turning the
reaction around, called reverse kinematics, does not work
for neutrons of course, one cannot make a neutron tar-
get. So elastic scattering in reverse kinematics can only
be used to probes exotic proton or other charged-particle
resonances.

Consider the schematic shown in Fig. 10 for measuring
proton resonances in 14F. The latter isotope is beyond the
proton drip line so its ground state is a resonance as well
as all its excited states. A 13O radioactive beam is directed
into a volume containing hydrogen or methane gas. The
13O ground state has a 8.6 ms half life and is situated just
inside the proton drip line. Interactions of the 13O beam
with the gas molecules cause the beam particles to slow
down and the gas pressure and volume length are chosen
so that the beam will stop within the gas volume. This
all happens in a time scale significantly smaller than the
liftime of 8.6 ms. While the 13O fragments are slowing
down, it is also possible for them to elastically scatter off
the hydrogen nuclei in the gas molecules. If the hydrogen
nuclei (protons) are scattered forward they are given high
velocities. In the limit that the beam mass number A is
large, the forward-going proton are recoiled to twice the
velocity of the beam at the time of the collision. The large
velocities and smaller charge on the protons means they
can travel much further in the gas before stopping than
the 13O projectiles. Proton detectors are places at forward
angle to intercept these protons are they leave the gas
volume and measure their kinetic energy. In addition, the
time from when the 13O isotope entered the volume until
the proton is detected is recorded. The latter is used to
remove events with are not elastic or from interactions
with the carbon nuclei if methane gas is used.

With knowledge of the stopping powers of 13O ions and
protons in the gas, one can determine a unique relation-
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Fig. 10. Schematic showing the resonance elastic-scattering
method with exotic beams.

Fig. 11. Elastic scattering cross sections for p+13O determined
by Goldberg et al. [7] as a function of proton energy. Arrows
show the location of fitted resonances in 14F with the ground
state (g.s.) resonance labeled.

ship between the detected proton energy and the location
in the gas volume at which the elastic-scattering event oc-
curred. From this one can determine the energy of the 13O
before the scattering event and the energy of the proton
after this event. One can then plot the elastic scattering
cross section as a function of 13O energy or equivalent pro-
ton energy in normal kinematics and look for resonances.
One advantage of this method is that an energy scan is
done automatically, i.e. all energy below the beam energy
are probed in one setting.

The elastically-scattered cross sections measured by
Goldberg et al. [7] are shown in Fig. 11. The centroid of
the resonance peaks, as obtained from fits to these data
(curves), are indicated by the arrows. The two higher-
energy resonance peaks are quite clear in this example,
however the two lower-energy resonances overlap and are
more difficult to extract. Figure 12 shows another example
of resonance elastic scattering, this time for the neighbor-
ing reaction p+14O making resonances in 15F. In this case
there are only two resonances, the ground-state which is
not very pronounced and the much more pronounced first
excited state.

Inverse-kinematic resonance elastic scattering has a
role in mapping out the resonances in nuclei beyond the
proton drip line. Look at Fig. 13 where a portion of the
chart of nuclides for light systems is shown. The small

Fig. 12. Elastic scattering cross sections for p+14O determined
by Goldberg et al. [7]. as a function of proton energy.

(blue) arrows indicate the fluorine isotopes beyond the
proton drip line which have been, or could be, accessed
by this technique. Notice that it would not be possible to
study 13F by this method as it does not have a particle-
stable (red) isotopes below it (12O, t1/2 ∼10−21 s) which
lives long enough to be accelerated and used as a beam.
There are certainly many other cases that cannot be ac-
cessed by this technique, but it is quite important for odd-
Z nuclei like fluorine.

4.2 Invariant-mass spectroscopy

In the theory of relativity, the invariant mass of an object
is just its rest mass. For a systems of objects, the invari-
ant mass is just the total relativistic mass in their center-
of-mass frame. Invariant-mass spectroscopy is used when
all the decay products of a resonance are detected and
identified. Histograms of their measured invariant mass
will show peak associated with the resonance. The reac-
tion by which the resonance is made is not so important,
it could be elastic scattering, but more likely it involves
transfer, knockout, or pickups reactions where the nucle-
ons are added or removed from the projectile nucleus.

Rather than invariant mass, one often plots the total
decay kinetic energy ET which differs from the former by
the sum of the rest masses of each of the decay products.
For example, consider the kinematics for the two-body
decay of 16F to p+ 15O shown schematically in Fig. 14.
The center-of-mass velocity vector (vc.m. of the two de-
cay products is of course just the velocity of the 16F reso-
nance [vlab(

16F)] before it decayed. Subtracting this veloc-
ity from the measured velocity of both fragments [vlab(p)
and vlab(

15O)] gives us the velocities at which they were
emitted by the decaying 16F fragment (vp and v15O). The
total decay kinetic energy ET can then be obtained from
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Fig. 13. The chart of nuclides in the region for the very light
nuclei showing the drip lines, the stable, particle-stable, and
particle-unstable nuclei. The small (blue) arrow indicate the
fluorine isotopes beyond the proton drip line which can be
accesses by inverse-kinematics resonance elastic-scattering.
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Fig. 14. Schematic showing the kinematics for the decay of a
16F resonance into the p+15O channel.

the kinetic energy of the two fragments in this center-of-
mass frame.

To perform invariant-mass spectroscopy, one needs a
detector array that covers the angular and energies ranges
of the emitted decay products. In addition, the velocity
vectors of all fragments need to be detected accurately.
The latter is usually achieved with measurements of both
the energies and angles of the decay products. The de-
vice I use extensively for this is the HiRA (High Resolu-
tion Array) detector [17]. A picture of this device in the
configuration used for invariant-mass studies is shown in
Fig. 15. The front elements of 14 telescopes are visible.

Fig. 15. An image of the HiRA detector array in its configu-
ration used for invariant-mass spectroscopy

Each of these front elements is comprised of silicon strip
detectors. There are 32 strips on the front and 32 strips on
the back. The front and back strips are orientated perpen-
dicular to each other. A particle passing through these sil-
icon detectors will fire one strip on the front and one strip
on the back which allows us to determine the scattering
angle very accuractely. Behind the silicon strip detectors
are thick CsI scintillators which stop the incident particle.
The light output of these scintillators is measured with
photodiodes and gives information of the kinetic energy
of the incident particle.

As an example, the decay-energy spectrum measured
for the p+15O channel of 16F resonances is displayed in
Fig. 16. It was obtained from events where a proton and
a 15O fragments were detected in coincidence following
interactions of a 17Ne beam upon a 9Be target. Peripheral
collisions can create 16F resonances by knocking out a
proton from the beam projectile. Resonance peaks for the
ground and three excited states are observed, although
the first-excited state is not that prominent.

The invariant-mass technique is used quite extensively
in high-energy physics. For example, Fig. 17 shows the
invariant-mass spectrum obtained from events with two
high-energy γ rays measured from p-p collisions at CERN.
The spectrum consists of a small bump on a smoothly
falling background. The lower panel shows the results when
a smooth background is subtracted revealing a peak at
125 GeV which has been assigned to the Higgs Boson [1].
The Higgs boson also has many other possible decay chan-
nels, but the invariant-mass should be the same in all these
channels as it is just a measure of the Higgs mass.

5 Three-body Resonances

Up until now we have only considered resonances which
couple to two-body exit and entrance channels. However
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Fig. 16. Invariant-mass technique for 16F resonances obtained
from detected p+15O events. Axes for both the decay energy
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Fig. 17. (top) Invariant-mass distribution for γ-γ pairs form
p+p collisions at CERN. (bottom) The same spectrum after a
smooth background spectrum has been subtracted revealing a
peak at 126 GeV corresponding to the Higgs Boson. (Figure
from Ref. [1]).

resonances can have three or more particles in these chan-
nels. Experimentally three-particle scattering is not some-
thing that can be accomplished in the laboratory and we
rely on other reaction mechanisms to create these reso-
nances and the multi-particle exit channel can then be
observed. Invariant-mass spectroscopy can then easily be
extended to such resonances as long as all the decay prod-
ucts are detected.

Three-body resonances are usually described as one of
two kinds:

1. Prompt or “true” three-body decay where all three
final fragments are created at the same instance.

C12

α+g.s.Be8 α+α+α

+0

+2

+0

-3

g.s.

=5.5 evΓ
s-17 10×=81/2t

Hoyle
state

γ

γ

Fig. 18. Level Scheme of 12C showing the Hoyle state and its
decay paths.

2. Sequential where the decay is really two sequences of
two-body decay. Such a decay should be considered as
a two-body decay but where one of the final products
of the first decay is a two-body resonance which then
subsequently decays.

The sequential mechanism is distinct from prompt decay
as long as the intermediate resonance is long-lived so that
there is no interaction between the products produced in
the two steps.

5.1 Sequential decay

An example of a sequential three-body decay is the second
excited state of 12C, the so-called Hoyle state, named after
Fred Hoyle who predicted its existence was necessary in or-
der to make carbon and heavier elements in stars. The low-
lying level scheme for 12C is shown in Fig. 18. The Hoyle
state is the second Jπ=0+ state in 12C at E∗=7.65 MeV.
This state decays into an α particle and the ground-state
of 8Be. The latter is itself a resonance and decays into
two α particles. So the Hoyle states decays by two steps
of binary breakup to produce three α particles. The 8Be
intermediate resonance has a half life of 8×10−17 s and in
one half life, the first emitted α particle moves 370000 fm
away from the 8Be resonance. This is a relatively huge sep-
aration, compared to the radius of 12C (∼3 fm). Therefore
there are no interactions between the first α particle and
those emitted from the decay of the 8Be intermediate.

Astrophysically, the creation of 12C occurs in the re-
verse order. Two α particles coalesce to make a 8Be res-
onance. If another α particle comes along at the right
energy before this 8Be resonance decays, then the Hoyle
state can be made. In most cases, the Hoyle state sequen-
tially decays back again into three α particles. However
the Hoyle state has a very small γ-decay branch to the
first excited state of 12C. The latter decays by γ emission
to the ground state.
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Fig. 19. Schematic showing the levels important for the decay
of 45Fe.

5.2 Two-Nucleon Decay

The possibility of promptly emitting of two nucleons from
the ground state of exotic nuclei was first considered by
Goldansky in 1960. Goldansky looked for isotopes where
single-nucleon emission was not energetically possible, but
two-nucleon emission was allowed. As an example, con-
sider the two-proton decay of 45Fe which is located just
beyond the proton drip line. As shown in Fig. 19, single-
proton emission from the ground state of 45Fe to the ground
state of 44Mn is not possible energetically. However, two-
proton decay to the ground state of 43Cr is possible. There-
fore the only open particle-decay mode is a prompt two-
proton decay. This decay was observed in an optical time
projection chamber (TPC) where the ionization tracks of
the decay products in gas are visualized. Figure 20 shows
an example of such a track measured by Miernik et al.
[13]. The two-proton decay rate is slow enough in this nu-
cleus that β+ decay has time to compete. However, the
two-proton decay branch still dominates and it branching
ratio is ∼70%.

The occurrence of ground-state two-proton emitters in
the prescription of Goldansky is a consequence of pair-
ing interaction, making even-Z nuclei more bound relative
to odd-Z neighbors. Thus situations like that depicted
in Fig. 19 where the one-proton channels is inaccessible
while the two-proton is available are only found for even-
Z ground-states beyond the proton drip line. Besides 45Fe,
the ground-state of 48Ni has also been found to be of this
nature.

The short-lived ground state of 6Be has been known to
decay by the emission of two protons since 1958. The levels
associated with its decay are illustrated in Fig. 21. In this
case, single-proton decay is energetically possible through
the low-energy tail of the very wide 5Li ground-state res-
onance. However, if one imagined a sequential two-proton
decay passing through this 5Li resonance, its lifetime is
so short that the first emitted proton will have hardly
moved before the second proton from the decay of 5Li is
released. Such a situation cannot be considered sequen-

Fig. 20. A two-proton decay event recorded by an optical
time projection chamber. The longer track is the ionization
trail of a 45Fe nucleus coming in from the left that is slowing
down in a gas volume and eventually stops. The two smaller
tracks originating from the end of the 45Fe trail are the two-
proton decay products. These protons have low energy and are
stopped in the gas volume a short distance from where the 45Fe
decayed. Figure from Ref. [13].

g.s.Be6

s-2110×~51/2t

s-2210×~5
1/2

 +p  tg.s.Li5

 + p+ pα

Fig. 21. Schematic showing the levels important for the decay
of 6Be.

tial and it is better to consider this decay as a prompt
two-proton emission. Indeed, it was found that the angu-
lar correlations between the two emitted protons cannot
be reconciled with the distribution expected if the decay
passed through an intermediate state with the 5Li ground-
state spin of Jπ=3/2− [6].

Two-proton decays where the prospective intermediate
is very wide and larger than the prospective decay energy
of the first emitted proton are call democratic [3]. The
nucleus 6Be maybe considered partly of the Goldansky
type as most of the strength of the 5Li is energetically
inaccessible and also of the democratic type as the 5Li
decay width is so large.

The pairing interaction is also important for the demo-
cratic decay as it causes a staggering in ground-state de-
cay widths of odd and even-Z nuclei (odd-Z ground-states
tend to have larger widths than their even-Z neighbors).
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Democratic two-proton emitters are confined to light nu-
clei where the low Coulomb barriers permit wide odd-Z
ground states. There is no experimental signatures which
differentiates between the Goldansky and democratic de-
cay modes and both can be treated using the same theo-
retical models.

5.3 Survey of single and two nucleon decay beyond
the drip lines

The pairing interaction is important in both the Goldan-
sky and democratic processes and thus all prompt two-
proton ground-state emitters are even-Z. From a similar
logic, all prompt two-neutron emitters are located in the
even-N isotopes beyond the neutron drip line. Figure 22
shows a portion of the chart of nuclides summarizing the
decay modes of light nuclei beyond the drip lines. Known
two-proton emitters in this region (6Be, 8C, 12O, 15Ne,
16Ne, and 19Mg) all have even-Z. In contrast the odd-Z
isotopes beyond the proton drip line are all single-proton
emitters. On the neutron rich-side, we see known two-
neutron ground-state emitters (5H, 10He, 13Li, 16Be, and
16O) all have even N . Again the odd-N isotopes beyond
the neutron drip lines are all single-neutron emitters. A
number of such cases are considered virtual states, i.e.,
strong neutron single-particle structure but where the un-
bound neutron is in an ℓ=0 single-particle level and thus
has no barrier. Virtual states are not true resonances, they
do not show a phase shift of π radians, nor do they have
a lifetime associated with them. However, if the neutron
mean-field potential was made slightly deeper, then they
would have a bound s1/2 neutron level. This attractive
mean field potential gives rise to attractive final-state in-
teractions between the neutrons and the core which can
often be seen as enhancements in the invariant-mass spec-
trum at very small core-neutron relative energies. Virtual
ground-states have been reported for 9He, 10Li, 12Li, 13Be,
and 18B, although some of these claims have been dis-
puted.

The lifetime of two-nucleon emitters depends on the
height of the barrier constraining the two valence nucleons
inside of the nucleus. Ground-state two-proton emitters
show a general increase in their liftime with mass due to
the increasing Coulomb barrier. The lightest two-proton
emitter 6Be has a lifetime of 5×10−21 s,19Mg has a value
of ∼4 ps [8], and as we have seen 45Fe has a lifetime of
∼2 ns. Heavier two-proton emitter would have even larger
lifetimes.

Two-neutron emitters, which have only centrifugal bar-
riers, are generally expected to have short lifetimes. How-
ever, an exception to this is the two-neutron emitter 26O
which has a measured lifetime of ∼4.5 ps [12,10]. Such
a relatively long lifetime is unexpected in a two-neutron
emitter as the neutrons are only constrained by a centrifu-
gal barrier. However, the barrier penetration probability
is dependent both on the barrier height and the energy of
the state inside of the barrier. Grigorenko et al. [9] showed,
in their model calculations, that the decay energy of this

state needs to be very small, less than 1 keV to attain such
a long lifetime.

5.4 Heavier isotopes

The neutron drip line is known up to oxygen at present, so
there is no more information on the neutron decay of heav-
ier neutron-rich ground-state nuclei. On the other hand,
partial information on the proton drip line is known up
to bismuth. For example, Fig. 23 shows a portion of the
chart of nuclides centered on the proton-rich Tm isotopes
(Z=68). Where the proton drip line is known experimen-
tally, it is indicated by the solid lines in this figure. The
extent of the drip line for the even-Z isotopes has not
been measured, but the predictions of a particular mass
model are indicated by the dashed lines. The drip line
has a very strong odd-even structure due to the pairing
interaction creating long “fingers”. Only odd-Z nuclei are
known beyond the drip line at present in this region and no
two-proton ground-state emitters have been identified in
this region, just single-proton emitters. However predicted
two-proton emitters are indicated by the yellow squares,
a long way from the drip line. Now the isotopes where
a one-proton branch has been identified are indicated by
the green squares. Notice that odd-Z isotopes just beyond
the drip line have no known proton decay branch. For ex-
ample it is not until 147Tm, that a ground-state proton
decay branch has been identified and here it has just a
15% branching ratio with the weak decays, β+ and elec-
tron capture, comprising the rest of the strength. It is of
the course the large Coulomb barriers that has suppressed
proton decay in this region, and its not until one is well
beyond the drip line that proton decay becomes significant
and competes with the weak-decay modes. With the large
Coulomb barriers, the lifetimes in this region are very long
of order of seconds.

5.5 Correlations in two-nucleon decay

The correlations between the momentum vectors of the de-
cay products in three-body decay contains potential infor-
mation on the decay path and structure of the resonance.
The three decay products, each with their own momen-
tum vector, represents nine degrees of freedom. However
in frame of the decaying system, their total momentum is
zero reducing the degrees of freedom to six. As the sum of
the kinetic energies of the products is fixed to the decay
energy, this also reduces the degrees of freedom by one
to five. Finally, any orientation of the momentum vectors
can be randomly rotated by the three Euler angles. These
orientations are all considered equivalent, so this leaves us
with two final degrees of freedom to fully describe the mo-
mentum correlations. So for three-body decay, the corre-
lations between the momenta of the three decay products
can be represented by a two-dimensional distribution. One
has a choice in the exact variables for the two axes.

We will concentrate on only one aspect of these cor-
relations concerning the kinetic energy sharing between
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Fig. 24. Kinetic energies in two-proton decay. Dependence of
the barrier penetration probabilities of the two protons (P1 and
P2) and their product on the energies of the two protons E1 and
E2. Results are shown for a total decay energy of E1+E2=1.45
MeV and (a) a core of Zcore=2 and (b) a core of Zcore=8.

the two protons. Consider the case of a large core mass
where the core kinetic energy in the center-of-mass frame
is small. If the kinetic energies of the two protons are E1

and E2 where E1 + E2 = ET (the total decay energy)
which is a constant, then the distribution f(E1) of the
kinetic energies can be obtained from the product of the
barrier penetration probabilities, i.e,

f(E1) ∝ P (E1)P (E2). (36)

Figure 24 shows the kinetic energy dependence of the two
barrier penetrating factors and their products for a to-
tal decay energy of 1.45 MeV and for cores of Zcore=2
and 8. The product of the two terms always peaks at
E1=E2=ET /2 and the more sub-barrier the penetration,
the faster the penetration factors increase with kinetic en-
ergy, and thus the narrower is the maximum in the prod-
uct. This argument was originally made by Goldansky to
conclude that, on average, the two protons have equal ki-
netic energies in two-proton decay. As the Coulomb bar-
rier becomes larger for heavier masses and the two-proton
decay becomes more sub-barrier, the fluctuations around
equal energy sharing also becomes smaller. Experimentally
this trend has been established. Figure 25 shows the mea-
sured distributions of Ex/ET where Ex can be either E1 or
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Fig. 25. Experimental distributions of the relative kinetic en-
ergy between one of the protons and the core for three ground-
state two-proton emitters.

E2, i.e., relative kinetic energy between one of the protons
and the core for three ground-state two-proton emitters.
All measured distributions peak close to 0.5, i.e., where
the two proton kinetic energies are equal. Also the widths
of these experimental distributions become narrower with
increasing mass number reflecting the larger Coulomb bar-
riers.

6 Compound Nucleus Decay

So far we have concentrated on ground-state resonances
and those at low excitation energies. As the excitation
energy increases, the spacing between resonances D get
smaller i.e., the level density increases, and the average
width of the resonances increases. At some point we leave
the region of isolated resonances where they are separated
from each other and start the region of overlapping reso-
nances (as displayed schematically in Fig. 26) where con-
cept of a compound nucleus comes into play.

6.1 Level Density

In order to estimate how quickly the level density increases
with excitation energy, we can start with our simple single-
particle model. Let us just consider one type of nucleon
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Fig. 27. Enumeration of single-particle configurations for the
specified excitation energies for a model of equally spaced
single-particle levels.

and ignore the nucleon spin. For further simplification, let
us assume the single-particle levels have uniform spacing,
separated by an energy d. As different nuclear states are
produced by rearranging the filling of the single-particle
levels, it is clear that only excitation energies of multi-
ples of d are allowed in this model. Figure 27 enumerates
the possible single-particle configurations that produce the
ground state and excitation energies of d, 2d, and 3d in
this model. In this figure, dots are a filled levels and each
vertical row of dots represents a different single-particle
configuration.

The ground state is a single configuration where all
the level are filled up to the Fermi energy εFermi. The
first excited state (E∗ = d) is obtained by promoting the
valence nucleon to the next higher single-particle state
creating a particle-hole excitation. There are two ways
of obtaining E∗ = 2d; either promoting the valence nu-
cleon up two single-particle levels or promoting the nu-

=42ρE*=10 d,   

Fig. 28. Enumeration of the single-particle configurations for
an excitation energy of 10 d, where d is the spacing between
single-paricle levels.

cleon below this valence level by two units of d. In both
case one is making a particle-hole excitation. There are
three ways of producing excitation energy E∗ = 3d, again
all involve particle-hole excitations. There are five ways
of producing E∗ = 4d, either by a single particle-hole ex-
citations or by a two-particle-two-hole excitation. Higher
excitation energies require one to consider all the possible
combinatorics of particle-hole and multi-particle, multi-
hole excitations. Although for the low excitation energies
considered in Fig. 27, the level density did not increase
drastically, this behavior changes. For E∗ = 10d, there are
42 possible combinations, which are displayed in Fig. 28,
and the combinatorics increase very rapidly at even higher
excitation energies.

Analytical solutions to this problems were first con-
sider by Euler 1737, though not in terms of nuclear levels
densities. The nuclear problem was solved by Bethe in
1936 and the solution is called the Fermi-gas level density,
i.e.,

ρ(E∗) =
1√
48E∗

exp
(
2
√
aE∗

)
, (37)

where the level-density parameter is

a =
π2

6
g (38)

and g is the single-particle level density. In our simple
model g = 1/d, but the formula can be extended to in-
clude realistic ingrediants including two nucleon types and
nonequal single-particle spacings where now

a =
π2

6
[gn(ε

n
Fermi) + gp(ε

p
Fermi)] (39)

which includes the sum of the neutron and proton single-
particle level densities at their respective Fermi energies.
Of course our single-particle picture has deficiencies as
discussed in Sec. 3. Although configuration mixing con-
serves the number of nuclear levels, there is some rear-
rangement in their energies. Modifications have been made
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Fig. 29. Nuclear level density in the Fermi-gas model as a
function of excitation energy for A=160.

to the Fermi gas formula to account for these effects, but
these modifications wash out with excitation energy and
the Fermi gas form is generally consider to be the correct
asymptotic form at high excitation energies.

Using realistic single-particle level densities, we show
the nuclear level density obtain from Eq. (37) for a nucleus
with A=160 in Fig. 29. For nuclei near stability, the neu-
tron separation energy is around 8 MeV. The resonances
start above this separation energy. From Fig. 29 we see
that there are ∼109 level per MeV at E∗=8 MeV. This is
quite different to the lighter nuclei we considered in the
beginning of this work. For example, consider the neutron
resonances in 13C shown Fig. 8. The first resonance does
not occur until ∼2 MeV above the n+12C threshold. This
demonstrates the strong dependence of the nuclear level
density on mass number A.

Obviously with such large nuclear level densities in the
resonance region for these heavier nuclei, it is impossible
to determine the level density by counting all of these lev-
els. However for neutron energies just above the neutron
threshold, one only sees resonances with ℓ=0 in elastic
scattering and total cross section measurements. For ex-
ample, the total cross section measured for n+232Th at
energies up to 200 keV is shown in Fig. 30. At these
small energies, the barrier penetration probabilities Pℓ are
very small for ℓ > 0. For example at En=100 keV, P0=1
while P1 ∼10−4 and with similar Θ2 values, the ℓ = 1
resonances with be greatly suppressed. Thus the peaks
observed in Fig. 30 are all s1/2 resonances associated with

J=1/2+ states in 233Th.

From measurements such as these, the density of s1/2
levels has been obtained for most stable isotopes. The
Fermi-gas formula can been extended to give the density

Fig. 30. Total neutron cross section for the reaction n+232Th
for neutron energies up to 210 keV. Taken from Ref. [4].

of levels for a fixed J , i.e.

ρ(E∗, J) ∝ a5/2
2J + 1

(E∗ − J(J+1)
2Irig

)7/4

× exp

[
2

√
a

(
E∗ − J(J + 1)

2Irig

)]
(40)

where Irig is an rigid-body moment of inertia of the nu-
cleus. Using this formula, the level-density parameter can
be extracted from the density of s1/2 levels. The mass
dependence of extracted level-density parameters [2] is
shown in Fig. 31.

These experimental level-density parameters approxi-
mately follow the linear relationship, a = A/8 MeV−1, but
there are large fluctuations associated with shell closures
which is most noticeable at A=208, corresponding to re-
gion near the double closed-shell nucleus 208Pb. Shell clo-
sures correspond to large gaps between the single-particle
levels, and hence to small level-density parameters a. These
neutron-resonance measurements cannot be extended to
unstable nuclei so the symmetry [(N −Z)/A] dependence
of the level-density parameter is not well established.

6.2 Decay in the Overlap region

In region of excitation energies with high level densities,
there are many single-particle configurations of similar en-
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Fig. 31. Level-density parameters extracted from the density
of ℓ=0 neutron resonances just above the neutron separation
energy.

ergy for which one can mix. Thus configuration mixing is
especially strong in this region and levels generally do not
have strong single-particle character. Also with this strong
mixing, the decay of a resonance can be spread over many
exit channels.

When we first enter the region of overlapping levels,
the cross section for any open channel show strong fluc-
tuations. For example in Fig. 32, the total cross section
for the n+27Al reaction at neutron energies of 5 to 7 MeV
is shown. The fluctuations are not individual resonances,
rather they are due to interferences between the overlap-
ping resonances in 28Al. These fluctuations were originally
predicted by Ericson in 1960 [5] and they are over energy
scales of the order of the mean decay width. Given the
large number of resonances involved, one cannot contem-
plate predicting the details of these fluctuations. Rather
the mean values of the cross section after the fluctuations
have been smoothed out are amenable to prediction. Such
smoothing is often done experimentally due to the ex-
perimental energy resolution. Also in the limit of extreme
mixing, the fluctuation-averaged partial widths can be ob-
tained from statistical arguments giving rise to the statis-
tical model of compound-nucleus decay

6.3 Particle Evaporation

In the statistical model, the total decay width for neu-
tron or charged particle emission in the overlap region is
determined using the prescription developed separately by
Weisskopf and Ewing using the principle of detail balance.
Consider a compound nucleus with excitation energy E∗

at rest in a confining box of volume V with elastic walls
which is shown as state (a) in Fig. 33. If the compound nu-
cleus decays emitting a neutron with kinetic energy from
Ek to Ek + dE (velocity v and momentum p) then it is in
state (b) of Fig. 33. By energy conservation, the daugh-
ter nucleus formed after the neutron emission will have an
excitation energy of E∗ − Sn − Ek.

Fig. 32. Eriscon fluctuations in the total cross section for
n+27Al reaction from Re. [14].

A,E*

CN

k-E
n

A-1,E*-S

k
n,E

State (b)

State (a)

Fig. 33. Schematic showing the equilibrium between the emis-
sion and absorption of a neutron for an compound nucleus en-
closed in a reflecting box.
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The neutron can bounce around the box elastically un-
til it is eventually reabsorbed into the compound nucleus.
If we consider an equilibrium is achieved between states
(a) and (b), then from the principle of detail balance

ρawab = ρbwba (41)

where ρa and ρb are the density of states for configurations
(a) and (b), respectively and wab is the rate of transition
from (a) to (b), while wba is the reverse rate.

Now ρa is just the compound-nucleus level density
ρCN (E∗) while ρb consists of the product of the phase
space of the neutron 4πp2V/h̄3dp/dEkdEk, the neutron’s
spin multiplicity 2s + 1 where s=1/2 for a neutron, and
the level density of the daughter ρd(E

∗ − Sn −Ek). Thus

ρb = (2s+ 1)
4πp2V

h̄3
ρd(E

∗ − Sn − Ek). (42)

The reverse rate wba is related to the cross section
σinv(Ek) for capture of the neutron by the daughter. This
is often called the inverse capture cross section in this
context. This cross section represents the effective area
around the neutron for which interactions with the target
can occurs. In unit time, this area sweeps out a volume
vσinv and the probability of interacting with the daughter
nucleus is then just the ratio of this volume to the total
box volume, i.e.,

wba =
vσinv(Ek)

V
. (43)

We can thus solve Eq. (41) to obtain the forward rate
which is related to the patial decay width, i.e.,

wab =
Γn(Ek)dE

h̄
=

(2s+ 1)m

(πh̄)2
Ekσinv(Ek)

× ρd(E
∗ − Sn − Ek)

ρCN (E∗)
(44)

Notice that the box volume V has dropped out of this
equation and thus we are at liberty to increase the box size
to infinity. The assumption in statisical theory is that this
equilibrium rate wab is still valid even when the reverse
process is absent.

Integrating over all neutron energies we obtain the to-
tal partial decay width for neutron emission as

Γn(E
∗) =

(2s+ 1)m

(πh̄)2ρCN (E∗)

×
∫ E∗−Sn

0

Ekσinvρd(E
∗ − Sn − Ek)dE. (45)

Similar expressions can be derived using detailed balance
for proton, α-particle, and γ emissions and the sum of
these represents the total decay width Γtot. Again the
probability for neutron emission is just Γn/Γtot.

The many possible decay channels for a compound nu-
cleus are illustrated by the schematic in Fig. 34. We show

(Z,A)

(Z-1,A-1) + p
(Z,A-1) + n

 decayγ
(E1,E2,M1,...)

CN

*
E

Fig. 34. Schematic illustrating the varied possible decay paths
of a compound nucleus. For both the initial and possible daugh-
ter nuclei, the decay can be to the region of isolated levels or
to the region of overlapping levels (hashed regions).

only proton and neutron decay modes here, but α-particle
and more complex fragments can be emitted. For heavy
nuclei, fission decay can also be incorporated as a compet-
ing mode. The figure differentiates decays to the regions
of isolated and overlapping resonances in the daughter nu-
clei. If the decay is to the overlapping resonance region,
then this daughter should be considered as a compound
nucleus itself and its decay modes can be similarly enumer-
ated. By such a mechanism, a initial compound nucleus
can decay by a series of sequential particle or γ decays as
it loses its initial excitation energy eventually arriving at
a ground-state.

6.4 Fusion Reactions for Creating Proton-Rich Nuclei

As an example of compound-nucleus decay, consider the
creation of the ground-state proton emitters in Tm iso-
topes of Fig. 23. These isotopes were produced with fusion-
evaporation reactions. The 147Tm isotope was produced
via the E=261 MeV 58Ni+92Mo fusion reaction produc-
ing a 150Yb compound nucleus with an excitation energy
of E∗=52 MeV. This excitation energy is removed by a
sequential series of mainly proton emissions, but α and
neutron emissions can contribute. The emission of γ- rays
does not becomes significant until particle emission is en-
ergetically forbidden. Three examples of the possible de-
cay sequences are listed as Eqs. (46-48).

In the first case [Eq. (46)], three protons are emitted se-
quentially forming a 147Ho excited state which then γ de-
cays to its ground state. In the second example [Eq. (47)],
the first two steps are the same as in the first case, but a
neutron is emitted at the third step. In the third exam-
ple [Eq. (48)], neutrons are emitted in the first and the
third steps. In addition to these examples, many other de-
cay sequences are possible. Such decay processes are very
amenable to Monte Carlo techniques. The probabilities
at each possible decay step are calculated for each com-
pound nucleus and the decay mode is chosen from these
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150Yb∗ →149 Tm∗ + p→147 Er∗ + p+ p→147 Ho∗ + p+ p+ p→147 Hog.s. + p+ p+ p+ γ’s (46)
150Yb∗ →149 Tm∗ + p→148 Er∗ + p+ p→147 Er∗ + n+ p+ p→147 Erg.s. + p+ p+ n+ γ’s (47)

150Yb∗ →149 Yb∗ + n→148 Tm∗ + p+ n→147 Tm+ n+ p+ n→147 Tmg.s. + n+ p+ n+ γ’s (48)

probabilities in a Monte Carlo fashion. If the new daugh-
ter nucleus is excited, then the probabilities for its possible
decay modes are calculated and again the decay path is
chosen in a Monte Carlo fashion. This is continued until
the excitation energy is exhausted.

The distribution of final products, called evaporation
residues, predicted by a Monte Carlo code is shown in
Fig. 35. The relative yield for each isotopes is indicated
by the area of the black circles. The highest yield are pre-
dicted to be for 147Ho and 146Dy isotopes corresponding
to the emission of three and four protons respectively. The
nuclei in this region are all proton-rich with small proton
separation energies making proton emission more proba-
ble than neutron emission. The other significant residues
populated are 147Er and 146Ho corresponding to the 2pn
and 3pn channels and 144Dy formed from the α2p chan-
nel. The yield for the ground-state emitter 147Tm from
the p2n chanel is quite small, it is predicted to represent
less than 1% of the total yield.

The discovery of the lighter two Tm isotopes (145Tm
and 144Tm) was achieved with the same fusion reaction,
but with higher bombarding energies and hence with com-
pound nuclei of higher excitation energies. This increased
excitation energy permitted the evaporation of more par-
ticles in the decay allowing for the small probability of
emitting extra neutrons to form these more proton-rich
Tm isotopes.

6.5 Compound-nucleus decay in the r-process

Another example of the use of the statistical model of
compound-nucleus decay is for r-process nucleosynthesis.
This process is thought to occur in astrophysical environ-
ments with large neutron fluxes. Initial seed nuclei can
begin a series of neutron capture and β decays creating
neutron-rich isotopes close to the neutron drip line all the
way up to uranium. After the astrophysical event creating
the neutron flux dies down, the neutron-rich isotopes cre-
ated in this process undergoe a series β decays eventually
producing the stable isotopes.

In modeling this process and determining which astro-
physical events (supernova or neutron-star merges) are the
main contributer to r-process material, it is necessary to
know the neutron capture cross sections. The capture can
be through a resonance where the cross section is given
by the product of two terms, i.e., σcapture and Γγ/Γtot.
The first term, the capture cross section, gives the prob-
ability that a resonance is formed while the second gives
the probability that it decays by γ emission rather than
re-emitting the captured neutron. In some cases we are

dealing with capture by an isolated resonance, in which
case detailed knowledge of the resonance parameters are
needed. Alternatively the capture could be to the overlap-
ping region and here the statistical model can be used to
determined the second term. One of the greatest uncer-
tainties in this case, is the knowledge of the level-density
parameters for such neutron-rich isotopes. The neutron-
resonance-counting method that was used to obtained the
systematics of Fig. 31 can only work for stable isotopes.
Clearly knowledge of the locations of closed-shells is re-
quired for the neutron-rich system, but it is important to
know if the average behavior still follows the A/8 MeV−1

dependence seen in Fig. 31 or are there important de-
pendences on the asymmetry parameter (N − Z)/A not
considered. These topics are under active research at the
present moment.

7 Conclusions

In the preceding sections we have investigated the diverse
nature of resonances. Although the basic features of reso-
nances can be understood in a purely single-particle pic-
ture where barrier penetration gives rise to the long life-
times, this picture does not apply to all resonances. How-
ever this single-particle picture can provide an a reason-
able approximation for some lower-lying resonances. But
for other lower-lying resonances and those at higher ex-
citations, mixing of these single-particle configuration is
very important. This mixing becomes quite extreme in
the region of overlapping resonances at higher excitation
energies.

Beyond the drip lines, all ground states are resonances
and giving rise to ground-state neutron and proton emit-
ters. The ground-state proton emitters tend to have longer
lifetimes than their neutron emitting cousins due to the
presence of their Coulomb barriers which retards their de-
cay. This trend is most pronounced for heavier nuclei be-
yond the proton drip line where the larger Coulomb barri-
ers give rise to proton lifetimes which are of similar order
or smaller than weak decay lifetimes.

In addition to ground states which decay by single
nucleon emission, the pairing interaction is responsible
for the existence of two-proton and two-neutron emitters.
Such ground-state nuclei undergo a novel three-body de-
cay mechanism.

At high excitation energies, resonances start to over-
lap. In this regime, the concept of a compound nucleus
was explored. Compound nuclei can decay by a series of
proton, neutron, α-particle emissions creating a distribu-
tion of ground-state isotopes. Such reactions have been
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Fig. 35. Predicted yield of final decay products following the decay of the compound nucleus 150Yb with 52 MeV of excitation
energy. The yield of a particular nuclide is proportional to the area of circle. A small fraction of the yield is in isotopes beyond
the proton drip line which permits one to study their ground-state proton decay.

used to create the heaviest ground-state proton emitters
identified. The compound-nucleus decay of very neutron
exotic nuclei ia also important for understanding the r-
process in nucleosynthesis. Clearly resonances are vibrant
area of research for exotic nuclei and will continue to be
so in the future.
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