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CHAPTER1

Introduction

According to operationalism the meaning of a concept is given by a method of
measurement for it. This intuition was first formalized in 1927 by the Ameri-
can physicist P.W. Bridgman [1] who stated “we mean by any concept nothing
more than a set of operations; the concept is synonymous with the correspond-
ing set of operations”. Beside its obvious philosophical impact, operationalism
was many times the germ for reconsidering the foundations of existing phys-
ical theories pointing out their weakness and paving the way to new more in
principle coherent description of physical phenomena.

At the beginning of the XX century the conflict between the electromag-
netism and the laws of mechanics was solved by the deep reconsiderations of
the notions of space and time originated by the Einstein synchronization pro-
tocol. This taught us that the only reasonable way to define a physical entity
is through an experimental measurement procedure. Einstein relativity also
attested the relevance of physical principles and their ability in predicting un-
expected new phenomena. A prime example of the predicting power of solid
physical principles has been the discovery of antimatter. Guided only by the
basic rules of Quantum Theory (qt) along with the relativity principle, Dirac
wrote the equation which first predicted antiparticles, later discovered in the
Anderson’s experiment. The route from the elementary principles to the so-
phisticated laws of physics may require a tangled formal theoretical derivation,
which usually involves abstract mathematics or even the development of new
mathematical tools. The challenge is thus to pursue the principles with the
guidance of logic while mathematically deriving all their physical consequences.

In the last decades it was qt that benefitted from such an operational ap-
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proach with a renewed interest of the physicists community in his foundational
aspects. The need for a deeper understanding of qt in terms of fundamental
principles was already clear to von Neumann who expressed his dissatisfac-
tion with the mathematical formulation based on the abstract framework of
Hilbert spaces and self-adjoint operators with the words “I don’t believe in
Hilbert space anymore”. The mathematical structure of Hilbert spaces (or
C*-algebras), which is adopted as a prescription that “works well” if used as
a black box to produce experimental predictions, should emerge as a conse-
quence of postulates formulated in the language of physics, namely referring
to notions like physical system, experiment and physical process. Hence qt
should emerge from a set of rules that allow the experimenter to predict fu-
ture events on the basis of suitable tests, having local control and low ex-
perimental complexity. Driven by this belief Ludwig initiated an operational
axiomatization program [2] with the postulates corresponding to rules about
how preparation and measurement devices combine to give the probabilities
of experimental outcomes. However, Ludwig did not succeed in deriving the
whole apparatus of qt from purely operational axioms. In the following years
the raising field of Quantum Information provided a significant boost in the
understanding of qt and new light was shed on entanglement and nonlocal-
ity. These achievements enforced the idea that qt could have been regarded
as a theory of information, namely asserting basic properties of information-
processing, such as the possibility or impossibility to carry out certain tasks by
manipulating physical systems. In this scenario Lucien Hardy [3] reopened the
debate about the operational axiomatizations with the renewed interest of the
community [4–9]. The finite dimensional mathematical structure of qt was
thus derived by Giacomo Mauro D’Ariano, Paolo Perinotti and Giulio Chiri-
bella from purely operational and informational principles [10] the most crucial
ones being causality and the conservation of information. However, the princi-
ples that thoroughly interpret the probabilistic structure of qt cannot explain
the emergence of dynamical quantities and the equations of their evolution.

The research activity carried out in this thesis stems from the last con-
sideration and investigates the consequences of assuming an elementary infor-
mational framework not only for predicting the outcomes’ probability of an
experiment but also as a description of the physical dynamics occurring be-
tween the preparation and the measurement devices. Although physical quan-
tities still lie outside the sole quantum framework, qt will be considered as the
primitive notion to be extended for many reasons. qt is arguably regarded
as the most successful quantitative theory of nature and no violation has ever
been detected in any laboratory despite a huge number of experimental tests
involving light, atoms, molecules, and solids, as well as nuclei, electrons, and
other subatomic particles. Moreover qt lies at the core of Quantum Field The-
ory (qft), the most detailed description of the dynamics of physical systems
available nowadays. Finally, we already know qt to be a theory of information
processing.
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1. Introduction

Taking qt as the elementary probabilistic description of any physical ex-
periment, and pursuing the general idea that also the “mechanical” side of
physics should be described in terms of information processing, one need to
identify new informational principles for seeking dynamics in a minimal quan-
tum setting. Within this perspective the natural stage for dynamics—say
spacetime—and the usual “objects” evolving in such a stage—say particles or
more precisely quantum fields—are not primitive notions and should be recov-
ered from the above minimal informational description. The long term aim of
this program is thus a deep reconsideration of the foundations of qft which
firstly cured the tension between qt and Relativity providing a unified model
for describing the dynamics of physical systems.

Despite its impressive predictive power qft still lacks a satisfactory in-
terpretation and during the last two decades the conceptual aspects behind
its mathematical structure became a very discussed topic both in physics and
in philosophy of science (see Refs. [11–15]). Among the interpretative issues
of qft we can mention the ultraviolet divergences, the causality violation
due to the Hamiltonian description leading to the wave-function superluminal
tails [16] and the localization problem [11, 17]. The latter plays a major role
in the still present tension between Relativity and qt since it prevents the
formulation of a rigorous theory of measurement for quantum fields. The in-
compatibility between qt and relativistic spacetime sharpens in the attempt
of developing a quantum theory of gravity. In order to overcome this in-
compatibility complete, but still not falsifiable, theories have been proposed
as String Theory [18, 19] and Loop Quantum Gravity by Rovelli, Smolin and
Ashtekar. Other alternative models of spacetime are the causal sets of Bombelli
et al. [20], the non-commutative spacetime of Connes [21], the quantized space-
time of Synder [22], the Deformed Special Relativity of Camelia [23,24], Smolin
and Magueijo [25]. Some consequences of these approaches are even con-
sidered for experimental tests, see for example the recent experiment pro-
posals by Hogan [26, 27] and Brukner et al. [28] for probing a possible non-
commutative spacetime. A guideline in the recent reconsiderations of space-
time are the Hawking-Bekenstein results about the finiteness of the black hole
entropy [29, 30], which implies that the number of bits of information that
“can be stored” is finite. This led to consider the chance that spacetime at the
Planck scale could be discrete and that the amount of information in a finite
volume should be finite.

The most rigorous attempt to reformulate qft is the so called Algebraic
Quantum Field Theory, formulated by Haag and Kastler in Ref. [31] and by
Streater and Wightman in Ref. [32]. The key notion in this approach is the
principle of locality as stated in the title “Local Quantum Field Theory” of the
Haag popular book [33] on the subject. The only physical observables are
the ones connected with finite regions of spacetime and the local algebra of
observables on two space-like separated regions must commute. This princi-
ple resembles the Einstein causality and is the main relativistic ingredient of
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algebraic qft. This approach has some similarities with the aforementioned
operational point of view regarding qft as a probabilistic theory about local
measurements in finite regions of spacetime. However, the notion of locality
at the basis of the algebraic approach is strongly connected to the underlying
notion of continuous spacetime which is assumed as primitive, with fields “op-
erator valued distributions” over the Minkowski spacetime carrying a unitary
representation of the Poincaré covering group.

Giacomo Mauro D’Ariano, one of the authors who derived qt from infor-
mational principles [10], has recently undertaken the program of reconsidering
the foundations of qft, along with the notion of spacetime, starting from an
elementary theory of interacting quantum systems [34–38]. From an opera-
tional perspective, an informational theory of dynamics should describe any
physical evolution via a quantum algorithm and, more importantly, the com-
plexity of the algorithm cannot invalidate the full computability of the theory.
Moreover the framework must ensure the universality of the physical law ex-
pressed by the algorithm. These two requirements translate into two features
of the interacting quantum systems. On one hand systems must have minimal
Hilbert-space dimension with a finite set of interacting systems carrying finite
information. In view of recovering the notion of spacetime from the systems
in interaction, and identifying a finite region of the emergent spacetime with
a finite number of interacting systems, one could say that the volume-density
of information must be finite. On the other hand we have the homogeneity of
the computation, namely the graph made of the interacting systems must be
topologically homogeneous. These considerations lead to the idea of replacing
quantum fields with Quantum Cellular Automata and to consider spacetime
as emergent from the automata discrete causal network.

Cellular Automata (cas) were first introduced by Stanislaw Ulam and John
von Neumann [39] in the early 1950s and a big boost to their popularization
came from the John Conway’s Game of Life [40] in 1970 and later by the
Wolfram work in Ref. [41]. A ca consists in a discrete set of identical cells
where each cell can be in a fine set of states. The cells’ configuration, namely
the state of each cell, is then evolving in discrete time steps according to a
transition rule satisfying certain notions of reversibility, locality and causality.
In other words the single cell state at time t+1 just depends on the state of the
neighbor cells at time t ensuring a finite speed propagation. Since cas clearly
depict a typical model of physical evolution Richard Feynman considered their
extension to the quantum world [42]. This resulted in the so called Quantum
Cellular Automata (qcas) with cells of quantum systems interacting with a
finite numer of other cells via a unitary operator describing the single step
evolution. The first qca appeared in Ref. [43] while the first qca as we know
it nowadays was introduced in [44]. In the following qcas have been mostly
a computer-science object of investigation, especially in the field of Quantum
Information, with interesting general results [44–46] lying at the basis of the
present thesis.
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1. Introduction

The idea of reproducing the evolution of a macroscopic system starting
from a simple rule of local interaction among its elementary constituents is not
completely new. In 1990 Gerard ’t Hooft [47] imagined to model the physical
evolution at the Planck scale as information processing. However, here the
automaton is a classical one, and the aim of the work was to describe a deter-
ministic discrete theory underlying qt. A classical automaton description for
the Dirac field is also hidden in the nonstandard analysis formulation of the
path-integral of Nakamura [48] where the “infinitesimal” plays the role of the
“Planck” length. Then, the word “automaton” first appeared in relation to rel-
ativistic field theory in the pioneering work of Bialynicki-Birula [49] where the
automaton is a unitary matrix representing an updating rule of classical fields
evaluated on a lattice of cells. A discrete description of classical relativistic
fields evolution can also be found in the context of lattice-gas simulations of
Meyer [50], where a notion of “field automaton” first appeared, and Yepez [51].
On the other hand in these cases the automaton is considered as a tool for an
approximate description of the underlying continuous dynamics, in the same
spirit of the Lattice Gauge Theory approach [52]. The dynamics of fields is then
evaluated on a discrete lattice in order to make phenomenological predictions
in the non perturbative regime of qft, e.g. in quantum chromodynamics [53].

The quantum operational scenario and the pivotal role of locality in the
qca approach to quantum fields dynamics have some immediate consequences.
The qca has a precise notion of observables, accommodates localized states
and measurements and, being quantum ab initio, it is endowed with a well
defined probabilistic interpretation without the need of quantization rules.
Moreover the qca could provide a bridge between the axiomatic principles
at the basis of algebraic qft and the possibility of a discrete elementary de-
scription of dynamics with qft recovered as an emergent approximate theory.
It is worth emphasizing the novelty of the discretization technic in the qca
approach. The automaton is not a finite-difference version of the usual fields
differential equations, namely it is not given by a finite-difference Hamiltonian
or Lagrangian as in Lattice Gauge Theory. The automaton is based on an
discrete exactly causal unitary evolution and the Hamiltonian has no longer
physical relevance. A first consequence of taking discrete unitary evolutions
in place of discretized Hamiltonians is that the automaton framework does
not suffer the Fermion-doubling [54], namely the existence of states with non
zero momentum corresponding to a minimum of the energy (this was already
pointed out by Bialynicki-Birula in Ref. [49]).

Taking the quantum automaton evolution as a potential elementary de-
scription of fields dynamics, its discrete causal network is reasonably assumed
at a length scale much smaller than the usual scale of particle physics—
hypothetically the Planck length. Clearly the qca theoretical framework can-
not enjoy a continuous Lorentzian spacetime and the usual Lorentz covariance,
as well as any other continuous symmetry, breaks down at the Planck scale.
Within this perspective a major requirement for the automaton proposal is the
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consistency with qft in the large-scale limit (“low-energy limit”), where the
usual dynamics and symmetries of field theory should be recovered as approx-
imated. A notion of spacetime is also expected to emerge in the large-scale
limit based on the analysis of the automaton invariance under change of refer-
ence frame and on a kind of Einsteinian synchronization protocol in the new
automaton framework. The explorative approach of this work initially consid-
ers the automaton dynamics in a fixed reference frame devoting a Chapter to
the construction of the emergent spacetime.

If on one side restoring qft and the covariant spacetime in a quantum in-
formational scenario is interesting by itself, the long term aim of the automaton
approach to physical dynamics is to provide an alternative consistent frame-
work for tackling open problems in the physics beyond the Standard Model.

In Chapter 2 we shortly review the framework of operational probabilistic
theories of Refs. [7, 10] and comment about the possibility of studying toy
models different from the quantum one (this discussion is partially based on the
material published in Ref. [55]). We will then connect the operational notions
of states, effects and transformations, to the usual statistical model of qt,
based on quantum states (density operators), generalized observables (povms)
and quantum operations. Finally two characteristic traits of qt, the local
discriminability of states and the entanglement, are presented in operational
terms.

In Chapter 3 we present the theoretical models which describe a discrete
time local evolution of lattice quantum systems. These models underly the
elementary approach to qft proposed in this presentation. Besides the notion
of automaton we will introduce the one of walk. Following the line tracked in
Chapter 2, we will put emphasis on the operational aspects of the automata
and walks dynamics, considering the possibility of implementing their discrete
evolution via elementary local operations. The definitions and the results in
this Chapter are mainly taken from the recent literature in Refs. [44–46,56–58],
and references therein. However, the exposition is the result of an effort in
presenting the general features of discrete time lattice systems in a coherent
way.

In Chapter 4 we define the Quantum Field Cellular Automaton as the in-
formational theoretical model describing the local discrete evolution of quan-
tum fields. We will then derive the simplest (minimal dimension field) non
trivial automaton, denoted Dirac qca, which is covariant with respect to the
finite symmetries of the automaton causal network in one space-dimension.
Assuming the length distance between sites on the lattice to be “small”, hy-
pothetically the Planck length, we show that the usual Dirac equation is re-
covered in the large-scale limit of the automaton dynamics. The qca unitary
discretization of the Dirac evolution is compared with the Lattice Gauge The-
ory one showing that the Fermion doubling, which is a typical feature of lattice
field theories, is avoided in the automaton framework. The presented material
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1. Introduction

is published in Ref. [59]. In the last Section it is also presented the informa-
tional derivation of the Dirac automaton in three space-dimensions recently
appeared in [60].

In Chapter 5, based on the papers in Refs. [59,61], the one-particle sector
of the Dirac qca derived in Chapter 4 is analyzed. We provide a dispersive dif-
ferential equation which describes the automaton evolution for smooth states,
namely states smoothly peaked around some one-particle momentum eigen-
state. The approximated analytical solutions of the dispersive equation are
compared with exact simulations. Then we define dynamical quantities as the
particle position, momentum and velocity, and evaluate their evolution both in
the free case and in the presence of a square potential barrier. We find that the
Dirac qca exhibits typical features of the Dirac quantum field evolution—as
the Zitterbewegung and the Klein paradox.

In Chapter 6 we consider quantitatively the problem of distinguish exper-
imentally the Dirac automaton from the usual Dirac dynamics. The compar-
ison will be carried out in a quantum informational scenario as an “optimal
discrimination between two black boxes”. A lower bound for the discrimina-
tion probability is given in terms of the parameters of the experiment, namely
the number of particles involved, their masses and their momenta. Finally
we will discuss possible ways of testing the automaton theory e.g. observing
the corrections to the wave-packets fly-time. These results are published in
Ref. [59].

Chapter 7 presents the first results regarding the emergence of spacetime
from the automaton framework. The Dirac qca predicts a modified disper-
sion relation and then the breakdown of continuous symmetries, like Lorentz
covariance, which must be recovered as approximate symmetries in the large
scale-limit. Looking for the transformation that preserve the distorted disper-
sion relation we find a model of Deformed Special Relativity [23, 25, 62] with
an invariant energy scale. We show how this model exhibits the feature of
relative locality recently appeared in [63,64]. A not trivial characteristic of the
deformed relativistic model based on the automaton dynamics is the introduc-
tion of relative locality in a quantum scenario, which is a quite unusual feature
according to [65]. The Chapter concludes showing how a simple synchroniza-
tion protocol on a classical causal network provides a digital version of the
usual Lorentz transformations. The content of the Chapter can be found in
Refs. [66,67].

In Chapter 8 we extend the notion of superselection rule to the general
framework of operational probabilistic theories presented in Chapter 2. In this
scenario the probabilistic theory of Fermionic systems is a parity superselection
of qt where superpositions of states having an even and an odd particle number
are forbidden. We explore the consequences of the parity superselection on
the informational properties of the model. It turns out that the Fermionic
Quantum Theory lacks two fundamental traits of qt the local discriminability
of states and the monogamy of the entanglement. Possible computational and
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physical implications are discussed at the end of the Chapter. These results
are published in Ref. [68].

In Chapter 9 we conclude the thesis with some final remarks and with
future perspectives.
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1. Introduction

1.1 Notations and Conventions

The beginning of each Chapter is provided with a short introduction that
summarizes the aim and the main ideas that are going to be presented.

Some notations and acronyms are extensively used as a standard through-
out the whole thesis. For the reader’s convenience we report most of them
below:

• H Hilbert space

• A,F Algebras

• σx =

(
0 1
1 0

)
, σy =

(
0 −i
i 0

)
, σz =

(
1 0
0 −1

)
Pauli matrices

• A,B,C, . . . systems of a probabilistic theory

• St(A) set of states of the system A

• Eff(A) set of Effects of the system A

• Transf(A,B) set of Transformations from the system A to the
system B

• StR(A) linear span of the set of states St(A)

• EffR(A) linear span of the set of effects Eff(A)

• DA dimension of the system A

• C∞0 [a, b] set of smooth functions with compact support in [a, b]

• L1[a, b] set integrable functions with support [a, b]

• L2[a, b] set of square integrable functions with support [a, b]

• f̂(k) = 1√
2π

∑
x∈Z e

−ikxf(x), k ∈ [−π, π] discrete Fourier transform
of a band-limited function f

• U(k) unitary operator in the momentum representation

• H unphysical Hamiltonian corresponding to the
discrete automaton U (U t = exp(−iHt))

• ω(k) dispersion relation

• v(k) := ∂ω(k)
∂k

group velocity

• D(k) := ∂2ω(k)
∂k2 diffusion coefficient

• |S| cardinality of the set S

9



1.1. Notations and Conventions

• ca Cellular Automaton

• cn Causal Network

• dag Directed Acyclic Graph

• dsr Deformed Special Relativity

• fqt Fermionic Quantum Theory

• lfm Local Fermionic Mode

• lhs Left Hand Side

• locc Local operations and classical communication

• mes Maximally Entangled Set

• povm Positive Operator Valued Measure

• qca Quantum cellular automaton

• qft Quantum Field Theory

• qt Quantum Theory

• qw Quantum walk

• rhs Right Hand Side

• rqt Real Quantum Theory

• uhecr Ultra High Energy Cosmic Ray

10



CHAPTER2

Introduction to the Quantum
Theory operational framework

Quantum Theory (qt) has been recently derived [10] in an operational frame-
work from six axioms regarding the informational features of the theory. In
order to achieve this remarkable result the physicists community, and espe-
cially the one of Quantum Information and Computer Science, had to move
from qt to the more general scenario of probabilistic theories. Here it has been
possible to determine the consequences of a single axiom on the whole struc-
ture of the resulting theory, leading to a set of informational principles which
single out the quantum mathematical framework. Beside the qt axiomatiza-
tion purpose, the operational framework gained the interest of many authors
and the analysis of probabilistic toy models different from qt is still pursued
in the literature. Typically a toy model is obtained considering a subset of
the quantum axioms or a weaker version of some of them. Some example of
probabilistic theories can be found in [55].

In this Chapter, after introducing the operational framework for probabilis-
tic theories, we enumerate the six axioms leading to the quantum structure and
discuss about the possibility of relaxing them. One of the main features of qt
is the entanglement and in the last Section of the Chapter we will shortly dis-
cuss its operational quantification via the so called entanglement of formation.
The content of this Chapter will be extensively used in the Chapter 8.
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2.1. Operational framework and probabilistic theories

2.1 Operational framework and probabilistic

theories

In this Section we summarize the framework of operational probabilistic the-
ories usually considered in the literature [3, 7–10]. In particular here we refer
to Refs. [7,10] where the reader can find a detailed analysis of the framework.
The operational notions in the following come from the description of a typical
physical experiment, involving a physical system, its evolution, and measure-
ments producing outcomes. The probabilistic structure instead comes from
the fact that the possible outcomes of a given experiment occur with a certain
probability.

2.1.1 Operational theories: connecting tests in a net-
work

The primitive notion of the framework is the notion of test. We can regard the
test in many different ways, depending on our needs and context. A test can
be a man-made apparatus, such as a Stern-Gerlach setup or a beam splitter, or
a nature-made “phenomenon”, such as a physical interaction between different
particles in some spacetime region.

Definition 2.1 (Test) A test is made of the following ingredients: i) an input
system A, ii) an output system B and iii) a complete collection of classical
outcomes {Ci}i∈X, labeled by some set X. Diagrammatically the test {Ci}i∈X is
represented as follows

A {Ci}i∈X
B (2.1)

and each outcome i ∈ X, corresponding to a possible event, is represented as

A Ci
B . (2.2)

The number of wires at the input and at the output of a device can vary,
and one can also have no wire at the input and/or at the output. Among
the different kinds of systems, we consider a special one called trivial system,
denoted by I. A device with input (resp. output) system I is a device with
no input (resp. no output). In the circuit it will be represented by no wire,
but instead we will draw the corresponding side of the operation box convexly
rounded, namely as follows

(/).ρ A = I ρ A

A "%#$a = A a I
, (2.3)

and in formulas we will write |ρi)A and (aj|A. The tests corresponding to
devices with no input (resp. no output) will be called preparation-tests (resp.
observation-tests).

12



2. Introduction to the Quantum Theory operational framework

Given a couple of systems A,B, we denote by Transf(A,B) the set of all
possible events from A to B. We write Transf(A) in place of Transf(A,A) if
the input and output systems are the same. In particular we reserve a special
name for the sets Transf(I,A) and Transf(A, I), respectively denoted as St(A)
and Eff(A). The reason for this special notation is that in the following Section
the elements of Transf(A,B) will be interpreted as the transformations from
system A to system B while the elements of St(A) and Eff(A) will correspond
to the states and the effects of system A.

The natural place for a test-event is inside a network of other tests-events.
Indeed in an operational framework it is natural to allow the sequential and
the parallel compositions of different devices.

Definition 2.2 (Sequential composition) Given two devices we can com-
pose them in sequence, as long as the input system of the second device is
equal to the output system of the first. The events in the composite test are
represented as

A Ci
B Dj

C := A DjCi
C

and are written in formula DjCi as in the rhs of the equation.

In particular for every system A one can perform the identity test {IA} which
is a single outcome test with the property

A IA
A Ci

B = A Ci
B ∀Ci ∈ Transf(A,B),

B Dj
A IA

A = B Dj
A ∀Dj ∈ Transf(B,A).

Definition 2.3 (Parallel composition) Given a pair of systems A and B
one can consider a composite system AB. Clearly any system A can be consid-
ered as the same system A composed with nothing, namely AI = IA = A with
I the trivial system. Accordingly, two devices can be composed in parallel in a
new device with input (output) system given by the composition of the two de-
vices input (output) systems. The events in the composite test are represented
as

A Ci
B

C Dj
D

:=
A

Ci ⊗Dj

C

B D

and are written in formula Ci ⊗Dj as in the rhs of the equation.

Taking inspiration by the usual formalism of qt, in the special case of states
and effects we will write |ρi) |σj) in place of ρi⊗σj and (ai| (bj| in place of ai⊗bj.
Notice that parallel and sequential composition are commuting operations.

As long as the connectivity rules are satisfied, namely i) we can connect
only an input wire of a box with an output wire of another box, ii) we can

13



2.1. Operational framework and probabilistic theories

connect only wires with the same label and iii) loops are forbidden, devices
can be organized in networks as in Fig. 2.1. The fact that there are no closed
loops gives to the circuit the structure of a directed acyclic graph (dag).
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Figure 2.1: Top figure: Example of network obtained by composing devices in
sequence and in parallel. Bottom figure: Splitting of the same network into a
preparation and an observation test.

The notions and the simple rules described in this first part of the Chapter,
define the operational circuits language and result in a precise definition of
operational theory:

Definition 2.4 (Operational theory) An operational theory is specified by
a collection of systems, closed under composition, and by a collection of tests,
closed under parallel and sequential composition.

The main outcome of the operational language, which also was the moti-
vation for its formalization, is that it can describe the schematic of the most
general experiment as shown in Fig. 2.2.

{ρi}i∈X

GF
@A

A {Cj}j∈Y
B

{Bk}k∈Z

ED
BCC

ρi
GF
@A

A Cj
B

Bk

ED
BCC

Figure 2.2: Schematic of a general experiment in the operational circuits language.
Left figure: Schematic of the whole experiment with a preparation-test {ρi}i∈X,
an intermediate test {Cj}j∈Y on the part A of the experiment system, and an
observation-test {Bk}k∈Z. Right figure: A particular outcome of the experiment
corresponding to the preparation-event ρi, followed by the event Cj from system A
to system B, which is in turn followed by the observation-event Bk. The same event
can be represented in formula (Bk|BC (Cj ⊗IC) |ρi)AC.
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2. Introduction to the Quantum Theory operational framework

2.1.2 Operational probabilistic theories: states, effects,
and transformations

We have shown how to connect devices in a network and how this formalism
allows to describe the general setting of an experiment. If you want to make
predictions about the occurrence probability of events in the experiment, based
on your current knowledge, then you need a “theory” that assigns probabili-
ties to different events. Probabilities in the network can be introduced in an
easy intuitive way, or in a more axiomatic way as in Ref. [7], assuming that
the composition of a preparation-test {ρi}i∈X with an observation-test {aj}j∈Y

gives rise to a joint probability distribution p(i, j), namely in the equivalent
diagrammatic and formula notation

(/).ρi A 2534aj =: p(i, j) (aj|ρi) =: p(i, j) (2.4)

with

p(i, j) ≥ 0,
∑

i∈X

∑

j∈Y

p(i, j) = 1.

If the experiment consists in the parallel composition of other two experiments,
we assume that the joint probability distribution is given by the product:

(/).ρi A *-+,ak

0716σj B :=;<bl
= p(i, k)q(j, l) p(i, k) := (ak|ρi) , q(j, l) := (bl|σj) . (2.5)

Reminding that a preparation (observation) test is a test having as input (out-
put) the trivial system I, namely no input (output) system, we can define an
operational probabilistic theory as follows:

Definition 2.5 (Operational probabilistic theory) An operational theory
as in Definition 2.1.1 is probabilistic if to any test from the trivial system I to
itself is associated a joint probability distribution, and to the composition of two
tests from the trivial system to itself is associated the probability distribution
given by the product of the two tests probability distributions.

It is the probabilistic structure of the theory that leads to identify the
set of preparation St(A) and observation Eff(A) tests for the system A with
the states and the effects of the theory for the same system A, following the
qt nomenclature. Indeed a preparation-event ρi for system A is naturally
identified with a function sending observation-events of A to probabilities,
namely

ρi : Eff(A)→ [0, 1], (aj| 7→ (aj|ρi) , (2.6)

and, analogously, observation-events are naturally identified with functions
from preparation-events to probabilities

aj : St(A)→ [0, 1], |ρi) 7→ (aj|ρi) . (2.7)
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2.1. Operational framework and probabilistic theories

As probability rule, two observation-events (preparation-events) corresponding
to the same function are indistinguishable. We are thus led to the following
notions of states and effects:

Definition 2.6 (States and effects) Equivalence classes of indistinguishable
preparation-events for system A are called states of A, and their set is denoted
as St(A). Equivalence classes of indistinguishable observation-events for sys-
tem A are called effects of A, and their set is denoted as Eff(A).

Therefore, in the following we will make the identifications: 1) preparation-
events ≡ states; 2) observation-events ≡ effects. The probabilistic structure
allows for the following definition of separability between sets of states and sets
of effects

Definition 2.7 (Separating sets) We say that a set of effects (states) is
separating for a set of states (effects), if any two states of the set have at least
a different probability for two effects of the other set.

Notice that according to our definition of states and effects as equivalence
classes we have

|ρ0)A = |ρ1)A ⇐⇒ (a|ρ0)A = (a|ρ1)A ∀a ∈ Eff(A), (2.8)

(a0|A = (a1|A ⇐⇒ (a0|ρ)A = (a1|ρ)A ∀ρ ∈ St(A), (2.9)

namely fixing a system A, the set of states St(A) is separating for the set of
effects Eff(A) and viceversa the set of effects Eff(A) is separating for the set of
states St(A).

The set of states St(A) and effects Eff(A) are two fundamental elements
of a probabilistic theory. On the other hand their “mathematical” structure
is in general not trivial; usually they are convex sets but even convexity is
not assumed in the most general scenario (see Remark 2.2). Therefore in the
operational setting are usually introduced the linear spaces and the convex
cones associated to the sets of states and effects. Since states (effects) are
functions from effects (states) to probabilities, one can take linear combinations
of them. This defines the dual real vector spaces StR(A) and EffR(A)

StR(A) = EffR(A)∗, EffR(A) = StR(A)∗, (2.10)

with V ∗ denoting the dual set of the set V . Since we will always restrict our
attention to finite dimensions by duality one has

dim(StR(A)) = dim(EffR(A)) =: DA. (2.11)

It is immediate to see that a spanning set for St(A) is separating for Eff(A)
and a spanning set for Eff(A) is separating for St(A). Linear combinations of
states or effects with positive coefficients define the two convex cones 1 St+(A)

1A set V is convex if for every v, w ∈ V and for every p ∈ [0, 1] one has pv+(1−p)w ∈ V .
Similarly a set V is a cone if for every v ∈ V and for every λ > 0 one has λv ∈ V .
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2. Introduction to the Quantum Theory operational framework

and Eff+(A) (see Fig. (2.3) for some examples) which in general are not dual
but

St+(A) ⊂ Eff+(A)∗, Eff+(A) ⊂ St+(A)∗. (2.12)

The last fundamental object for a probabilistic theory is the set of trans-
formations from a system A to a system B denoted Transf(A,B). Observing
that any event Ci from the system A to the system B maps a state of A to a
state of B (/).ρ A Ci

B ,

one has that Ci induces a linear map from StR(A) to StR(B)

|ρ) ∈ St(A) 7→ Ci |ρ) ∈ St(B). (2.13)

Definition 2.8 (Transformations) Equivalence classes of indistinguishable
events from A to B are called transformations from A to B.

It is worth mentioning that the transformations of a probabilistic theory are
completely state preserving, namely given a transformation C ∈ Transf(A,B),
for any ancillary system C the state

C ⊗IC |ρ)AC ∈ St(BD) (2.14)

is an admissible state of the theory. Therefore it is important to notice that
two transformations C and D from A to B can be different events even if
C ρA = DρA for any state ρ ∈ St(A). We say that C and D are in the same
equivalence class if and only if for any ancillary system C, and for a any joint
state ρAC, it is (C ⊗IC)ρAC = (C ⊗IC)ρAC. This means that C and D act
exactly in the same way also when applied locally on any composite system
AC.

Remark 2.1 (No restriction hypothesis) Sometimes, as is the case in qt,
the probabilistic framework is endowed with the so called non restriction hy-
pothesis, namely all completely state preserving transformations are trasfor-
mations of the theory. In this case, since also effects are a special kind of
transformations Eff(A) = Transf(A, I) with no output systems, a system A is
fully specified by its set of states St(A).

A remarkable feature of the framework is the possibility of equipping the
vector spaces StR(A) and EffR(A) with an operational norm, whose operational
interpretation is related to a scheme for optimal discrimination between two
elements in the set (see [69]). From the discrimination protocol it follows that
the following

||ω|| = sup
a0∈Eff(A)

(a0|ω)− inf
a1∈Eff(A)

(a1|ω) , (2.15)

is a norm for StR(A), while the norm for EffR(A) is given by

||b|| = sup
ρ∈St(A)

| (b|ρ) |. (2.16)

17



2.2. The Quantum Theory case

We will always take the set of states St(A) to be closed in the operational
norm. Operationally, taking St(A) as a closed set is very natural: if there is
a sequence of states {ρn}∞n=1 that converges to ρ ∈ StR(A) means that there
is a procedure to prepare ρ with arbitrary precision and hence ρ should be
considered a state of the theory.

Remark 2.2 (Convexity of the set of states and effects) In the litera-
ture it is usually assumed that the set of states St(A) and effects Eff(A) are
convex. In an operational probabilistic theory this is almost obvious since the
experimenter can randomize the choice of devices with arbitrary probabilities.
On the other hand many general results can be obtained without assuming
convexity as in [7, 10] or in the toy models of Spekkens in Ref. [69].

Remark 2.3 (Categorical structure) The notions involved in the opera-
tional framework can also be formalized within the Category Theory [70]. It
is not surprising that in the Category Theory scenario, whose prerogative is
to analyse mathematical structures from a very abstract and general point
of view, it is possible to find a suitable mathematical framework capturing
the fundamental structure of operational theories. In categorical language, an
operational theory is a category, where systems and events are respectively ob-
jects and arrows. Every arrow has an input and an output object, and arrows
can be sequentially composed. A test is then a collection of arrows labeled by
outcomes. The fact that in an operational theory we have a parallel compo-
sition of systems, and that such a composition is symmetric (i.e. AB h BA),
is expressed by saying that we have a strict symmetric monoidal category. If
the operational theory is probabilistic then the scalars, arrows from the trivial
system to itself, of the corresponding category must be probabilities.

2.2 The Quantum Theory case

Here we specify the general notions introduced in the last Section to the qt
case. We introduce its sets of states, effects and transformations, and present
the six axioms that single out qt from the general framework. Then we shortly
comment on the consequences of relaxing the axioms and the possibility of
deriving probabilistic theories different from qt.

2.2.1 The states, effects and transformation of Quan-
tum Theory

In the textbook formulation of qt, also known as Copenhagen formulation,
systems are associated with complex separable Hilbert spaces H of dimension
dim H <∞. To any system A it corresponds a Hilbert space HA of a certain
dimension dim HA = dA. More precisely in qt it is HA = Cd and

DA = dim(StR(A)) = d2
A, (2.17)
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2. Introduction to the Quantum Theory operational framework

where dA is also the number of perfectly distinguishable states of system A.
The deterministic (usually called normalized) states St1(A) of the system

A are represented by density matrices on the corresponding Hilbert space HA,
namely trace-class operators ρ ∈ T1(HA) satisfying

ρ > 0, Tr[ρ] = 1, (2.18)

where by ρ > 0 we mean that the operator ρ is positive. We know from Section
2.1.2 that the state ρ is the equivalence class of all the preparations of a system
that give the same statistics for any possible experiment. A non-deterministic
preparation-test {ρi}i∈X, is a collection of deterministic states and probabilities
{ρ̃i, pi}i∈X such that ρi = piρ̃i and

∑
i∈X Tr[ρi] = 1. Accordingly the set of all

states St(A) of system A is the set of all unnormalized density matrices ρ,
namely

ρ > 0, Tr[ρ] 6 1. (2.19)

Practically the states of the system A are positive dA × dA complex matrices
with trace bounded by 1. It is immediate to check that St(A) is convex and the
convex combination of different states can be interpreted as the randomized
choice between different inequivalent procedures. The extreme points of the
convex set St(A) are the pure states of the system while the other states are
the mixed ones. A quantum state ρ is pure if and only if it is proportional to
a rank-one projection while a quantum state is completely mixed if and only
if its density matrix has full rank. An example of completely mixed state for
the system A is the matrix IA

dA
, with IA the identity operator on A, which is

clearly full rank. The pure states are the rank one projectors ρ = |φ〉〈φ|, and
any state ρ can be diagonalized as

ρ =
n∑

i=1

pi|φ〉〈φ|, pi > 0,
∑

i

pi = 1, (2.20)

with {|φi〉 ; i = 1, . . . , n 6 ∞} an orthonormal basis. The diagonalization
provides a possible decomposition of the state ρ as convex combination of
extremal points of St(A). However, a mixed state admits many different convex
decompositions.

In qt an effect for the system A is represented by a positive operator
bounded by the identity on the same system A

P > 0, P 6 IA. (2.21)

The probability resulting from the pairing between a state ρ and an effect P
is given by the Born rule

(P |ρ) = Tr[Pρ]. (2.22)

Again an effect of the system A is simply a dA × dA positive matrix bounded
by the identity IA. Accordingly, in quantum theory an observation-test on
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2.2. The Quantum Theory case

the system A is given by a Positive Operator Valued Measure (povm), that
is a collection of effects {Pj}j∈Y such that

∑
j∈Y = IA. An effect is atomic

(extremal) in the set Eff(A) if and only if it is proportional to a rank-one
projector, while a full observation-test is said to be atomic if all the elements
of the povm are rank-one projectors.

We have defined preparation- and observation-tests, whose elements are
the states and the effects of the theory. Now we need to specify which are the
set of transformations Transf(A,B) from an input to an output system. A test
from A to B is given by a quantum instrument, namely by a collection {Ck}k∈Z
of completely positive trace non-increasing maps sending linear operators on
HA to linear operators on HB, with the property that

CZ :=
∑

z∈Z

Ck, Ck : Lin(HA)→ Lin(HB), (2.23)

is trace-preserving. A transformation is then given by a trace non-increasing
map, called quantum operation, whereas a deterministic transformation is given
by a trace-preserving map, called quantum channel. Given a quantum opera-
tion C : Lin(HA)→ Lin(HB) it is always possible to represent it in the Kraus
form

C (ρ) =
∑

i

CiρC
†
i , Ci : HA → HB, ρ ∈ St(A), (2.24)

where the Ci’s are the Kraus operators. A map C is atomic (extremal) if and
only if its Kraus form has only one Kraus operator. In particular a reversible
transformation is a unitary map whose Kraus form

U (ρ) = UρU †, U : HA → HB, (2.25)

has only one Kraus unitary operator U †U = IA, UU † = IB.
Notice that the operational norm defined in Eq. (2.15) for a general prob-

abilistic theory, in the quantum case is the usual trace-norm || · ||1
||O||1 = Tr[

√
O†O]. (2.26)

2.2.2 Informational Axioms for Quantum Theory

Here is a summary of the informational principles that, starting from the op-
erational framework of Section 2.1, allow to single out the particular sets of
States, Effects and Transformations of qt. The first five axioms are very
general and could be included in the definition of the background framework
since they define the simplest model of information processing. On the other
hand, as we will discuss in the following, it is possible to build up probabilistic
theories which do not obey all of these axioms. The sixth principle, denoted
purification, and introduced in [7], will instead express a genuinely quantum
feature and is more difficult to be satisfied in a toy model different from the
quantum one.

The six axioms for qt are:
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2. Introduction to the Quantum Theory operational framework

Axiom 2.1 (Causality) The probability of preparations is independent of the
choice of observations. In other words the probability of a measurement out-
come at a certain time does not depend on the choice of measurements that
will be performed later.

The main consequence of causality, which is also equivalent to the causality
itself, is the uniqueness of the effect eA such that for every observation-test
{aj}j∈Y it is

eA =
∑

j∈Y

aj. (2.27)

The effect eA is denoted deterministic effect for system A. In a causal theory
the norm of a state ρ ∈ St(A) is given by ||ρ|| = (e|ρ) and one can always
define the normalized state

ρ̃ =
ρ

(e|ρ)
. (2.28)

For this reason, every state in a causal theory is proportional to a normalized
state. The set of normalized states St1(A), as well as the set of all states
St(A), is closed in the operational norm and, as a consequence of causality,
it is always convex: for every pair of normalized states ρ1, ρ2 ∈ St1(A), and
for every probability p ∈ [0, 1], the convex combination pρ1 + (1 − p)ρ2 is a
normalized state (see also Remark 2.2). Notice that given a bipartite state Ψ
of the system AB, the deterministic effects eB and eA allow to evaluate the
marginal states on the component systems A and B

(/).ρ A = Ψ
GF@A

A

B *-+,eB

,  '!&σ B = Ψ
GF@A

A *-+,eA

B
.

Axiom 2.2 (Perfect distinguishability) Every state that is not completely
mixed can be perfectly distinguished from some other state.

Axiom 2.3 (Ideal compression) For every state there exists an ideal com-
pression scheme. This means that every source of information can be encoded
in a suitable physical system in a lossless and maximally efficient fashion.
Lossless means that the information can be decoded without errors. A loss-
less compression scheme is maximally efficient if the encoding system has the
smallest possible size, that is, if the system has no more states than exactly
those needed to compress.

Axiom 2.4 (Local Discriminability or Local Tomography) Two differ-
ent bipartite states give different probabilities for at least one product exper-
iment. In other words two bipartite states can always be distinguished using
local measurements (see Section 2.3).
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2.2. The Quantum Theory case

Axiom 2.5 (Pure conditioning) If a bipartite system AB is in a pure state,
then each outcome of an atomic measurement on one side—say on the system
A—induces a pure state on the other system—say on system B. Remember
that a measurement is said atomic if it cannot be obtained as a coarse-graining
of another measurement.

Axiom 2.6 (Purification) Every state has a purification. For fixed purifying
system, every two purifications of the same state are connected by a reversible
transformation on the purifying system.

Given a state ρ ∈ St1(A), which in general can be a mixed state, a purifi-
cation of ρ is a pure state Ψρ of some composite system AB, with the property
that ρ is the marginal state of Ψρ

(/).ρ A = Ψρ

GF@A
A

B *-+,eB

.

The purification postulate states that the ignorance about a part, in this case
the ignorance about the system A which is in a mixed state ρ, is always com-
patible with a maximal knowledge of the whole, in this case the composite
system AB. The existence of pure bipartite states with mixed marginal states
is a characteristic trait of qt. On the other hand the purification axiom also
requires the uniqueness of purification up to reversible transformations which
is crucial for generating most of the structure of qt [7, 10].

2.2.3 Relaxing the axioms and probabilistic toy theories

In the literature it is possible to find examples of probabilistic theories dif-
ferent from the quantum one and then satisfying only a subset of the axioms
presented in Section 2.2.2. The study of toy theories had a strategic role in the
informational axiomatization of qt. Indeed it required to move beyond the
quantum framework in the world of probabilistic theories which was largely
unexplored. Moreover, in that general scenario we had poor intuition biased
by our familiarity with qt. Such lack of intuition was partially overcome by
the development of alternative probabilistic models for testing the axiomatic
framework, and this is the main motivation for toy models.

The most popular example of non quantum probabilistic theory is the Clas-
sical Information Theory which is much more than a toy model representing
the standard of computer technology. The set of states St(A) of the system
A with n perfectly distinguishable states is the simplex having the n perfectly
distinguishable states as vertexes. The bit, with only two extremal states, is
the elementary system of the theory (see Fig. 2.3 where is depicted the case
n = 3 also called trit). As pointed out in [10] the Classical Information Theory
satisfies the first five axioms of qt while violates the purification one.
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2. Introduction to the Quantum Theory operational framework

Figure 2.3: Examples of convex cone of states and effects of a probabilistic theories
(see Sections 2.2.2 and 2.1.2. Here we consider a system A with dimension DA =
dim(StR(A)) = dim(EffR(A)) = 3. The blue convex at the top represents the set
of normalized states St1(A). The red transparent cone represents the dual cone of
effects Eff+(A). The red solid inside the transparent cone represents the convex
set of effects Eff(A) which is the Eff+(A) truncation given by the condition 0 6
(a|ρ) 6 1 for any state ρ ∈ St(A) (or a 6 eA where eA is the deterministic effect of
the system A). Left figure: The trit system of the Classical Information Theory.
Notice that set of states is a simplex with three vertexes, corresponding to the
three perfectly distinguishable states of the system. Middle figure: The rebit,
namely the elementary system of rqt. It corresponds to the equatorial section of
the qubit, the elementary system of qt. Right figure: The elementary system of
the Popescu-Rohrlich Boxes Theory.

Another popular probabilistic model is the Real Quantum Theory (rqt)
[71] given by the restriction of the quantum case to real matrices. The elemen-
tary system of rqt, with two perfectly distinguishable states, is denoted rebit
and its convex set of states (see Fig. 2.3) is the disk obtained by the equato-
rial section of the qubit (the qt elementary system corresponding to the Bloch
sphere). rqt theory allows the unique purification of its states but violates
the local tomography axiom. We will discuss this feature in some details in
Chapter 8 where we will derive another probabilistic theory, the Fermionic
Quantum Theory (fqt), which does not satisfy local tomography.

Among the toy theories we mention the Popescu-Rohrlich Boxes Theory
[72], which was originally devised as an example of theory that exhibits stronger
nonlocality than qt without violating the relativistic no-signaling2. Here the
set of states of the elementary system is a square (see Fig. 2.3). In [55] it
has been shown that also this probabilistic toy model violates the purification
axiom.

Finally in Refs. [73,74] it is possible to find a concrete example probabilistic
theory violating the causality axiom. In this theory the states are quantum
operations (see Section 2.2.1), and the transformations are “supermaps” trans-
forming quantum operations into quantum operations. In this case, transform-
ing a state means inserting the corresponding quantum operation in a larger

2The Boxes Theory achieves the greatest violation of the Clauser-Horne-Shimony-Holt
inequality, a Bell like inequality for quantifying the nonlocality of a probabilistic theory,
compatible with the no-signaling principle.
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2.3. Holism of an operational probabilistic theory

circuit, and the sequence of two such transformations is not a causal sequence.
Finally the toy theories scenario has been useful to separate the notions of

causality and determinism. An example of causal non-deterministic theory is
qt while in [75] it is introduced a toy theory that is deterministic and non-
causal proving that the two notions are totally independent.

2.3 Holism of an operational probabilistic the-

ory

In this Section we focus on the local tomography axiom 2.4 and on the more
general notion of n-local tomography introduced by Hardy and Wootters in [71].
This generalization will be necessary for the analysis of the fqt in Chapter 8.

According to local discriminability, if two bipartite states are different then
there is a chance of distinguishing between them by using only local devices.
In general the resulting discrimination will not be optimal but here we are
only interested in the possibility of discriminating. Formally we say that a
theory enjoyes local discriminability if whenever two states Ψ,Φ ∈ St(AB) are
different, there are at least two local effects a ∈ Eff(A) and b ∈ Eff(B) such
that

Ψ
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A "%#$a
B 2534b

6= Φ
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.

Local discriminability is equivalent to the local tomography axiom which states
that every bipartite state can be reconstructed from the statistics of local
measurements on the component systems. This is also equivalent to the fact
that every state Ψ ∈ St(AB) can be written as

Ψ =

DA∑

i=1

DB∑

j=1

Ψijρi ⊗ σj, (2.29)

where {ρi}DA
i=1 and {σi}DB

j=1 are two basis for the vector spaces StR(A) and
StR(B). The same holds for effect and every bipartite effect B ∈ Eff(AB)
which can be written as

B =

DA∑

i=1

DB∑

j=1

Bijai ⊗ bj, (2.30)

with {ai}DA
i=1 and {bi}DB

j=1 two basis for the vector spaces EffR(A) and EffR(B).
In the following we will use local discriminability and local tomography as
synonymous.

Notice that the definition of local tomography can be restated saying that
the set of local effects is separating for the set of multipartite states according
to Definition 2.7. In a generic probabilistic theory one could need non-local
effects for separating multipartite states.
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2. Introduction to the Quantum Theory operational framework

Definition 2.9 (n-local effect) Given the m-partite system A1 . . .Am, an n-
local effect (a| ∈ Eff(A1 . . .Am) with n 6 m is an effect that can be written as
conic combination of tensor products of effects that are at most n-partite3

Ai *-+,1
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Accordingly Hardy and Wootters [71] gave the following definition

Definition 2.10 (n-local tomography) A theory is n-local-tomographic if
and only if the set of n-local effects is separating for multipartite states.

This is the natural extension of local tomography and simply states that in
an n-local-tomographic theory any couple of multipartite states can be dis-
criminated using up to n-local effects. Equivalently a theory is n-locally-
tomographic if any multipartite state can be determined from the statistics
of 1-local, 2-local,. . .n-local measurements.

Since an n-local-tomographic theory is also (n + 1)-local-tomographic, we
give the more significant definition

Definition 2.11 (Strict n-local tomography) A theory is strictly n-local-
tomographic if and only if it is n-local-tomographic but not (n − 1)-local-
tomographic.

In [71] the authors observe that the holism of a strictly n-local-tomographic
theory increases with n. Following this trend we define

Definition 2.12 (n-holistic theory) We call a strictly n-local-tomographic
theory n-holistic or equivalently we say that it has degree of holism n.

2.3.1 Local and bilocal tomography

For a generic probabilistic theory we have the constraint DAB > DADB on the
dimension of a composite system AB since

StR(A)⊗ StR(B) ⊆ StR(AB). (2.31)

If the theory is local-tomographic, according to Eqs. (2.29) and (2.30), we also
have

StR(AB) ⊆ StR(A)⊗ StR(B), (2.32)

3Notice that for example an effect (p|⊗(q|⊗(n| ⊗, with p 6 q 6 n is an (p+q+n)-partite
effect which is still n-local since it is the tensor product of at most n-partite effects.
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2.4. Operational measure of entanglement

and for any couple of systems A and B, the dimension of the composite system
AB must be

DAB = DADB. (2.33)

Examples of local-tomographic theories are qt, Classical Information Theory
and the Boxes Theory.

For a strictly bilocal-tomographic theory, the definition implies two con-
straints on the dimension of bipartite and tripartite systems [71]. A theory is
strictly bilocal-tomographic if and only if for any A,B,C we have

DAB > DADB, (2.34)

DABC 6 DADBDC + D̃ABDC + D̃BCDA + D̃CADB, (2.35)

where
D̃AB := DAB −DADB. (2.36)

The lower bound (2.34) on of the dimension of an arbitrary bipartite system
just means that the theory is strictly bilocal—say it is not local-tomographic.
The upper bound (2.35) on the dimension of an arbitrary tripartite system
ensures that the theory is not more then bilocal—say we do not need 3-local
effects for state tomography and discrimination.

A very popular example of bilocal-tomographic theory is rqt [71]. In
Chapter 8 we will show that also the probabilistic with Fermionic modes as
elementary systems is bilocal-tomographic. Moreover we will see that both the
Real and the Fermionc Theory saturate the upper bound (8.14) and can be
derived imposing superselection rules on the quantum states.

2.4 Operational measure of entanglement

The entanglement is a quantum mechanical property singled out by Schrödinger
many decades ago and it is commonly considered as the characteristic trait of
quantum mechanics. For this reason it has been studied extensively in the
literature in connection with the others features of qt.

A pure state of a pair of quantum systems is called entangled if it is unfac-
torizable, as for example for the singlet state of two spin-1/2

1√
2
(|10〉 − |01〉). (2.37)

A mixed state is entangled if it cannot be written as a mixture of factorizable
pure states, namely if it is not separable. A density operator ρAB of a bipartite
system is said to be separable if it can be regarded as an ensemble of product
states,

ρAB =
n∑

j=1

pjρ
j
A ⊗ ρjB,

n∑

j=1

pj = 1, (2.38)
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2. Introduction to the Quantum Theory operational framework

with a separable pure state corresponding to a product state. Differently from
entangled states, separable states can be created by procedures that are lo-
cal to each subsystem. A first criterion for testing if a state is separable or
non-separable was proposed by Peres [76]. A state is separable if taking the
matrix transpose of any density operator relative to some orthonormal basis
(which is equivalent to take the complex conjugate in that basis) gives another
positive semi-definite operator with unit trace which is still a density opera-
tor. Similarly, if a state of a bipartite system is separable, taking the partial
transpose on system B in any basis gives a good density operator. However,
if taking the partial transpose we are left with an operator that is not pos-
itive semi-definite then the bipartite state was entangled. This is known in
the literature as the partial transpose condition for establishing if the density
operator of a bipartite systems corresponds to an entangled state. The Peres
condition is actually a necessary and sufficient condition only for 2×2 systems
(two qubits) or 2× 3 systems (a qubit and a qutrit) [77] and in general cannot
be considered a general criterion for testing entanglement.

Among the other measures of entanglement considered in the literature we
can cite the entanglement of formation [78,79] the distillable entanglement [80]
and the relative entropy of entanglement [81]. For a review on the entangle-
ment measures see [82]. In the following we will focus on the entanglement
of formation which, having a clear operational interpretation, will be chosen
in Chapter 8 for studying the feature of quantum theories with superselection
rules.

2.4.1 Entanglement of formation and concurrence

Any measure of entanglement has to consider two main aspects: what is en-
tanglement, and what is entanglement used for. The answer to these questions
is not unique and leads to different entanglement measures.

In a general operational theory, as in qt, entanglement must be quantified
in operational terms. For bipartite states all measures of entanglement refer to
a standard unit—the ebit—which is the amount of entanglement of a bipartite
singlet state (2.37).

The so called entanglement of formation, which was introduced by Bennett
et al. in [83] and by Wootters and Hill in [84], focus on the resources need
in order to generate a given amount of entanglement when state manipulation
is restricted to Local Operations assisted by Classical Communication (locc)
(see also Fig. 2.4). Thus the entanglement of formation is the number of ebits
that are needed to achieve the state by locc. The constraint to locc is crucial
in elevating entanglement to the status of a resource. Indeed the entanglement
of states does not increase under locc transformations and entanglement may
be defined as the sort of correlations that may not be created by locc alone.
Roughly speaking locc can only use the available entanglement inducing a
hierarchy on states based their “usefulness” under locc operations. Allowing
classical communication menas that locc operations are not completely local,
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Local Quantum Operations (LO)

Classical Communication (CC)

|Ψ�AB

Alice Bob

Tuesday, July 23, 2013

Figure 2.4: Schematic of locc operations, namely Alice and Bob who share a
bipartite state can only perform local quantum operations (lo) on their subsystems
and communicate classical messages (cc).

and can actually have a complicated structure whose complete characterization
is still an open problem 4. We will briefly discuss the operational meaning of
the entanglement of formation in the following Section 2.4.2.

The entanglement of formation for an arbitrary state of two qubits was
introduced by Wootters and Hill in [84] and later refined by Wootters in [78].
Here we recall the main definitions. Given a state ρ of two qubits A and B,
consider all possible pure-state decompositions of ρ, that is

Dρ :=

{
{pi, |Ψi〉} | ρ =

∑

i

pi|Ψi〉〈Ψi|
}
. (2.41)

The entanglement E for a pure state is defined [86] as the entropy of either
one of the two subsystems A and B, namely

E(|Ψ〉) = −Tr(ρA log2 ρA) = −Tr(ρB log2 ρB), (2.42)

where ρA = TrB[|Ψ〉〈Ψ|] and ρB = TrA[|Ψ〉〈Ψ|] are the marginal states of
systems A and B. The entanglement of formation is defined for a generally

4A complete characterization of locc maps is still not present in the literature. This
led the community of quantum information to study some larger classes of operations that
can be more easily characterized and that retain many features of locc maps. The most
important class is the set of separable operations. These are the operations that can be
written in terms of Kraus operators with a product decomposition:

Ai ⊗BiρABA
†
i ⊗B†i

Tr[Ai ⊗BiρABA
†
i ⊗B†i ]

(2.39)

where
∑

i

A†iAi ⊗B†iBi = I ⊗ I. (2.40)

It is easy to see that any locc operation can always be written in the form of separable
operation. However, it is remarkable that the con- verse is not true as shown in [85], where
an example of separable operation is presented that cannot be implemented using locc .
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2. Introduction to the Quantum Theory operational framework

mixed state ρ as the convex-roof extension of the pure-state entanglement
entropy

E(ρ) = min
Dρ

∑

i

piE(|Ψi〉), (2.43)

corresponding to the average entanglement of the pure states of the decompo-
sition, minimized over all decompositions. Notice that, since the entropy of a
pure state is bounded between 0 and 1, we also have

0 6 E(ρ) 6 1, (2.44)

with E(ρ) = 0 for separable states and E(ρ) = 1 for states having maximal
entanglement of formation, e.g. the singlet state.

In the same Letters [78,84] the authors provided a simple formula for eval-
uating the quantity in Eq. (2.43) in terms of the only density matrix ρ. Their
formula is based on the notion of concurrence which is in turn defined using
the spin flip transformation. For a pure state of a single qubit the spin flip is
given by

˜|ψ〉 = σy |ψ〉∗ (2.45)

where |ψ〉∗ is the complex conjugate of |ψ〉 in a fixed basis—say the standard
one {|0〉 , |1〉}— and σy is expressed in the same basis. For a general state ρ of
two qubits the spin flip transformation acts as

ρ̃ = (σy ⊗ σy)ρ∗(σy ⊗ σy), (2.46)

where the complex conjugate is taken in a fixed basis—say the standard one
{|00〉 , |01〉 , |10〉 , |11〉}. As pointed out in [87] the spin flip reverses the direc-
tion of the spin and it is then intuitive how to exploit it for quantifying the
entanglement of a bipartite state. Indeed if a pure state is factorized then the
spin flip transforms it into an ortogonal state, while if the state is entangled
its spin flipped version can have a non orthogonal component. Following this
intuition in [84] the authors showed that the entanglement of a pure state of
two qubits can be written as

E(|Ψ〉) = E(C(|Ψ〉)), (2.47)

where C(Ψ) is the concurrence of |Ψ〉 defined as the overlap between |ψ〉 and
its flipped state

C(Ψ) = |〈Ψ
∣∣Ψ̃〉|, (2.48)

while E is the function given by

E(x) = h

(
1 +
√

1− x2

2

)
(2.49)
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2.4. Operational measure of entanglement

with h the binary Shannon entropy h(x) = −x log2 x − (1 − x) log2(1 − x).
Since the function E(x) is monotonically increasing and ranges from 0 to 1 as
x goes from 0 to 1, the concurrence as well as the entanglement of formation
can be considered a good measure of entanglement.

As for the entanglement of formation, the concurrence C(ρ) of a mixed
state of two qubits is defined as the convex-roof extension of the pure-state
concurrence

C(ρ) = min
Dρ

∑

i

piC(|Ψi〉). (2.50)

Moreover, C(ρ) is connected to the entanglement of formation E(ρ) as in
Eq. (2.49) for pure states,

E(ρ) = E(C(ρ)), (2.51)

and is given by the following simple formula [78,84]

C(ρ) = max{0, λ1 − (λ2 + λ3 + λ4)}, (2.52)

where λi, i = 1, . . . , 4 are the eigenvalues of the Hermitian matrix
√√

ρρ̃
√
ρ

in decreasing order.
Here we have introduced the definitions of the entanglement of formation

and concurrence for states of two qubits. However, the same definitions hold
for bipartite systems of any dimension [79,88].

2.4.2 The entanglement of formation operational mean-
ing

The operational meaning of the entanglement of formation was proved by
Wootters in [79] and extends to mixed states the operational meaning of the
entanglement entropy for pure states.

Suppose that two parties, say Alice and Bob, share a quantum state ρ, that
in principle can be both separable or entangled, and that they want to create
n copies of the given state. Alice and Bob will hold respectively the part A
and B of the state and quantum communication between them is not allowed,
namely they can only use locc operations. We ask, how much entanglement
Alice and Bob must share in order to achieve their task? In order to make
the question clear we have to fix the elementary resource of entanglement
between the systems A and B, which is the “ebit” and corresponds to the
singlet state (2.37). The question becomes now how many singlet pairs do
Alice and Bob need in order to create n copies of ρ by means of locc? If ρ is
a pure state |Ψ〉 the answer is given in terms of the entanglement entropy (2.42)
: Alice and Bob need nE(|ΨAB〉) pairs of singlet states in order to achieve their
task [86, 89]. Similarly, if ρ is not pure, Alice and Bob need at least nE(ρ)
singlet pairs [79], with E(ρ) the entanglement of formation of Eq. (2.43). In
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2. Introduction to the Quantum Theory operational framework

this sense the entanglement of formation generalizes the operational meaning
of the entanglement entropy. More precisely the operational meaning of the
entanglement of formation is recovered asymptotically. For any ε > 0 there
exists a big enough n such that from m singlets the two parties can create n
copies of the target state ρ with m/n 6 (1 + ε)E(ρ).

In order to be a proper measure of entanglement, the entanglement of
formation should correspond to the minimal resource needed for generating
the amount of entanglement in a given state. It is still not known whether the
entanglement of formation is additive 5

E(ρ⊗
N

) = NE(ρ). (2.53)

Otherwise, namely if E(ρ⊗
N

) < NE(ρ), it would be possible to use less re-
sources simply using many copies of the state ρ together. In this case a good
measure of entanglement would be the regularized entanglement of formation

E reg(ρ) = lim
N→∞

E(ρ)

N
. (2.54)

2.4.3 Maximally entangled sets

We know that entanglement theory is a “resource theory” in which entangle-
ment is a resource for manipulations restricted to locc. Thus, locc convert-
ibility induces a natural ordering in the set of entangled states and a funda-
mental question to ask is which states are maximally entangled, i.e. which
states are “maximally useful” under the locc transformations.

For the bipartite quantum case the singlet state (2.37) is maximally useful,
since it allows to reach any other pure state by means of locc. Indeed if we
consider an arbitrary pure state having Schmidt decomposition

|Φ〉 = α |00〉+ β |11〉 , (2.55)

we can find a locc map that takes the singlet (2.37) to |Φ〉 deterministically.
It is easy to see that the Kraus operators defined by

A0 := (α|0〉〈0| − β|1〉〈1|)⊗ I
A1 := (α|0〉〈1| − β|1〉〈0|)⊗ (|0〉〈1|+ |1〉〈0|) (2.56)

satisfy

∑

i=0,1

A†iAi = I ⊗ I
∑

i=0,1

Ai|Ψ〉〈Ψ|A†i = |Φ〉〈Φ|. (2.57)

5Clearly E(ρ⊗
N

) is less or equal to NE(ρ) since it is always possible to decompose
ρ⊗N into N copies of the optimal decomposition of ρ corresponding to the entanglement of
formation E(ρ).
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2.4. Operational measure of entanglement

Physically these operations can be realized by locc. First we add an ancilla
in state |0〉 to Alice, namely we move from the singlet state to the state

1√
2

(|00〉A |0〉B − |01〉A |1〉B). (2.58)

Then we performs the local unitary operations |00〉A → α |00〉 + β |11〉 and
|01〉A → −α |01〉−β |10〉 on Alice’s systems transforming the state in Eq. (2.58)
as follows

1√
2

[
|0〉A (α |00〉AB + β |11〉AB) + |1〉A (α |01〉AB + β |10〉AB)

]
. (2.59)

Now Alice performs a local measurement on the ancilla qubit. If the result is
|0〉 she communicates to Bob that he does not need any further operation, if
instead Alice finds |1〉 she communicates to Bob to perform the map σx · σx
on his qubit. In both cases the final state is the one in Eq. (2.55). Therefore
the singlet state (2.37) is maximally useful under locc operations and we say
that it is maximally entangled.

On the other hand the notion of maximally entangled state cannot be
trivially extended to n-partite states with n > 2, where a single maximally
useful state does not exist.

In [90] the notion of maximally entangle state has been generalized to the
notion of the Maximally Entangled Set (mes) of n-partite states.

Definition 2.13 (maximally entangled set) A mes is a set S of states
with the following two properties: i) no state in S can be obtained from any
other state via locc (excluding local unitaries) and ii) for any n-partite state
Ψ /∈ S, there exists a state in S such that Ψ can be obtained from it via locc.

According to the definition it is the set of states, not an individual state as in
the bipartite case, which is maximally entangled. For example, for the three
qubits system, the |GHZ〉 state and the Werner state |W 〉

|GHZ〉 = |000〉+ |111〉 , |W 〉 = |100〉+ |010〉+ |001〉 (2.60)

are not connected by locc and are both elements of the mes.
The notion of mes can be considered also in probabilistic theories different

from the quantum one. As we will see in Chapter 8, for fqt and rqt the
notion of maximally entangled state must be superseded by the mes one also
in the bipartite case.

We stress that the notion of maximally entangled state (or set) does not
coincide with the notion of state with maximal entanglement of formation. A
generic a state ρ which has maximal entanglement of formation, i.e. E(ρ) = 1,
may be outside the mes. However, in the bipartite quantum case the two
notions are equivalent and a state is maximally entangled if and only if it has
maximal entanglement of formation.
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2.4.4 Monogamy of entanglement

It has been observed by numerous authors that a quantum system being en-
tangled with another one limits its possible entanglement with a third system:
this has been dubbed the “monogamous nature of entanglement”.

The sharability of correlations between many parities is one of the main
differences between quantum and classical correlations. Indeed in the Classical
Information Theory the correlations can be shared among many parties, while
qt imposes a severe limitation. For example if a pair of qubits A and B have a
perfect quantum correlation, e.g. they are in the maximally entangled singlet
state (2.37), then neither of them can be entangled to a third system C. A big
effort have been devoted to quantify the monogamy of entanglement, see for
example [91–98] or [99,100] for a recent review on the subject.

In the literature one can find many inequalities describing the monogamy
of entanglement. Usually such inequalities involve one or more entanglement
measures. A class of inequalities has the following form

M(ρAB) +M(ρAC) 6M(ρA(BC)), (2.61)

where M(ρAB) measures the entanglement between systems A and B.
It is worth mentioning that not all the entanglement measures satisfy the

inequality (2.61) and then not all the entanglement measures are good in-
dicators for monogamy. An entanglement measure satisfying the inequality
(2.61) is called monogamous. In [95] it has been shown that the concurrence
is monogamous and satisfies

C2(ρAB) + C2(ρAC) 6 1. (2.62)

Notice that if one of the two states, e.g. ρAB, has maximal concurrence
C(ρAB) = 1 (and then also maximal entanglement of formation E(ρAB) = 1)
then the other state ρAC must have concurrence equal to 0.

In Chapter 8 we will show that fqt is not monogamous. After extending
to the Fermionic case the entanglement of formation and the concurrence we
will see that the inequality (2.62) can be violated.
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CHAPTER3

Fundamental notions of
Quantum Cellular Automata

and Quantum Walks

The Cellular Automata (cas) paradigm is simple and appealing and its inher-
ent simplicity belies its potential complexity. The original idea consists in a
discrete set of identical cells where each cell can be in a finite set of states.
The cells’ configuration, namely the state of each cell, is then evolving in dis-
crete steps of time according to a transition rule satisfying certain notions of
reversibility, locality and causality. In other words the single cell state at time
t+ 1 just depends on the state of the neighbor cells at time t ensuring a finite
speed propagation.

The cas were first introduced by Stanislaw Ulam and John von Neumann
in the early 1950s. They realized that cas were a versatile tool for analyzing
many natural phenomena, which is not surprising since most physical processes
are themselves local—molecules interact locally with their neighbors, bacteria
with their neighbors, ants with theirs and people likewise. Stanislaw Ulam
was studying models of crystal growth, while John von Neumann, they were
colleagues at Los Alamos, was trying to devise self-replicating systems, i.e. a
mechanism by which a system produces a copy of itself. Following his intuition,
and the suggestions of Ulam based on his work on crystal growth, von Neumann
succeeded in engineering a self-replicating machine and published his results
in the pioneering work [39].

A big boost to the popularization of the subject came from the John Con-
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way’s highly addictive Game of Life presented in Martin Gardner’s October
1970 column in Scientific American [40]. Conway’s automaton consists in an
infinite two-dimensional grid of square cells, each of which is in one of two
possible states, alive or dead. Every cell interacts with its eight neighbors ac-
cording to an easy evolutionary rule: i) any live cell with fewer than two live
neighbors dies, as if caused by under-population ii) any live cell with two or
three live neighbors lives on to the next generation iii) live cell with more than
three live neighbors dies, as if by overcrowding, iv) any dead cell with exactly
three live neighbors becomes a live cell, as if by reproduction. Astonishingly
such an elementary model of evolution exhibits a great variety of behaviors by
changing the initial pattern, namely the set of alive cells on the grid at the time
t = 0. In particular for a class of seeds the evolution exhibits global order—say
a fixed set of alive cells, a population oscillating periodically between a number
of configurations and finally a system of alive cells moving coherently on the
grid—from simple local rules that in principle say nothing whatsoever about
the global behavior.

Despite their promising features cas lacked a deep analysis and could not
really be called a scientific discipline till the early 1980s, when physicist Stephen
Wolfram in a seminal paper [101] entitled Statistical mechanics of cellular au-
tomata initiated the first serious formalization program.

The cas features seemed to resemble the properties of a physical evolution
but the classical nature of cas prevented their diffusion as a tool for theoretical
physics. The natural way for overtaking this limitation was the extension of
the automaton notion to the quantum word as suggested by Richard Feynman
in [42]. This resulted in the so called Quantum Cellular Automata (qcas)
where the classical systems are superseded by quantum systems in local unitary
interaction.

The cas are not the unique available discrete model of evolution. The
Random Walks, introduced as a simple description of the one-particle evolution
on a discrete lattice, where generalized to quantum systems leading to the
notion of Quantum Walks (qws). It is not surprising that qws and qcas (or
the corresponding classical counterparts) share many features, and many times
in the literature the word qca has been used in place of qw. However, the two
notions coincide rigorously only in some specific cases and we will introduce
them separately.

The first qca and qw as we know them nowadays were introduced in
Refs. [44] and [102]. In the following literature both qcas and qws have been
mostly a computer-science object of investigation, especially in the field of
Quantum Information where they found the definitive mathematical formal-
ization and a thorough analysis with interesting general results [44–46,57,103,
104].
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3. Fundamental notions of Quantum Cellular Automata and Quantum Walks

3.1 Generalities on Cellular Automata

In the following we highlight some of the fundamental features of the automata
model of dynamics. It is easy to introduce these general properties in the
classical context which, from some perspectives, is paradoxically more subtle
than the corresponding quantum one. Indeed, as we will see through the
Chapter, the unitarity of the quantum evolution simplifies the global structure
of the automaton.

Here we provide the general definition of d-dimensional ca that is a causal
local evolution of classical systems on a discrete lattice:

Definition 3.1 A ca consists of a d-dimensional cubic lattice Zd and a finite
set A of symbols, e.g. A = {0, 1} in the simplest case, associated to each point
x of the lattice. The cardinality |A| of the set of symbols is denoted the (local)
cell dimension. A classical configuration c is a function c : Zd → A that
assigns a symbol of A to each lattice point. The space of all configurations will
be denoted by AZd and we will write c ∈ AZd with cx = c(x) the value of the
cell x in configuration c. A cellular automaton is defined by:

(i) A finite neighborhood scheme, namely a subset Nx ∈ Zd with Nx = Ny

for any x, y ∈ Zd.

(ii) A local transition rule Tx : ANx → Ax.

The local transition rule, which provides the state of the cell x at the time step
t + 1 given the state of the neighboring cells Nx at time t, induces a global
transition rule

T : AZd → AZd T (c)(x) = Tx({c(y); y ∈ Nx}) (3.1)

which transforms a configuration c by applying the local rule Tx in parallel to
all cells.

Two typical neighborhood schemes in Z2 are depicted in Fig. 3.1. The

x x

Tuesday, August 27, 2013

Figure 3.1: Example of neighborhood schemes on a two-dimensional automaton.
The state of the cell x at time t+ 1 only depends on the states of the cells in Nx (in
red in the figure) at time t according to the local rule Tx of Definition 3.1. On the
left the von Neumann scheme, on the right the Moore scheme.

neighborhood scheme could in principle be different from cell to cell (Nx 6= Ny)
and many results of the automata theory works as well in this scenario. On the
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3.1. Generalities on Cellular Automata

other hand the standard definition takes all cells identical, both in the classical
and in the quantum case.

Looking at the definition of ca it should be clear that the most relevant
topics in the automata theory are the consequences of their local evolution on
the full structure of the automaton. What can we infer from the local rule
Tx? We know that it uniquely defines the global action of the automaton via
Eq. (3.1) but it gives apparently no constraints on the following two points:

• Is the automaton evolution reversible and, if an inverse exists, which is
its local structure?

• Does the automaton admit an operational description? Namely does
exist a set of local elementary operations such that any time step of
the evolution can be represented as a sequence of these basic building
blocks? In the automata literature this question usually appears as: is
the automaton locally implementable?

These issues are at the basis of the automata theory, both in the classical and
in the quantum scenario.

3.1.1 Reversibility

Since reversibility is a fundamental property of microscopic physical systems
and cas are devised for simulating such systems, they should obey the same
laws, hence be reversible. However, for classical cas the notion of reversibility
is highly non-trivial. Indeed the ca is given as a local rule Tx, while reversibility
is a property of the global mapping T . Accordingly in the automaton context
we can distinguish between two different notions of reversibility

Definition 3.2 (Reversibility and structural reversibility) A ca is said
to be reversible if the global map T is bijective, while it is structurally reversible
if it is reversible and the inverse map is still a ca, namely it is provided by a
local map Tx as in Eq. (3.1).

Clearly the structural reversibility is the more interesting notion of invertibility
for an automaton, whose main feature is the locality of the evolution.

It took a big efforts and many years of investigation for shedding light on
the theory of reversible cas which is well described by the following general
questions:

• Does T admit an inverse map?

• Do non trivial reversible cas exist?

• Ia a ca structurally reversible?

• Which is the neighborhood scheme of the inverse ca and how is it related
to the original one?
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3. Fundamental notions of Quantum Cellular Automata and Quantum Walks

• Is it possible to infere from the local rule whether the ca is invertible?
If this is true, can one efficiently compute the local rule of the inverse ca
from the original local rule?

The main results regarding these questions can be found in the Reviews of
Toffoli, Margolus and Kari [56,105,106] of which here is a punctual summary.

Hedlund [107] and Richardson [108] proved independently that any injective
ca is also surjective, and then reversible:

Theorem 3.1 (Hedlund 1969-Richardson 1972) In any dimension, in-
jectivety, bijectivity and surgectivity are equivalent and then any injective ca
is reversible.

On the other hand it is well known that not all reversible cas are structurally
reversible and in general there is no upper bound on the neighborhood scheme
of the inverse automaton. A popular counterexample is provided by the XOR
automaton (see for example [109]) which, despite being bijective, has a non-
local inverse map. We will see that for a quantum automaton reversibility
and structural reversibility are equivalent notions. As pointed out in [109]
this is very peculiar because whilst we are used to think that any reversible
computation admits a trivial quantization, this turns out not to be case in the
realm of cas. Indeed the XOR ca cannot be quantized otherwise we should
obtain the absurd result of having a non structurally reversible qca.

The non triviality of reversible cas was first proved by Toffoli in [110]
where it is shown that any d-dimensional ca can be simulated by a d + 1-
dimensional reversible ca. Even more surprisingly, in [111] the authors showed
that reversible Turing machines can be simulated by one-dimensional reversible
cas:

Theorem 3.2 (Morita Harao 1989) One-dimensional reversible cas exist
that are computationally universal.

In 1972 Amoroso and Patt [112] showed that it is possible to decide if an
arbitrary one-dimensional ca is reversible looking at the ca local rule:

Theorem 3.3 (Amoroso and Patt 1972) There exist algorithms based on
the automaton local rule to determine if a given one-dimensional ca is injective
or surjective.

Unfortunately this result is not generalizable to higher dimension as shown by
the Kari no-go theorem [113]:

Theorem 3.4 (Kari 1994) There are no algorithms to determine if a given
two-dimensional ca is injective or surjective. Therefore there are no algo-
rithms for deciding if a two-dimensional ca is invertible or not.
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3.1. Generalities on Cellular Automata

3.1.2 Operational description: local implementability

The locality of the ca evolution does not imply that the automaton can be re-
alized using local operations on the states of its cells according to the following
definition:

Definition 3.3 (Local implementability) An automaton is locally imple-
mentable if its single step evolution t → t + 1 (and then the evolution at any
time t) can be decomposed in a finite sequence of local operations on non-
overlapping groups of cells, also called blocks.

In the present thesis we propose the quantum automaton as a possible de-
scription of microscopic physical dynamics starting from the operational frame-
work of qt. Localizability is certainly an inescapable operational feature since
it requires the automaton to be effectively realizable via local operations on
the cells’ systems. These transformations are respectively classical operations
and unitary operations for a classical and a quantum automaton.

A prototypical example of localizable automata are the ones constructed
via the Margolous block structure introduced in [114,115] for the first time.

Definition 3.4 (Margolous block structure) An automaton has Margolous
block structure if the single time step is implemented by a finite number of
layers of local transformations. In each layer cells are grouped into non-
overlapping blocks and each block undergoes a local transformation. In the
same layer the blocks are identical (see Fig. 3.2).
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Figure 3.2: Examples of the Margolous block structure of Definition 3.4. In the
left and right figures we see the one step evolution of a one- and a two-dimensional
automaton decomposed in two layers of local transformations. Notice that the trans-
formations in the same layer are identical.

Clearly an automaton of the Margolous type is invertible if and only if its
block transformations are invertible (for example if and only if both X and Y
are invertible in the examples of Fig. 3.2) and the bloch structure guarantees
the structural reversibility of Definition 3.2. In [116] Kari proved that in one
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3. Fundamental notions of Quantum Cellular Automata and Quantum Walks

and two dimensions any ca admits a Margolous block realization up to some
shift-like transformations:

Theorem 3.5 (Kari 1996) All the structurally reversible cas in one and two
dimensions admit a Margolous block realization with no more that two, respec-
tively four, layers combined with shift-like transformations.

Observe that in d > 1 two layers are in general not sufficient for locally im-
plement a structurally reversible ca as shown by an explicit counterexample
in [117], where a two-dimensional ca has been devised that does not admit
a two-layer representation. This counterexample has been used in a quan-
tum scenario [109] for deriving a no-go theorem for the two-layer local imple-
mentability of a d-dimensional qca with d > 1. A general result on the block
representation of a quantum automaton is presented in the next Section.

x + 1

x

Thursday, August 29, 2013

Figure 3.3: The right shift ca. This is an example of structurally reversible (see
Definition 3.2) ca which is not localizable (see Definition 3.3). The same is true for
the n-sites shifts. The n-sites shifts are also one of the main bricks in the realization
Theorem 3.5 of Kari, providing the non-localizable component of a ca.

Remark 3.1 (Shift-like transformations) The Kari Theorem 3.5 can be
considered the germ of the index theory briefly introduced in Section 3.4. The
statement can be interpreted saying that the “non-localizable contribute” in
a one- or two-dimensional ca is its shift-like component, while the remaining
part is localizable in a Margolous block structure. It is easy to convince yourself
that a shift-like transformation, which clearly is a structurally reversible ca, is
not localizable and does not admit a Margolous block realization. Consider for
example the simple case of the right (or equivalently the left) one-site shift in
Fig. 3.3: it is a structurally reversible ca but clearly it cannot be decomposed
in transformations acting on a block of cells, and the only way to implement
it is to act on all systems in one shot. The index theory makes this intuition
rigorous and quantifies the “amount of shift” in the evolution of a ca. As one
can imagine the ca is localizable (without combining the Margolous blocks
with shift-like transformations) if and only if that “amount is zero”.

3.2 Quantum Cellular Automata

We review the definition of qca whose main novelty with respect to a generic
automaton is that cells are quantum systems and their evolution is unitary.
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3.2. Quantum Cellular Automata

3.2.1 Algebraic Definition

The easiest way to define a qca is to substitute in Definition 3.1 the cells
at each site x with Hilbert spaces of some quantum system A, replacing the
set of symbols with the set of possible states St(A). The difficulty here is
that, working with an infinite lattice, the whole system of the automaton
should be the infinite tensor product of Hilbert spaces

⊗
x Hx which is in

general not a Hilbert space. This formal issue led to the algebraic approach
which focus on the quantum observables rather than on states, working in
the Heisenberg picture rather than in the Schrödinger one1. Thus we consider
as usual an infinite d-dimensional cubic lattice Zd of cells labelled by integer
vectors x ∈ Zn. According to the original idea of ca all cells are identical and
correspond to a finite dimensional quantum system. Let H, with dim H = n,
be the Hilbert space associated to each cell. The transition to the algebraic
formalism is achieved associating to each x ∈ Zn the observable algebra Ax

also denoted cell structure. These algebras are all isomorphic to Mn(C), the
algebra of n×n complex matrices. If we consider a finite subregion of the lattice
Γ ⊂ Zn, the algebra of observables belonging to all cells in Γ is

⊗
x∈Λ Ax and

will be denoted A(Γ). If Γ1 ⊂ Γ2, A(Γ1) denotes the subalgebra of A(Γ2)
obtained by tensoring with unit operator in Γ2\Γ1. Notice that tensoring with
the identity does not change the norm and we get a local normed algebra of
local observables, whose completion is the quasi-local algebra A(Zn), namely
the algebra of observables on all the cells of the qca. In the following we will
use the notation Γ + x = {y + x; y ∈ Γ}, or for two subregions Γ1 + Γ2 =
{x1 + x2; xj ∈ Γj}.

We are ready to provide the algebraic definition of qca:

Definition 3.5 (Quantum Cellular Automaton) A qca having neighbor-
hood scheme Nx (with N = N0 and Nx = x + N ) is a unital homeomorphism
T : A(Zn) → A(Zn) of the quasi-local algebra satisfying the shift-invariance
and the locality condition:

(i) T commutes with all the lattice translations.

(ii) ∀Γ ⊂ Zn, T (A(Γ)) ⊂ A(Γ + N ).

The local rule Tx of the qca T is given by the restriction to the one-site algebra

Tx := T |Ax : Ax → A(Nx). (3.2)

An immediate consequence of the qca definition is a deep connection between
the global T and the local Tx transition rules as stated in the following Lemma
[44]:

1One could pursue the Hilbert spaces definition taking a restriction on the possible quan-
tum configurations c (see Definition 3.1). Upon defining a quiescent state (a vacuum state),
this means that only a finite number of cells can be in a state different from the quiescent
one.
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3. Fundamental notions of Quantum Cellular Automata and Quantum Walks

Lemma 3.1 (Local and global homeomorphisms) The global T and the
local Tx transition rules of a qca satisfy the two properties:

(i) The local rule Tx defines uniquely T .

(ii) An homeomorphism Tx : Ax → A(Nx) is a valid local transition rule of a
qca if and only if ∀x, y ∈ Zn such that Nx ∩Ny 6= 0, Tx(Ax) and Ty(Ay)
commute element-wise.

Proof. Let us start with point (ii). Consider a subregion of the lattice Γ ∈ Zn

and the product
⊗

x∈ΛAx =
∏

x∈ΓAx, Ax ∈ Ax, where we have identified the
one site algebras Ax with subalgebras of A(Γ) by tensoring with unit operators.
Since T is an homomorphism we have

T

(⊗

x∈Λ

Ax

)
=
∏

x∈Λ

Tx(Ax). (3.3)

Moreover T preserves commutation and the Tx(Ax) must commute. Hence the
commutativity condition is necessary. We can show that it is also sufficient.
Indeed since every local observable can be expressed as a linear combination
of tensor products of local-observables, and the products of commuting factors
Tx(Ax) is unambiguously defined, Eq. (3.3) defines a homomorphism on the
quasi-local algebra. Finally, since we have given an explicit formula of T in
terms of Tx, also (i) is proved. �

It is clear from the Lemma that in order to check if some homomorphism
Tx corresponds to a particular qca we have to verify the commutation be-
tween the overlapping algebras under the action of Tx. Thus we just need to
verify a finite number of equations. Indeed, according to translation invari-
ance, we can (1) focus on a particular Tx(Ax), (2) consider all the translations
of Tx(Ax) having a non trivial intersection with Tx(Ax) and finally (3) verify
that Tx(Ax) commutes with all the selected translated algebras. For all prac-
tical purposes it is then possible to restrict from the infinite lattice Zn to a
finite lattice with periodic boundary conditions as in Fig. 3.4. Formally, this is
equivalent to turning from an infinite lattice Zd to a d-dimensional torus Td.
It is worth mentioning that not all restrictions are allowed. Given a particular
neighborhood scheme Nx we say that a periodic lattice is regular if it presents
the same overlaps between translated algebras as the infinite lattice.

In Section 3.1.1 we highlighted some general questions about the reversibil-
ity of an automaton. We mentioned that for a ca the two notions of re-
versibility and structural reversibility given in Definition 3.2 are not equivalent.
Moreover in case of reversibility there are no upper bound on the neighbor-
hood scheme of the inverse automaton. It is striking that for a qca the issues
regarding reversibility are all trivialized [44] due to the unitarity of the evolu-
tion:
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Figure 3.4: Examples of finite lattices with periodic boundary conditions. In the
figures we show a particular neighborhood scheme N (in red) and its translated (in
blue). The periodic lattice in the left figure is regular (as one can check) while the
right one (the 7×9 torus) is not regular since the overlap shown in the figure between
two translated copy of N cannot be achieved on the infinite lattice.

Lemma 3.2 (Structural reversibility) Let T be a qca with neighborhood
scheme Nx. Then it is structurally reversible and the inverse qca T−1 has
neighborhood scheme N−1

x = x− Nx.

Proof. First notice that being T a unital homomorphism T−1 exists and
is a unital homomorphism. Now consider Ax ∈ Ax and By ∈ Ay with
y /∈ x − Nx. This menas that x /∈ Ny and, given T (By) ∈ A(Ny), one has
[T (By), Ax] = 0. Since T−1 is an homeomorphism and preserves commutativ-
ity we get [T−1(T (By),T

−1(Ax)] = [By, T
−1(Ax)] = 0. Observing that By is as

an arbitrary element of the full algebra Ay localized in y, T−1(Ax) must be the
identity upon this node. The same can be said for any site y outside the set
x− Nx which concludes the proof.�

3.3 Quantum Walks

Thinking about the discrete evolution of physical systems, the most natural
example is certainly a particle moving on a lattice. A (classical) Random Walk
is exactly the description of a particle which moves in discrete time steps and
with certain probabilities from one lattice position to the neighboring lattice
positions. A quantum version of such a Random Walk, denoted Quantum Walk
(qw), was first introduced in [102] where measurements of the z-component of
a spin-1/2 particle decide whether the particle moves right or left. Later the
measurement was substituted by a unitary operator on the spin-1/2 quantum
system, also denoted internal degree of freedom or coin system, with the qw
representing a discrete unitary evolution of a particle state with the internal
degree of freedom given by the spin. The formal definition of qw can be
found in [57, 118] for the one-dimensional case, and in [119] for graphs of
any dimension. See also [120] for a complete review (including walks with
continuous time evolution not considered in the present context).

In the most general case the internal degree of freedom at site x can be
represented by an Hilbert space Hx and the total Hilbert space of the system
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3. Fundamental notions of Quantum Cellular Automata and Quantum Walks

is

H =
⊕

x∈Zd
Hx (3.4)

with the specification of the Hx representing the cell structure of the qw.
Notice that, differently from the qca case, here the Hilbert spaces are in direct
sum rather than in tensor product. Usually qws are defined in the general non
translationally invariant case:

Definition 3.6 (Quantum Walks) A qw with neighborhood scheme Nx is
a unitary operator U such that

U |ψ〉 ∈
⊕

x∈Nx

Hx, ∀ |ψ〉 ∈ Hx. (3.5)

Denoting by Uyx : Hx → Hy the block matrix corresponding to the direct sum
in Eq. (3.4), i.e.

U
⊕

x∈Zd
|ψ(x)〉 =

⊕

y

∑

x∈Ny

Uyx |ψ(x)〉 , (3.6)

for any x only finitely many y give non-zero summands.
In most of the applications it is considered the cell structure given by

Hx = H0 = Cn for all x ∈ Zd, as for qcas. In this case the total Hilbert space
satisfies the unitary equivalence

H ∼= Cn ⊗ l2(Zd), (3.7)

where l2(Zd) is the space of square summable complex functions on the lattice
according to the direct sum rather than the tensor product of the one-cell
spaces. The state |ψ〉 of a particle assigns a vector (ψ1(x), . . . ψn(x))T ∈ Cn

to each point x on the lattice with the normalization condition
∑

x ||ψ(x)||2 =∑
x

∑n
a=1 |ψa(x)|2 = 1. In this scenario one frequently looks at translationally

invariant walks, namely unitaries U commuting with the shift operators Sy

Sy(|ν〉 |x〉) = |ν〉 |x+ y〉 , (3.8)

for any translation vector y. In case of translational invariance it is possible
to study the qw in the momentum space via the Fourier transform

|ψ̂(k)〉 :=
1√
2π

∑

x∈Z

e−ikx |ψ(x)〉 , k ∈ [−π, π]. (3.9)

The spectral decomposition of the walk in the momentum space is given by

Û(k) =
n∑

a=1

e−iωa(k) |a〉k 〈a|k (3.10)
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with eigenvalues e−iωa(k) and eigenvectors |a〉k. Notice that the ωj and the ∂kωj
are respectively the dispersion relation and the group velocity of the qw which
are crucial in evaluating the dynamics of a state due to the iterated application
of the walk. This analysis, both in the finite and in the asymptotical time
regime, has been thoroughly carried out by many authors, see for example [104,
118, 121–124]. In the analysis of the asymptotic behavior it is usually applied
the stationary phase approximation (see Appendix B) and in this presentation
we will do the same for the Dirac case in Chapter 5.

3.3.1 An example: the Hadamard walk

The most popular qw considered in the literature is the one-dimensional
Hadamard walk. The total system Hilbert space is H = C2 ⊗ l2(Z) for which
the set {|i〉 |x〉 ; i = r, l, x ∈ Z} forms an orthonormal basis. The walk is given
by

U = (CH ⊗ I)SH , (3.11)

where the coin unitary matrix CH
2 is given by

CH =
1√
2

(
1 1
1 −1

)
,

(CH ⊗ I) |x〉 |r〉 = 1√
2
|x〉 (|r〉+ |l〉),

(CH ⊗ I) |x〉 |l〉 = 1√
2
|x〉 (|r〉 − |l〉), (3.12)

while the conditional shift SH acts as follows on the basis vectors

SH |r〉 |x〉 = |r〉 |x+ 1〉 , SH |l〉 |x〉 = |l〉 |x− 1〉 . (3.13)

In the momentum space we have

Û(k) = 1√
2

(
1 1
1 −1

)(
e−ik 0

0 eik

)
, (3.14)

and by diagonalizing this matrix we get the k-dependent eigenvalues e−iω±(k)

of the walk. For the Hadamard walk the dispersion relation ω (ω± = ±ω) and
the group velocity v(k) := ∂kω(k) are

ω(k) = arccos
(

1√
2

sin k
)
, v(k) =

cos k√
1− 1

2
sin2 k

, (3.15)

(see the plots in Fig. 3.5).

Remark 3.2 (Internal degree of freedom factorization) Notice that the
internal space Cn in Eq. (3.7) can either be considered as a coin (namely the

2Clearly the Hadamard walk can be generalized considering some SU(2) coin operation

CH =
(

eiαn eiβm
−e−iβm e−iαn

)
with n,m ∈ R and n2 +m2 = 1.

46



3. Fundamental notions of Quantum Cellular Automata and Quantum Walks

-3 -2 -1 0 1 2 3
-1.5
-1.0
-0.5

0.0
0.5
1.0
1.5

k

Ω
Hk

L

-

1

2

1

2

-3 -2 -1 0 1 2 3
-1.5
-1.0
-0.5

0.0
0.5
1.0
1.5

k

vH
kL

Figure 3.5: The Hadamard walk dispersion relation (left) and group velocity (right).
Notice the maximum group velocity for k = 0,±π.

walk is given by alternating coin tosses and shifts, with the last ones depending
on the coin) or as a generic internal degree of freedom of a walking particle.
In the first case the qw U(k) in the momentum space can be factorized in a
k-dependent matrix and a k-independent coin toss C. In the second case we
do not have such a factorization. An example of the first case is the above
Hadamard walk (see Eq. (3.14) showing the factorization), while for an exam-
ple of the second kind see the one-particle sector of the Dirac qca in Section
4.2 (see Eq. (4.38)).

3.3.2 Comparing walks and automata

We mentioned that the term qca has been used in the literature [43, 49, 125]
for a unitary evolution of a particle on a discretized space, where the more
appropriate term is qw.

As commented in [44], to see the connection between qcas and qws it
is easier to consider their classical counterparts, namely Random Walks and
cas: a Random Walk can be seen as a special ca, where each cell can be either
empty or occupied, started in a configuration with only one occupied cell. If
we put arbitrarily many particles on the lattice, the dynamics is well-defined
by the Random Walk as long as the particles do not collide. What is missing in
the Random Walk case is the description of collisions which is instead included
in the ca dynamics.

Consider now the qcas and qws scenario. For a qca in order to speak
about“particles on the lattice”, we have to equip the single cell algebra Ax with
a notion of vacuum state. Then we can define the quantity particle number
3 which ought to be conserved by the qca whose dynamics restricted to the
“one-particle”Hilbert space is a unitary evolution of the qw type. The one-site
algebra can be of any finite dimension n with the internal degree of freedom of
the particle represented by the internal Hilbert space of the qw (3.7) (actually
we will see in Proposition 4.1 that particles without internal degree of freedom

3Notice that the particle number is an infinite sum of 0’s and 1’s, and the corresponding
observable must be defined carefully.
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admit only trivial evolutions—say the identity or the shift).
Thus we wonder whether it is possible to consider qws, with any internal

degree of freedom, as the one-particle sector of a qcas allowing arbitrarily
many particles. As pointed out in [44] this can be done in many ways. One
possibility is to “second quantize” the qw, considering fields ψ(x) in place
of quantum states |ψ(x)〉 on the sites of the lattice. Regarding fileds as the
generators of the local algebra Ax we have a qca describing the many-particles
evolution whose the one-particle component is the given qw. In this thesis we
explore this scenario introducing the Quantum Field Cellular Automaton.

3.4 Local implementation for Quantum Cellu-

lar Automata and Quantum Walks

We know that an automaton operational description corresponds to locally
implement its evolution (see Section 3.1.2). We also know that in general a
reversible automaton is non-localizable and that its local implementation could
require the aid of shifts which are non-localizable automata (see Theorem 3.5).
In the quantum case the following Theorem [45] provides a bridge between the
axiomatic algebraic Definition 3.5 and a concrete operational implementation
of the qca. The same results holds in the case of qws as proved in [46]. The
idea is to locally implement the evolution using additional ancillary systems,
i.e. for any quantum system is introduced an identical copy of it at the same
lattice site. Thus the single cell of the system is given by Ax ⊗ Ax in the
automaton case and by Hx ⊕ Hx in the walk case, with the total system
respectively identified with the quasi-local algebra A(Zd) ⊗ A(Zd) and with
the Hilbert space H ⊕H. The theorem [45,46] goes as follows:

Theorem 3.6 (Structure Theorem)

(i) Let T be a qca on A(Zd), then the qca T ⊗T−1 is locally implementable
as the product of the local unitary elements

Tx = (idA(Zd) ⊗ T )(Ex), T ⊗ T−1 =

(∏

x∈Zd
Ex

)(∏

x∈Zd
Tx

)
, (3.16)

where id is the identical map while Ex ∈ Ax ⊗ Ax is the unitary which
swaps the two tensor factors.

(ii) Let U be a qw on H, then the qw U ⊕ U † is locally implementable as
the product of the local unitaries

Ux = (U † ⊕ I)Ex(U ⊕ I), U ⊕ U † =

(∏

x∈Zd
Ex

)(∏

x∈Zd
Ux

)
, (3.17)

where I is the identity operator while Ex is now the unitary operator
which swaps the two summands in Hx ⊕Hx.
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3. Fundamental notions of Quantum Cellular Automata and Quantum Walks

Proof. (i) Since the swaps Ex are commuting unitaries and (id ⊗ T ) is an
homomorphism, also the Tx’s in Eq. (3.16) are a family of commuting unitaries
localized in Ax ⊗ A(Nx) (where Nx is the neighborhood scheme of T ). Hence
their product defines a qca T̃ on A(Zd) ⊗ A(Zd) according to Lemma 3.1.
Now for Ax ∈ Ax we have

T †x(Ax ⊗ I)Tx = (idA(Zd) ⊗ T )(Ex)(Ax ⊗ I)(idA(Zd) ⊗ T )(Ex)

= (idA(Zd) ⊗ T )(Ex(Ax ⊗ I)Ex) = (idA(Zd) ⊗ T )(I ⊗ Ax)
= I ⊗ T (Ax).

In the same way we see that if Ay ∈ Ay with y 6= x it is T †x(Ay⊗ I)Tx = Ay⊗ I
because Ay and Ex commute. Therefore we have T̃ (A ⊗ I) = I ⊗ T (A) and
analogously we can prove that T̃ (I ⊗ A) = T−1(A) ⊗ I, showing that T̃ =
T−1 ⊗ T .

(ii) Essentially the same idea works for qws. The unitaries Ux’s in Eq. (3.17)
commute, because they are images of the commuting transformations Ex’s un-
der the same unitary conjugation, and are localized in a neighborhood of x.
Their infinite product defines the unitary of a qw as discussed in Section 3.3
which is

∏

x

Ux = (U † ⊕ I)E(U ⊕ I) = E(I ⊕ U †)(U ⊕ I) = E(U ⊕ U †), (3.18)

where E =
∏

xEx is the global swapping.�
This Structure Theorem tells us that the commuting unitaries defined in

Eq. (3.16) (Eq. (3.17)), followed by a global swap operation between the orig-
inal system and the ancillary system, implement locally the qca (the qw)
on one system and its inverse on the ancillary system. Thus, upon the intro-
duction of the auxiliary systems, any qca (qw) can be locally implemented.
Notice that in the translationally invariant case the local unitaries in Eq. (3.16)
(Eq. (3.17)) are all identical and the local implementation is compatible with
the Margolous block structure in Definition 3.4. But how many layers of local
blocks do we need? The answer to this question is in the following Corol-
lary [45]:

Corollary 3.1 (n-layer block representation) Any d-dimensional qca T
( qw U) admits a 2d-layer block representation.

Proof. At each site x = (i1, . . . 1d) the unitary Tx (Ux) of Theorem 3.6 is
local to cells Nx = {i1 + Nx1} × . . .× {id + Nxd}. Notice that for an arbitrary
neighborhood scheme Nx = {i1 + Nx1}× . . .×{id + Nxd}, it is always possible
to group cells in into “supercells” obtaining the so called 1/2-neighborhood
scheme Nx = {i1, i1 + 1}× . . .×{id, id + 1}4. Thus, after the suitable grouping
of cells, whenever x = (i1, . . . 1d) and y = (j1, . . . jd) are such that |ik − jk| > 1

4This grouping is taken very often in the literature on cellular automata. In the 1
2 -scheme

to know the state of cell x at time t+1, only the states of cells x and x+1 at t need be known.
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3.4. Local implementation for Quantum Cellular Automata and Quantum Walks

for any k, Tx (Ux) and Ty (Uy) can be performed in parallel. Therefore it is
possible to apply simultaneously the Tx = T(i1,...1d) (Ux = U(i1,...1d)) with even
ik’s. Now, since any y ∈ Nx can be written uniquely as x+ z with z ∈ {0, 1}d,
we need |{0, 1}d| = 2d layers to apply all the local unitaries Tx = T(i1,...1d)

(Ux = U(i1,...1d)). Notice that by shift-invariance all the local unitaries are
identical accordingly to the Margolous block structure.�

3.4.1 Index theory for walks and automata

The Structure Theorem 3.6 ensures the operational realizability of any qca
and qw adding ancillary systems. There is still an open question in the local
implementability scenario:

• In which cases the discrete evolution can be locally implemented without
supplementary systems?

The answer to this question stems in the aforementioned Kari Theorem 3.5
where, even though in the classical framework, he proved the local imple-
mentability of one- and two-dimensional automata using the Margolous block
structure and some shifts. He realized that the non-localizable component of
the evolution is in the shift. For example, while the one-dimensional shift S
in Fig. 3.3 cannot be localized, according to Theorem 3.6 the qca S ⊗ S−1

(or S ⊕ S† if a qw) can be locally implemented. It seems that the inverse
automaton (walk) arises for “symmetrizing the information flow” in the total
system.

In [46] this idea has been formalized in the one-dimensional case (the results
work also for qcas and qws without translational invariance) in the so called
index theory. When a one-dimensional quantum lattice system is subjected
to one step of a reversible discrete-time dynamics, the amont of “quantum
information” that enter any block of cells from the left, has to exit that block
to the right. For qws and qcas this intuition can be made rigorous defining
the index, a quantity that measures the “net flow of quantum information”
through the system.

The index has many striking features whose analysis goes beyond the scope
of this Chapter. Here we only present the theorem connecting the localizability
of a qca (qw) to its index. The theorem shows that the qcas (qws) with
trivial index are precisely those which can be locally implemented without an-
cillary systems. In words, the index is trivial when the net flow of information
is zero5, otherwise it is non-trivial. Prototypes of systems with non-trivial

The name 1
2 -scheme is because the most natural way to represent such an automaton is to

shift the cells by 1
2 at each time step, so that visually the state of a cell depends only on

the state of the two cells under it. We stress that this definition is not restrictive since by
grouping cells any automaton (walk) with an arbitrary finite neighborhood N can be made
into a 1

2 -neighborhood one.
5This does not mean that in localizable automata or walks the information cannot move,

on the contrary it means that it is not forced to follow a preferred direction but can flow
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3. Fundamental notions of Quantum Cellular Automata and Quantum Walks

index are shifts where the flow is clearly not balanced. Intuitively, denoting
by Sn the shift on an automaton (walk) with n-dimensional cell algebra Mn

(n-dimensional internal Hilbert space dim Hx = n), one has

ind(Sn) = n, (3.19)

and noticing that Sn ⊗ Sm = Snm (Sn ⊕ Sm = Sn+m) we see that the index
of an automaton (walk) must be a group of numbers under multiplication
(addition). Actually it turns out that for qcas the index takes values in the
positive rationals and the index group is isomorphic to (Q+, ·), whereas for
qws the index is integer-valued with the index group isomorphic to (Z,+).

Here is the definition of the index for qcas [46]:

Definition 3.7 (Index for Quantum Cellular Automata) Given a one-
dimensional qca T with cell structure Ax, by regrouping of cells we can assume
that it has nearest neighborhood scheme Nx = {x− 1, x, x+ 1}. Now consider
any two neighboring cells A2x ⊗A2x+1. Clearly it is

T (A2x ⊗A2x+1) ⊂ (A2x−1 ⊗A2x)⊗ (A2x+1 ⊗A2x+2), (3.20)

and we can consider the two algebras

R2x = Suppalg(T (A2x ⊗A2x+1), (A2x−1 ⊗A2x)), (3.21)

R2x+1 = Suppalg(T (A2x ⊗A2x+1), (A2x+1 ⊗A2x+2)), (3.22)

where Suppalg(A,B) denotes the support algebra of A on B6. The index of
the qca is then defined as

ind(T ) =
r(2x)

n(2x)
=
n(2x+ 1)

r(2x+ 1)
, (3.23)

where n(y) and r(y) are the integer numbers such that Ay
∼= Mn(y) and Rn(y)

∼=
Mr(y)(C). The value of the index is independent on the site x (even in the non
translationally invariant case).

This definition is very intuitive since the algebras Ry with even index become
larger when information flows to the right, whereas the ones with odd index
describe a flow to the left. Assuming identical cells carrying an n-dimensional
algebra, for the right shift Sn it is R2x = (A2x−1 ⊗ A2x), R2x+1 = CI, corre-
sponding to r(2x) = n2, r(2x+1) = 1, and hence ind(Sn) = n, as in Eq. (3.19).

We can now define the index for qws [46,126]:

in any direction choosing suitable initial states. We will see this in the details for the Dirac
automaton in Chapters 4 and 5.

6Let B1 and B2 be finite dimensional C∗ algebras, and A ⊂ B1 ⊗ B2. The support
algebra of A on B1, denoted Suppalg(A,B1), is the smallest C∗-subalgebra B′1 ⊂ B1 such
that A ⊂ B′1 ⊗B2. Such a subalgebra always exists.
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3.4. Local implementation for Quantum Cellular Automata and Quantum Walks

Definition 3.8 (Index for Quantum Walks) For a qw U having neigh-
borhood scheme Nx the index is defined as

ind(U) =
∑

x>0,y∈Nx

(Tr[U †xy]Uxy − Tr[U †yx]Uyx). (3.24)

Starting from this general formula one can compute the index for translation-
ally invariant walks which is connected to the qw unitary operator (3.10) in
the momentum representation via

detU(k) = Ke−ik ind(U), (3.25)

for some constant K.

From Eq. (3.24) it is easy to see that for the right shift S1 it is ind(S1) = 1,
according to Eq. (3.19). The corresponding unitary in the momentum space is
simply U(k) = e−ik which again gives ind(S1) = 1 using Eq. (3.25).

Finally we state the theorem connecting the index with the qcas and qws
local implementability:

Theorem 3.7 (Index Theorem)

(i) A qca T can be locally implemented (see Definition 3.1.2) without ancil-
lary systems if and only if ind(T ) = 1. In this case it can be realized with
just two layers of local operatons. If T is regrouped in nearest neighbor
form, the local operations can be taken to couple pairs of nearest neighbors
only.

(ii) A qw is locally implementable (see Definition 3.1.2) without ancillary
systems if and only if ind(U) = 0. In this case it can be written as a
product of just two partitioned unitaries, namely it can be realized with
just two of layers of local operatons. If U is regrouped in nearest neighbor
form, then the local operations can be chosen to couple only pairs of
nearest neighbors.

See [46] for the proof.
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CHAPTER4

The Quantum Field Cellular
Automaton: the Dirac

automaton

The discret time lattice quantum systems introduced in Chapter 3 embody
the elementary operational framework for the description of physical dynamics
as processing of quantum information. The finite dimension of the quantum
systems at the sites of the lattice and the locality of the evolution allow the full
computability of the theory. Moreover the computation is homogeneous due
to translational invariance and the physical rule is independent on the region
of the causal network where it is observed.

After the birth of qcas some authors considered the possibility of applying
the automaton paradigm to the elementary constituents of qft, i.e. to the
quantum fields. The word “automaton” first appeared in relation to relativistic
field-theory in the pioneering work of Bialynicki-Birula [49], where the automa-
ton describes a discretization of the Weyl and Dirac differential equations. Here
the automaton is a unitary matrix representing an updating rule of classical
fields evaluated on a lattice of cells. The possibility of using automata for de-
scribing the evolution of classical relativistic fields also emerged in the context
of lattice-gas simulations, especially in the seminal work of Meyer [50], where
a notion of “field automaton” first appeared, and in the papers of Yepez [51].

However, in all the above cases the automaton is regarded as an approx-
imation of the underlying continuous dynamics which has to be recovered in
the continuum limit. This is also the spirit of the Lattice Gauge Theory ap-
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proach [52] where the dynamics of fields is approximated on a discrete set of
points in order to provide phenomenological predictions in the non perturba-
tive regime of qft, e.g. in quantum chromodynamics [53]. These approaches
are not focused on the foundations of qft but on developing new technics for
exploiting the impressive predicting power of the theory.

A reconsideration of the mathematical structure of qft is in the Algebraic
Quantum Field Theory of Refs. [31, 32] where physical systems are described
via nets of algebras, namely via a mapping from finite spacetime regions to the
algebras of local observables. Physically the most important notion is the prin-
ciple of locality [33] and the only physical observables are the ones connected
with finite regions of spacetime. Global observables—like the total charge or
the total energy momentum vector—refer to infinite spacetime regions and lie
outside of the picture. Moreover there is a constraint on the observables of the
local algebras: the local algebra of observables on a spacetime region Γ must
commute with the observables of any algebra on a spacetime region Γ′ that is
space-like separated from Γ. This principle resembles the Einstein causality
and it is the main relativistic ingredient of algebraic qft.

The qca approach to the foundations of qft can provide a bridge between
the rigour of the algebraic qft and the possibility of having a discrete more
fundamental description of physical dynamics with qft emerging at a larger
scale. Besides the theoretical interest, the automaton approach provides also
a genuinely new way of performing qft calculations on a lattice as a valid
alternative to the existing discretized field models. As we will see the main
difference is that in the automaton case it is the unitary evolution to be dis-
cretized instead of the Hamiltonian.

In this Chapter, after introducing the notion of Quantum Field Cellular
Automaton, we derive the simplest one-dimensional field automaton, here de-
noted Dirac qca, which is covariant with respect to the symmetries of the
causal network. Assuming that the distance between sites on the lattice is
small, we show how the automaton recovers precisely the Dirac dynamics in
the limit of small masses and momenta (a rigorous comparing between the
Dirac automaton and the usual Dirac dynamics will be the subject of Chap-
ter 6). Finally we discuss the difference between the automaton model and
the usual discretization of qft in Lattice Gauge Theory or lattice gasses. A
first consequence of the new approach is that the Dirac automaton in one di-
mension does not suffer the Fermion doubling (see for example [127]), namely
the existence of states with momentum different from zero corresponding to a
minimum of the energy.

The content of this Chapter is based on Ref. [59]. In the last Section
it is presented the informational derivation of the Dirac automaton in three
space-dimensions recently appeared in [60].
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4. The Quantum Field Cellular Automaton: the Dirac automaton

4.1 The one-dimensional Quantum Field Cel-

lular Automaton

A one-dimensional qca describes the discrete time local evolution of quantum
systems on the one-dimensional lattice Z (see Fig. 4.1) as extensively discussed
in Chapter 3. In our framework, any site x ∈ Z corresponds to a (Bosonic or
Fermionic) quantum field operator ψ(x) located at the same position. If the
field has any internal degree of freedom we define

{ψa(x)}a∈A, (4.1)

with A = {1, . . . ,Λ} a finite set, the generators of the field observables local
algebra Fx. Clearly the Bosonic (Fermionic) field operators satisfy suitable
commutation (anticommutation) rules

[ψa(x), ψb(x)]± = [ψ†a(x), ψ†b(y)]± = 0, [ψ†a(x), ψb(y)]± = δxyδab. (4.2)

The field automaton implements a unitary local evolution of the fields on
the lattice. In the usual qft the field evolves by a unitary operator V

ψ(x, t+ 1) = V †ψ(x, t)V, (4.3)

where the action of V is linear in the field, namely

ψa(x, t+ 1) =
∑

y∈Z, b∈A

Uab
xy ψb(y, t) (4.4)

for some complex coefficients Uab
xy. Due to the linearity of the map V † · V in

Eq. (4.3) we can describe the one step evolution of the field by a unitary matrix
as follows. Upon introducing the vector field ψ

ψ :=




. . .
ψ(x)

ψ(x+ 1)
. . .


 , ψ(x) :=



ψ1(x)
. . .

ψ|A|(x)


 , (4.5)

where each ψ(x) is also a vector with Λ components corresponding to the
internal degrees of freedom of the field, we have the equality

ψ(t+ 1) = V †ψ(t)V = Uψ(t), (4.6)

where U is the unitary matrix UU † = I = U †U having entries Uab
xy according

to Eq. (4.4).
The map U in Eq. (4.6) represents the Quantum Field Cellular Automa-

ton whose “cell structure” is naturally identified with the field local algebras
{Fx}x∈Z. The locality of the evolution requires that ψ(x, t+1) must be a linear
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4.1. The one-dimensional Quantum Field Cellular Automaton

combination of the field on few neighboring sites Nx ⊂ Z at time step t, that
is

ψa(x, t+ 1) =
∑

y∈Z, b∈A

Uab
xy ψb(y, t), Uab

xy = 0 ∀y /∈ Nx. (4.7)

In general the local structure Nx of the automaton can vary from site to site
and defines the neighborhood scheme of the automaton.

We can now give a formal definition of a Quantum field Cellular Automaton:

Definition 4.1 (Quantum Field Cellular Automaton) Consider a field
ψ with Λ < ∞ internal degrees of freedom and denote by Fx the algebra of
local observables generated by the field operators {ψax}a∈A, A = {1, . . . ,Λ}. A
one-dimensional Quantum Field Cellular Automaton with cell structure Fx and
neighborhood scheme Nx is a unitary operator U such that

U : Fx → FNx

ψa(x, t+ 1) 7→
∑

y∈Nx,b∈A

Uab
xyψb(y, t).

(4.8)

As we will see in the following, in a physical scenario the translational invari-
ance implies the same structure all over the lattice as in the usual qca theory
(see Definition 3.5). Moreover, without loss of generality, we will consider au-
tomata with nearest neighborhood scheme, namely Nx = {x− 1, x, x+ 1} (see

Saturday, July 27, 2013

Nx

Saturday, July 27, 2013

Nx

Thursday, August 29, 2013

Saturday, July 27, 2013

Nx

Thursday, August 29, 2013

U

Sunday, January 12, 2014

Figure 4.1: Left figure: A 1d Cellular Automaton. In the classical case any site
corresponds to a finite set of possible classical states while in the quantum case it
corresponds to a finite dimensional quantum system. The automaton is a local rule
evolving the state of the lattice at time t to the state of the lattice at time t+ 1: the
state in position x at time t+1 depends only on the states of few neighboring sites Nx

at time t. In general the local structure Nx of the automaton can vary from site to
site and defines the neighborhood scheme of the automaton. However, in a physical
scenario the translation invariance implies the same structure all over the lattice.
The example in the figure corresponds to the nearest neighborhood scheme, namely
the state at site x at time t+ 1 depends only on the states of the closest neighbors
Nx = {x− 1, x, x+ 1} at time t. The locality of the automaton suffices to guarantee
a bound on the maximal speed of propagation: the causal speed c = `/τ = 1 is
equal to “one-event-per-step”. Right figure: Generic 1d Quantum Field Cellular
Automaton U . Each site of the lattice corresponds to a quantum field ψ(x) located
in the same position.
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4. The Quantum Field Cellular Automaton: the Dirac automaton

also Fig. 4.1). The nearest neighborhood interaction is not an assumption by
itself, since it is always possible to reduce to such a case by grouping a periodic
pattern of the network into a single node of the automaton.

In Section 3.3.2 we pointed out that a qca restricted to the one-particle
sector corresponds to a qw. However, when the evolution is linear as in the
quantum field case (4.8), the one-particle dynamics fully specifies the automa-
ton and the two notions of qca and qw coincide. Accordingly, we can observe
that the filed qca (4.8) corresponds to substitute quantum fields ψ to one-
particle states |ψ〉 in the qw expression (3.6). This corresponds to the “second
quantization” of the qw discussed in Section 3.3.2.

Remark 4.1 (Fermionic algebra of local observables) The class of ad-
missible matrices U for a field automaton depends on the field local algebra
Fx according to the condition in Eq. (4.8). At this stage the commutative or
anticommutative nature of the field becomes relevant. However all the results
regarding the structure of a qca or qw unitary evolution presented in Chapter
3, hold for the unitary Quantum Field Cellular Automaton. In case of anti-
commuting fields the local algebra of observables Fx can be transformed into
a commuting quantum algebra Ax via the Jordan-Wigner isomorphism [128].
Hence the evolution of Fermions on a lattice can be regarded as the evolution of
a lattice of qubits, extending to the Fermionic case the qcas features. In par-
ticular the Structure Theorem 3.6 holds in the Fermionic case (see Ref. [129]).

4.1.1 Translational invariance and covariance of the field
automaton

According to Eq. (4.7) an automaton U with nearest neighborhood interactions
has the band diagonal form

U =




. . .

U0−1 U00 U01

U10 U11 U12

. . .


 , (4.9)

where any Uxy is an Λ × Λ matrix with Λ the number of the field internal
degrees of freedom. From the physical point of view the interesting automata
should respect the symmetries of the underlying lattice. In particular they
must be translational invariant according to the following definition

Definition 4.2 (Translational invariance) A Quantum Field Cellular Au-
tomaton U is translationally invariant if it commutes with the shift operator,
namely

[U, S] = 0, S : ψ(x)→ ψ(x+ 1). (4.10)
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4.1. The one-dimensional Quantum Field Cellular Automaton

In this case the structure of the automaton further simplifies as follows

U =




. . .

U−1 U0 U1

U−1 U0 U1

. . .


 . (4.11)

For convenience, as usual in the literature [57, 103, 104, 130, 131] (see Section
3.3), we will study the dynamics of the field automaton in the momentum
representation. For the field operator we have

ψ(k) :=
1√
2π

∑

x∈Z

e−ikxψ(x), k ∈ [−π, π], (4.12)

where with little abuse of notation we utilize the variable name k to denote
the Fourier transform of any function of x. Notice that the automaton model
is naturally band-limited k ∈ [−π, π] and periodic in momenta due to the dis-
creteness of the lattice. Correspondingly, for the unitary matrix U in Eq. (4.6)
we have

U =

∫ π

−π
dk U(k)⊗ |k〉〈k|. (4.13)

We will see that the features of a translationally invariant qca crucially depend
on its momentum eigenvalues and for most of the thesis we will work in the
momentum representation.

According to Eq. (4.11) the automaton in momentum space (4.38) assumes
the very simple form

U(k) =
∑

x∈{−1,0,1}

e−ikxUx, (4.14)

and the unitary operator U can be written as

U =
∑

x∈{−1,0,1}

Ux ⊗ Sx S−1 = S†, S1 = S, S0 = I. (4.15)

In the one-particle sector this is a translationally invariant qw (see Section
3.3) on the Hilbert space

CΛ ⊗ l2(Z), (4.16)

with CΛ the particle internal Hilbert space.
In general the lattice of an automaton is endowed with a discrete group

of symmetries. The one-dimensional lattice Z only exhibits parity symmetry,
corresponding to the lattice reflection with respect to some site (we also have
the time reversal symmetry if we consider the causal network given by the
automaton evolution). We can ask the automaton to be covariant with respect
to the lattice symmetries according to the following definition:
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4. The Quantum Field Cellular Automaton: the Dirac automaton

Definition 4.3 (Covariance) Let G be the group of symmetries of the lattice
Z. The elements of G are linear functions g : Z → Z that can be represented
on the automaton field local algebra Fx as automorphisms

Og : Fx → Fg(x). (4.17)

We say that a one-dimensional Quantum Field Cellular Automaton U acts
covariantly with respect to G if

U =
∑

x∈{−1,0,1}

OgUxO
†
g ⊗ Sg(x), for any g ∈ G. (4.18)

A general result of the field automata theory is that all the translational
invariant automata with Λ = 1 are trivial (an automaton is said to be trivial
if it is just a shift).

Proposition 4.1 (Triviality of Λ = 1 fields) Any one-dimensional transla-
tionally invariant Quantum Field Cellular Automaton with Λ = 1 is trivial.

Proof. We know that a translationally invariant automaton must be as in
(4.14). Since Λ = 1 the matrices U−1, U1 and U0 are just complex numbers
and from the unitarity of U(k) one has

U0 = eiθ, U−1 = U1 = 0,

U−1 = eiθ, U0 = U1 = 0, θ ∈ [0, 2π], (4.19)

U1 = eiθ, U0 = U−1 = 0,

which, modulo a global phase, correspond respectively to the identical (I), the
right shift (S), and the left shift (S†) automaton.�

According to the last Proposition an automaton for the free scalar field is
necessarily trivial and, as we will see in Section 4.2, only the identical one is
also covariant.

4.1.2 Local implementability of the field automaton

The locality of the field automaton does not ensure the possibility of locally
implement it, and a counterexample is provided by the shift field automaton
for the same reasons discussed in Sections 3.1.2 and 3.4. Hence local imple-
mentability represents a constraint on the field automaton whose unitary time
step must always admit a decomposition in a number of elementary gates in-
volving only neighboring systems (see Fig. 4.2).

Theorem 3.6 shows that adding ancillary systems, any d-dimensional field
automaton can be locally implemented using 2d layers of quantum gates. How-
ever, in a physical scenario the ancillary systems introduced in the localization
deserve an interpretation, i.e. they have to correspond to some physical sys-
tems.
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U

Sunday, December 15, 2013

Figure 4.2: Local implementation of the generic one-dimensional Quantum Field
Cellular Automaton U . The problem of localizability has been introduced in Section
3.1.2. We know that any one-dimensional automaton can be localized using only two
layers of identical gates as in the Margolous block structure of Definition 3.4.

The index theory presented in Section 3.4 gives necessary and sufficient
conditions for deciding the field automaton localizability without invoking an-
cillary systems. Since the one-particle sector of a translationally invariant field
automaton U coincides with a translationally invariant qw (see Eq. (4.16)),
the index Theorem 3.7 gives the prescription

U locally implementable ⇔ det(U(k)) = K, (4.20)

for some constant K, where U(k) is the field automaton in the momentum rep-
resentation (4.13). Moreover, in the nearest neighborhood scheme considered
here, any localizable one-dimensional field automaton can be realized with two
layers of local operations coupling only pairs of nearest neighbors (thus only
two layers of gates in Fig. 4.2 are needed).

The covariant Dirac automaton derived in the following will automatically
satisfy (4.20) and no ancillary systems are needed for its operational realization.

4.2 Derivation of the one-dimensional Dirac

automaton

Consider a field ψ having Λ internal degrees of freedom. According to Eq. (4.15)
the most general 1d translationally invariant qca with nearest neighborhood
interaction is given by

U = R⊗ S + L⊗ S† +M ⊗ I, (4.21)

where S is the shift operator Sψ(x) := ψ(x + 1), and R = U1, L = U−1 and
M = U0 are Λ×Λ matrices which do not depend on the site. The unitarity of
U implies

RR† + LL† +MM † = I ,

MR† + LM † = 0 , LR† = 0 .
(4.22)

We now derive the Dirac automaton as the minimal dimension field qca sat-
isfying the following requirements
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4. The Quantum Field Cellular Automaton: the Dirac automaton

Figure 4.3: Schematic of the three time steps causal network corresponding to a
one-dimensional automaton with nearest neighborhood interaction. The topology of
the network is left invariant by the mappings t 7→ −t and x 7→ −x and the dynamics
of the automaton is assumed to be time reversal (T ) and parity (P ) invariant (see
Eqs. (4.23) and (4.24)).

(i) Unitarity of the evolution.

(ii) Locality of the evolution.

(iii) Homogeneity of the interaction topology.

(iv) Covariance under time-reversal t 7→ −t.
(v) Covariance under parity x 7→ −x.

(vi) Minimal dimension for a non-trivial evolution.

The first three assumptions are already contained in the definition itself
of one-dimensional translationally invariant qca with nearest neighborhood
scheme. Assumptions (iv) and (v) correspond to the covariance of the au-
tomaton with respect to the symmetries of the causal network (in Fig. (4.3)).
The more constraining assumption is thus the minimality one (vi) which con-
sists in the minimal number of field internal degrees of freedom Λ for a non
trivial evolution.

According to Definition 4.3 assumptions (iv) and (v) can be translated in
the following equations

(T ⊗ I)U(T † ⊗ I) = U †, (4.23)

(P ⊗ I)U(P † ⊗ I) = R⊗ S† + L⊗ S +M ⊗ I, (4.24)

where T is an anti-unitary representation of the operator associated to the
time reversal transformation, and P a unitary representation of the operator
associated to the lattice reflection. Notice that (P ⊗ I)U(P † ⊗ I) is the same
as U with S exchanged with S† according to the reflection of the lattice Z. For
Λ = 1 the only translational invariant qca satisfying parity invariance is the
identical one U = I which is trivial. Next, we have the case Λ = 2. Eq. (4.24)
shows that R and L are unitarily equivalent and from Eq (4.22) it follows that
they are both rank one. Thus we can choose the basis where

R =

(
a1 a2

0 0

)
, ψ(x) :=

(
ψr(x)
ψl(x)

)
, (4.25)
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4.2. Derivation of the one-dimensional Dirac automaton

naming the two components of the field ψr and ψl right and left modes. We
now require P and T to be represented in such basis as

P =

(
0 1
1 0

)
, T = Ξ

(
0 1
1 0

)
, (4.26)

where Ξ is the anti-unitary operator denoting complex conjugation in the rep-
resentation (4.25). With this choice of basis the parity invariance (4.24), which
implies

PRP † = L, PMP † = M, (4.27)

gives

R =

(
a1 a2

0 0

)
, L =

(
0 0
a2 a1

)
, M =

(
a3 a4

a4 a3

)
, (4.28)

with ai ∈ C for i = 1, . . . , 4. From the time-reversal invariance (4.23), that is

TRT † = L†, TMT † = M †, (4.29)

it follows a2 = a3 = 0. Finally, using the unitarity of U (4.22) we get

|a1|2 + |a4|2 = 1 <(a1ā4) = 0, (4.30)

which, up to a global phase, gives the unique automaton

U =

(
nS −im
−im nS†

)
, n2 +m2 = 1 . (4.31)

The constants n and m in the last equation can be chosen positive (the
relative sign corresponds to take the left-mode redefined with a minus sign).
The unitarity constraint n2 +m2 = 1 in Eq. (4.31) forces the parameter m to
be bounded between 0 and 1

n2 +m2 ⇒ m ∈ [0, 1]. (4.32)

As we will see in the following, m plays the role of an adimensional inertial
mass, and the inertial mass of the field is bounded from above [36] 1.

The automaton for m = 0 corresponds to the Weyl equation, and will be
refereed as Weyl automaton

UW =

(
S 0
0 S†

)
. (4.33)

The Dirac qca in Eq. (4.31) introduces a coupling between the two compo-
nents of the field slowing down the corresponding propagation. Physically the
coupling corresponds to the rest frame mass of the field itself.

1If we assume that the small scale of the automaton is the Planck one, for the digital-
analog conversion from the automaton to the usual dimensional Dirac equation we take the
Planck length `P and the Planck time τP as conversion factors for space and time respectively,
whereas the mass conversion factor is taken equal to the Planck mass mP . The maximal
speed of local-state propagation in the dimensional case is then c = `P /τP , corresponding
to the speed of light. `P , τP , and mP define the measure for dimensions [L] [T ] [M ], and
from them one can derive the other constants, e.g. ~ = mP `P c.
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4. The Quantum Field Cellular Automaton: the Dirac automaton

U

Sunday, December 15, 2013

Figure 4.4: Local implementation of the Dirac automaton U in Eq. (4.31) with
X = −iσ1, Y = mI + inσ1. The field operator at site x interacts with the field
ψ(x± 1) at neighboring sites. In the case of the Dirac automaton the field operator
has two components, the right ψr and the left ψl mode of the field.

Notice that in the derivation of the automaton (4.31) the parity symmetry
(assumption (v)) implies a minimal internal dimension Λ = 2 for a non identical
evolution. This means that it is not possible to consider an automaton having
just an internal degree of freedom–say a scalar field. As a byproduct of the
parity assumption we also have the localizability of the automaton. Indeed in
the Dirac case the condition (4.20) is trivially satisfied as one can easily check
using the automaton in the momentum space (4.38)

det (U(k)) = n2 +m2 = 1. (4.34)

Moreover, as a consequence of the Index Theorem 3.7 any one-dimensional lo-
calizable field automaton can be locally implemented using two layers of quan-
tum gates. For the Dirac automaton (4.31) we have the local implementation
shown in Fig. 4.4 and, as one can easily check, X and Y result to be

X = −iσ1, Y = mI + inσ1. (4.35)

Clearly also the Weyl automaton is localizable since it is just a particular case
of the Dirac one with m = 0. In the Weyl case (4.33) the local gates X and Y
in Fig. 4.4 are simply

XW = YW = σ1, (4.36)

which correspond to swap the left and the right modes of the field. Thus if we
prepare a state localized in x and in one of the two modes, namely |x〉 ⊗ (1, 0)
or |x〉⊗ (0, 1), it moves at the causal speed in the in the right or left direction.

In Figs. 4.5 and 4.6 we give computer evaluations of the Dirac automaton
evolution. These behaviors will be derived analytically in Chapter 5. Fig. 4.5
shows the evolution for localized states which are not described in qft. We
see that for small m the state splits in its left and right components which
evolve at speed close to the causal one c = 1. For higher m the state spreads
in region narrower than the causal cone. Fig. 4.5 shows two evolutions for
smooth Gaussian states. We see that the states remain localized in a finite
region evolving with a certain drift and diffusion coefficient. In the second
figure we also see the Zitterbewegung oscillation of the mean position.
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4.2. Derivation of the one-dimensional Dirac automaton

Figure 4.5: The automaton (4.31) evolution for localized states. Automaton (m =
0.1 on the left and m = 0.8 on the right) evolution for the localized sate |100〉 ⊗

1√
2
(1, 1) showing the spread in the causal cone.
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Figure 4.6: The automaton (4.31) evolution for smooth states. Top figure: au-
tomaton (m = 0.4) evolution for the smooth state given by

∑
x g(x)eik0x |x〉 ⊗ |+〉k0

with g(x) Gaussian with mean value x0 = 50 and width σ̂ = 10. |±〉k are the
positive/negative-frequency one-particle eigenstates (4.52) of the Dirac automaton
with momentum k0 = 0.1. The drift v = 0.22 and diffusion coefficient D = 2.30 are
evaluated in Eqs. (5.16,5.17). The blue line in the left figure is the mean position evo-
lution. Bottom figure: automaton (m = 0.2) evolution for a smooth state having
both a particle and an antiparticle component

∑
x g(x)eik0x |x〉 ⊗ 1√

2
(|+〉k + |−〉k0

),
with the Gaussian g(x) having mean x0 = 100 and width σ̂ = 25, k0 = 0. Notice
the Zitterbewegung of the mean position.
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4. The Quantum Field Cellular Automaton: the Dirac automaton

4.3 The Dirac equation in the large-scale limit

In this Section we show how the Dirac qca (4.31) recovers, for low momenta
and masses, the dynamics of the Dirac equation

i~∂tψ(x, t) =

(
−i~c∂x mc2

mc2 i~c∂x

)
ψ(x, t). (4.37)

According to the convention (4.12) for the Fourier transform, the automa-
ton (4.31) in the momentum representation is2

U =

∫ π

-π

dk U(k)⊗ |k〉〈k|, U(k) =

(
neik −im
−im ne−ik

)
. (4.38)

By taking a real power of the unitary matrix, we define an abstract Hamiltonian
that describes the automaton evolution for continuous times, interpolating
between time steps, namely

U t = exp(−iHt). (4.39)

Upon diagonalizing the matrix U(k) in Eq. (4.38), one obtains

H =

∫ π

−π
dk H(k)⊗ |k〉〈k|, H(k) =

ω

sin(ω)

(
−n sin(k) m

m n sin(k)

)
, (4.40)

where ω is the dispersion relation of the automaton

ω := ω(k) = arccos(
√

1−m2 cos(k)). (4.41)

Notice that in the Weyl case of Eq. (4.33), namely for m = 0, the Hamiltonian
and the dispersion relation are

UW (k) = e−iHW (k) =

(
eik 0
0 e−ik

)
, HW (k) =

(
−k 0
0 k

)
ωW (k) = k. (4.42)

It is worth mentioning that the Hamiltonians H and HW are unphysical, as is
unphysical the continuous process between two following time steps. Indeed,
one could easily see that the Hamiltonian (4.40) involves interactions between
all systems, including those very far apart.

We now expand H(k) near k = 0 and m = 0, in order to recover the Dirac
equation for the quantum field, along with the first corrections. One has

H(k) =
∞∑

i,j=0

1

i!j!

∂H(k)

∂ki∂mj

∣∣∣∣
k,m=0

kimj (4.43)

2Notice that the Dirac automaton unitary U(k) in the momentum space, which in the
one-particle sector corresponds to a qw on C2 ⊗ l2(Z), does not factorize in a k-dependent
component and an internal coin unitary matrix (see Remark 3.2).
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4.3. The Dirac equation in the large-scale limit

and collecting all terms with the same overall order in m and k, we find

H(k) = HD(k) +
m

3

(
mk 1

2
(k2 +m2)

1
2
(k2 +m2) −mk

)
+O(mpkq), p+ q = 5,

(4.44)

where HD(k) is the Dirac Hamiltonian of Eq. (4.37) in the momentum repre-
sentation and in Plack units (~ = c = 1)

HD(k) =

(
−k m
m k

)
. (4.45)

The Hamiltonian (4.45) allows us to identify the parameters k and m of the
automaton with the momentum and the mass of the Dirac field, respectively3.

In Fig. 4.7 the automaton dispersion relation ω is compared with the Dirac
one

ωD := ωD(k) =
√
k2 +m2. (4.46)

The dispersion relations show an overlap for k around k = 0 and small m,
corresponding to the typical particle physics regime. Analytically, the leading
term correction to the Dirac dispersion is given by

ω = ωD

(
1− m2

6

k2 −m2

k2 +m2

)
. (4.47)

Notice that the smallest non zero value of the mass m = 0.3 reported in Fig. 4.7
is huge compared to any known particle mass, and still is possible to find a
sector in the momentum space around k = 0 where the automaton dispersion
relation well overlaps the Dirac one. This means that for m sufficiently small
it is possible to fix a cutoff in the momenta |k| 6 k̄ < π such that in that
regime the Dirac automaton and the usual Dirac evolution are very similar.

Intuitively taking a cutoff for the momenta corresponds to taking a large-
scale limit of the automaton, namely to look at the automaton at larger scale in
the position space. In Chapter 6 we will define the large-scale limit rigorously
but we can already point out the conceptual difference with the continuum limit

3If we assume the automaton to act at the Planck scale the approximation (4.44) is well
justified since the typical rest masses and momenta of particle physics experiments are many
order of magnitude smaller than the Planck mass and the Planck momentum. In this case
the maximal mass should coincide with the Planck one m = 1 = mP which in the usual units
is mP = 2.17651(13)×108kg = 1.2209×1028eV/c2. A particle having rest mass 100 GeV/c2

corresponds, in the automaton Planck units, to m ≈ 10−17 (the masses of an electron and a
proton are as small as me ≈ 10−23 and mp ≈ 10−19). Similarly a momentum of 1020eV/c,
the highest ever observed on the earth for Ultra-High Energy Cosmic Rays (uhecrs), see for
example [132], corresponds in Planck units to kCR ≈ 10−8, while a momentum of 1Tev, the
order of magnitude of momenta in high energy physics experiments, e.g. at lhc, corresponds
to kLHC ≈ 10−16. The smallness of the automaton parameters in any physical accessible
scenario completely justify the power expansion in Eq. (4.44).
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Figure 4.7: Comparison between the dispersion relation ω(k) of the Dirac automaton
and the the Dirac equation one ωD(k), respectively in Eqs. (4.41) and (4.46). In the
left figure the dispersion relation is plotted versus the adimensional mass m ∈ [0, 1]
and momentum k ∈ [−π, π]. The green surface represent the automaton, whereas
the blue one corresponds to Dirac. In the right figures ω(k) is plotted versus k for
four values of m (the red line corresponds to the automaton, whereas the black one
is the usual Dirac). We can see that the two dispersion relations coincide for small
masses and momenta, and the larger is the mass the smaller is the overlap region
around k = 0. Notice that in the left figure we have plotted ±ω and ±ωD since, as in
the Dirac equation, both positive and negative frequencies are allowed (see Section
4.3.2).

studied by some other authors—see for example Bialynicki-Birula in Ref. [49]
and Meyer in Ref. [50]. Indeed, while in the large-scale limit the granularity
of spacetime is fixed and the limit consists in considering typical states having
momentum lower then some k̄, the continuum limit is achieved for infinitesimal
spatial period ` and time step τ :

large-scale limit: ` = lP , τ = tP and |k| 6 k̄ < π,

continuum limit: `→ 0, τ → 0.

Remark 4.2 (Violation of Lorentz covariance) The qca dispersion rela-
tion (4.41) is an evidence of Lorentz covariance violation at the automaton
scale, hypothetically the Planck one. We will discuss this aspect in Chap-
ter 7 where we will show the compatibility between the automaton dispersion
relation and a model of deformed relativity of the kind considered in [24,25,62].

4.3.1 Avoiding the Fermion doubling

Here we want to stress the difference between the discrete evolution of the
automaton and the usual discretization of qft considered for example in the
lattice gases models or in Lattice Gauge Theory. While in the automaton case
it is the unitary to be discretized, in the literature it is usually the Hamiltonian,
or the corresponding differential equation, which is approximated by its finite-
difference counterpart.
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Figure 4.8: We show the difference between the dispersion relation of the Dirac
automaton and the one corresponding to the finite-difference Dirac equation (the
three plots in each figure correspond to different values of the mass m). On the
left we have the automaton dispersion relation ω of Eq. (4.41) which is a monotone
function of |k|. On the contrary the finite-difference dispersion relation ωf (4.51) is
not monotone in |k| and allows states with k 6= 0 corresponding to a minimum of
the energy (Fermion doubling).

The two different point of views lead to completely different ways of express-
ing “energy” versus the wave-vector k, namely to different dispersion relations.

On one side we have the discrete automaton of Eq. (4.31) whose dynamics
can be recovered using the Hamiltonian H = −i logU (4.40) and the dispersion
relation ω(k) (4.41). Despite the Hamiltonian is unphysical in between two
discrete time steps, at the discrete points (x, t) of the causal network, where
the automaton is defined, it provides exactly the automaton evolution.

On the other side we can replace the Dirac differential equation in Eq. (4.37)
with its finite-difference version defining the finite-difference time and space
derivatives as follows

∂̂t = 1
2
(U − U †), ∂̂x = 1

2
(S − S†). (4.48)

Accordingly Eq. (4.37) becomes

i∂̂tψ(x, t) = Hf ψ(x, t), (4.49)

in terms of the finite-difference Hamiltonian [36]

Hf (k) = 1
2i

[U(k)− U †(k)] =

(
−n sin(k) m

m n sin(k)

)
, (4.50)

whose dispersion relation is

ωf (k) = sinω(k). (4.51)

As pointed out by many authors, e.g. by Susskind in Ref. [127], the finite
difference differential equation leads to the so called Fermion doubling, namely
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4. The Quantum Field Cellular Automaton: the Dirac automaton

the existence of states with k 6= 0 corresponding to a minimum of the energy.
Indeed the dispersion relation ωf in (4.51) has more than one minimum as
one can check in the right Fig. 4.8. Differently the dispersion relation ω in
Eq. (4.41) is a monotone function of |k| as one can verify looking at the left
Fig. 4.8. Therefore in the “automaton like” discretization there is no Fermion
doubling, namely no state other than for k = 0 corresponds to a minimum of
the “energy”ω(k). For dimension greater than one, the dispersion relation can
be as well made monotonic continuous by exploiting the multi-valued nature
of the dispersion relation (see Ref. [49]).

4.3.2 Eigenstates of the Dirac automaton

The eigenvalues and the eigenvectors of the unitary matrix U(k) in Eq. (4.38)
are given by

uk(s) = e−isω, |s〉k := 1√
2

[√
1− sv

s
√

1 + sv

]
, s = ±, (4.52)

in terms of the automaton dispersion relation (4.41) and group velocity

v :=
∂ω(k)

∂k
=

√
1−m2

1 +m2 cot2(k)
, (4.53)

which is plotted in Fig. (4.9). In analogy with the Dirac theory the s = +1
eigenvalues in Eq. (4.52) correspond to positive-energy particle states, whereas
the negative s = −1 eigenvalues correspond to negative-energy antiparticle
states. Accordingly the group velocities for positive- and negative-energy states
have the same module and opposite sign as one can check in Fig. (4.9). The
most general state |ψ〉 is thus a superposition of a positive- and a negative-
energy state, i.e. |ψ+〉+ |ψ−〉, and typical aspects of the Dirac field dynamics,
such as the Zitterbewegung (see the right Fig. 4.6) and the Klein paradox, are
also dynamical feature of the Dirac automaton as shown in Chapter 5.

The qca automaton U generally operates on the vector field ψ which de-
scribes an arbitrary number of particles. The vacuum state for the automaton
is defined as the state |Ω〉 such that

ψs(k) |Ω〉 = 0 ∀s = ±, ∀k ∈ [−π, π]. (4.54)

Up to now, we have not specified the nature (Fermionic or Bosonic) of the
field, and indeed the same automaton could be used to describe both cases
(along with anyons and parastatistics). Even if in one dimension the spin of
the field is not a relevant feature, we will focus for simplicity on the Fermionic
case of anticommuting field. Clearly a N -particle state can be obtained by
acting with the field operator on the vacuum as follows

|N,k, s〉 =

(
N∏

i=1

ψ†si(ki)

)
|Ω〉 . (4.55)
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Figure 4.9: The group velocity (4.53) of the Dirac automaton for different values of
the mass m = 0.1, 0.2, 0.4, 0.8. On the left (right) the group velocity corresponding
to positive (negative) eigenvalues ω.

Specifically, for the N = 1 particle eigenstates of U , we write

ψ†s(k) |Ω〉 = |s〉k |k〉 , (4.56)

whereas for N = 2 we have

ψ†s1(k1)ψ†s2(k2) |Ω〉 = |s1〉k1
|s2〉k2

|k1, k2〉 , (4.57)

where |k1, k2〉 = − |k2, k1〉, and so forth for N > 2. The corresponding eigen-
values of the logarithm of U are

ω(N,k, s) =
N∑

i=1

si ω(ki,m). (4.58)

4.4 Derivation of the three-dimensional Dirac

automaton

Even though this thesis is entirely devoted to the one space-dimensional case,
it is worth mentioning that G. M. D’Ariano and P. Perinotti have recently
derived [60] from informational principles the automaton describing the Dirac
equation in d = 1, 2, 3 space-dimensions. Clearly for d = 1 they obtain the
same automaton (4.31) derived in Section 4.2. Since the result in [60] is not
part of the present thesis we do not enter in the details of the derivation.

The informational principles in [60] are essentially the same considered in
Section 4.2, namely (i) unitarity of the evolution (ii) locality of the evolu-
tion (iii) homogeneity of the interaction topology (iv) isotropy (or covariance)
with respect to the discrete topology (v) and the minimal dimension for a
non-trivial evolution. However, while in one dimension the topology of the
homogeneous causal network was necessarily the one in Fig. 4.3 (with spatial-
lattice Z), in higher dimension there is a variety of inequivalent homogeneous
spatial-lattices which in principle could be compatible with the aforementioned
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4. The Quantum Field Cellular Automaton: the Dirac automaton

assumptions. The authors have then considered the problem from a very gen-
eral point of view, taking a denumerable set X of interacting quantum systems,
with Nx ⊂ X the subset of systems interacting with x ∈ X4 . The locality
(ii) and the homogeneity (iii) requirements amount to ask that Nx is finite
and with the same cardinality N for any x ∈ X. Hence the structure of the
connections between systems can be regarded as the application of generators
y ∈ N = N+ ∪ N− ∪ {e} (where N− is the set of inverses of the elements in
N+, according to the isotropy assumption (iv), while e is the identity element)
of a discrete group which allows to move from an element x ∈ X to another
element x′ = yx ∈ X, identifying the set X with the group itself. The suitable
mathematical description of this structure, as pointed out in [60], is the Cayley
graph Cay(X,N) of the group X, with the quantum systems at the nodes of
the graph and the links representing the quantum systems interactions.

The general qca for a field ψ having Λ internal degrees of freedom, is then
a unitary (assumption (i)) operator

U =
∑

y∈N

Uy ⊗ Sy (4.59)

on CΛ ⊗ l2(X), where S is an irreducible representation of the group X over
the Hilbert space l2(X), and N is the finite set of generators of X5. The
covariance (iv) with respect to the discrete topology is satisfied if the qca is
covariant under a representation O of some group G which acts transitively on
the generators of X, namely6

U =
∑

y∈N

Uy ⊗ Sy =
∑

y∈N

OgUhO
†
g ⊗ Sg(y). (4.60)

After developing the above general construction, the authors of [60] restrict
the infinite groups X to those having a Cayley graph that is quasi-isometrically
embeddable [133] in the Euclidean space R3, among which the only bcc (body
centered cubic) Bravais lattice is compatible with the unitarity constraint (i).
Then it is shown that the unique (modulo cp symmetry) automaton satisfying
all the requirements has minimal dimension Λ = 2 and recovers the Weyl
evolution in the large-scale limit |k| � 1, where k = (kx, ky, kz)

T is the the
wave-vector in the first Brillouin zone of the bcc lattice.

The Dirac qca in d = 3 is finally obtained coupling two Weyl automata
(thus describing a field with Λ = 4 internal degrees of freedom) in the only
possible ways consistent with the locality (ii) and unitarity (i) assumptions.
This results in only two admissible qcas which are related each other by a

4Notice that X corresponds to the automaton spatial-lattice while Nx is the equivalent
of the neighborhood scheme.

5The Sy with y ∈ N , correspond to the usual shifts on the lattice, as in Eq. (4.15) for
the one-dimensional field automaton.

6This condition correspond to the one-dimensional field automaton covariance of Defini-
tion (4.3).
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cpt symmetry and which recover the Dirac evolution in the large-scale limit
of small momenta and masses |k|,m� 1. The dispersion relations of the two
Dirac qcas are

ω±(k) = arccos(
√

1−m2(cxcycz ± sxsysz)), (4.61)

with cα = cos(kα/
√

3), sα = sin(kα/
√

3), for α = x, y, z, and kx = 1
2
(k1 + k2),

ky = 1
2
(k1 + k3), kz = 1

2
(k1 + k4).
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CHAPTER5

The Dirac automaton in one
dimension: free evolution and

scattering from potential

In this Chapter we analyze in the details the one-particle sector of the Dirac
automaton derived in Chapter 4. We show that that particle states on the
automaton are “smooth-states” peaked around some momentum eigenstate of
the qca. We present an analytical approximation method for evaluating the
automaton evolution for one-particle states deriving a momentum-dependent
differential equation for the automaton.

Then we analyse in the details dynamical quantities as the particle position,
momentum and velocity, along with their evolution both in the free case and
in the presence of a potential. We show that typical features of the Dirac
quantum field evolution–as Zitterbewegung and Klein paradox–are recovered
from the quantum information processing of the qca.

Recently we have witnessed a renewed interest in the Dirac equation fea-
tures in solid state and atomic physics, which provide physical hardwares to
simulate the Dirac dynamics. Zitterbewegung can be seen in the response
of electrons to external fields [134] and can appear for nonrelativistic parti-
cles in a crystal [135–137], quasiparticles in superconductors [138] and systems
with spin-orbit coupling [139,140]. Proving that the oscillation behavior is not
unique to Dirac electrons, but rather is a generic feature of spinor systems
with linear dispersion relations, these works opened the way for possible simu-
lations of Zitterbewegung using for example trapped ions [141,142], two-band
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5.1. Dispersive differential equation describing the Dirac automaton evolution

crystalline structure such as graphene [143, 144] or semiconductors [145–149],
ultra cold atoms [150], and finally photonic crystals [151].

The Klein paradox (tunneling of relativistic particles), which provides in-
sight in the mechanics of relativistic particles propagating through potential
barriers and in vacuum polarization effects, has been a focus in the topic of
graphene as a simulator for the Dirac equation, as in Refs. [152, 153], and in
trapped ions, as in [142]. Recently also microfabricated optical waveguide cir-
cuits have become an alternative physical simulator for particle dynamics [154].

In Section 5.1 we derive a momentum-dependent differential equation de-
scribing the automaton dynamics for one-particle states. We show that it re-
covers the usual Dirac and Schrödinger evolutions in the appropriate regimes.
The analytic approximation is compared with exact simulations, and the lead-
ing order corrections to the Dirac equation is evaluated. In Section 5.2 we
present the evolution of position and momentum operators for the automaton,
showing the Zitterbewegung behavior given by the interference between posi-
tive and negative frequencies. In Section 5.3 we modify the Dirac qca in order
to add a potential in the free evolution, and show the automaton dynamics in
the presence of a barrier for one-particle states.

The content of this Chapter is based on Refs. [59] and [61].

5.1 Dispersive differential equation describing

the Dirac automaton evolution

Here we describe analytically the evolution of the Dirac qca for suitable one-
particle states. These are states smoothly peaked around some one-particle
momentum eigenstate (4.56) of the Dirac automaton and then localized in a
finite region of the lattice. Their evolution will be well described by a differen-
tial equation whose coefficients depend on the mass m and on the momentum
k0 of the state. We will denote this states smooth-states:

Definition 5.1 (Smooth-states) A smooth-state for the Dirac automaton
in Eq. (4.31) is a state smoothly peaked around some k0, namely

|ψ(0)〉 =

∫ π

−π

dk√
2π

gk0(k, 0) |s〉k |k〉 , s = ±, (5.1)

where g(k, 0) ∈ C∞0 [−π, π] is a smooth function satisfying the bound

1

2π

∫ k0+σ

k0−σ
dk |gk0(k, 0)|2 > 1− ε, σ, ε > 0, (5.2)

and the two-component vector |s〉k is defined in Eq. (4.52).

Remark 5.1 In the following it will be convenient to work with the continuous
time t, interpolating exactly the discrete automaton evolution U t. Therefore
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we will take x, t to be real-valued continuous variable by extending the Fourier
transform

|ψ(x, t)〉 =

∫ π

−π

dk√
2π

eikxU t(k) |ψ(k, 0)〉 (5.3)

to real x, t. Since the automaton is band limited in momenta 0 6 k 6 π, then
the continuous function ψ(x, t) is completely defined by its value on the discrete
points (x, t) of the automaton causal network. The possibility of sampling a
band-limited function is stated in the Nyquist-Shannon Sampling Theorem (see
Appendix A). However, all numerical results will be given only for discrete t,
namely for repeated applications of the automaton unitary U in Eq. (4.31),
and for discrete lattice sites x.

In the following Proposition we derive the differential equation governing
the evolution for smooth-states:

Proposition 5.1 (Dispersive differential equation) Consider the evolu-
tion of the Dirac automaton (4.31) on a smooth-state |ψ(0)〉 (see Definition
5.1) peaked around |s〉k0

|k0〉 and having width σ. Then for any positive integer
p, the state at time t is given by

|ψ(x, t)〉 = ei(k0x−ω0t)|φ̃(x, t)〉 − ε− γσp+1t− O(σp+3)t (5.4)

where |φ̃(x, t)〉 is solution of the following differential equation

i∂t|φ̃(x, t)〉 = s

p∑

n=1

(i)nω
(n)
0

n!

∂n

∂xn
|φ̃(x, t)〉, (5.5)

with

γ :=
ω

(p+1)
0

2π

∫ k0+σ

k0−σ
dk |gk0(k, 0)|2, ω

(n)
0 :=

∂nω(k)

∂kn

∣∣∣∣
k=k0

, (5.6)

and ω(k) the Dirac automaton dispersion relation (4.41).

Proof. First we notice that at time t the state (5.1) in the momentum repre-
sentation is simply

|ψ(k, t)〉 = e−isωt |ψ(k, 0)〉 = e−iωtgk0(k, 0) |s〉k . (5.7)

At the same time t, the state in the position representation can then be written
as

|ψ(t)〉 =
∑

x

|ψ(x, t)〉 |x〉 , |ψ(x, t)〉 := ei(k0x−s ω0t) |φ(x, t)〉 , (5.8)

|φ(x, t)〉 :=

∫ π

−π

dk√
2π

ei(Kx−sΩ(k,m)t)gk0(k, 0) |s〉k , (5.9)
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where we posed

K = k − k0,

Ω(k) = ω(k)− ω0, ω0 = ω(k0).
(5.10)

As stated in Remark 5.1 it is convenient to take x, t to be real-valued continuous
variables by extending the Fourier transform in Eq. (5.9) to real x, t.

Now we derive the integral in Eq. (5.9) with respect to t and expand Ω vs
k around k0. Then, taking the resulting derivatives with respect to x out of
the integral (using the dominated derivative theorem), we obtain the following
differential equation whose coefficients depend on the momentum k0 and on
the mass m

i∂t|φ(x, t)〉 = s

∞∑

n=1

(i)nω
(n)
0

n!

∂n

∂xn
|φ(x, t)〉, ω

(n)
0 =

∂nω(k)

∂kn

∣∣∣∣
k=k0

. (5.11)

If we truncate the expansion on the rhs of Eq. (5.11) at the pth order and de-
note by |φ̃(x, t)〉 the solution of the corresponding truncated differential equa-
tion with the identification of the initial condition |φ̃(x, 0)〉 = |φ(x, 0)〉, we get
the approximate state (5.8) at time t

|ψ̃(x, t)〉 = ei(k0x−s ω0t)|φ̃(x, t)〉. (5.12)

If the initial smooth-state satisfies Eq. (5.2), then the accuracy of the approx-
imation (5.12) in terms of the parameters σ and ε is evaluated by the overlap
between the states (5.8) and (5.12), that is

|〈ψ̃(t)
∣∣ψ(t)〉| =

∣∣∣∣
∫ π

−π

dk

2π
e−i(ω

(p+1)
k0

kp+1+O(kp+2))t|gk0(k, 0)|2
∣∣∣∣ >

>

∣∣∣∣
1

2π

∫ k0+σ

k0−σ
dk e−i(ω

(p+1)
k0

kp+1+O(kp+2))t|gk0(k, 0)|2
∣∣∣∣+

−
∣∣∣∣

1

2π

∫

|k−k0|>σ
dk e−i(ω

(p+1)
k0

kp+1+O(kp+2))t|gk0(k, 0)|2
∣∣∣∣ >

>

∣∣∣∣∣1− it
ω

(p+1)
k0

σp+1

2π

∫ k0+σ

k0−σ
dk |gk0(k, 0)|2 − O(σp+3)t

∣∣∣∣∣− ε >

> 1− ε− γσp+1t− O(σp+3)t (5.13)

where

γ =
ω

(p+1)
0

2π

∫ k0+σ

k0−σ
dk |gk0(k, 0)|2.

Therefore the exact state |ψ(x, t)〉 at time t can be approximated by(5.12) with
the accuracy given by the overlap (5.13), which proves the thesis (5.4). �
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Figure 5.1: Test of the approximation (5.14) of the (m = 0.4) Dirac automaton
(4.31) evolution. The initial smooth-state (5.1) is a Gaussian peaked around the
momentum k0 = 0.1 and having width in position σ̂ = σ−1 = 10. We show a four
times t = 0, 100, 200, 600 comparison between the automaton probability distribu-
tion |ψ(x, t)|2 (in red) and the approximate solution (5.15) |ψ̃(x, t)|2 (in blue). The
drift velocity and the diffusion coefficient are respectively v = 0.22 and D = 2.30.

In the following we will be interested in the second order approximation of
Proposition 5.1, namely

|ψ(x, t)〉 = ei(k0x−ω0t)|φ̃(x, t)〉 − ε− γσ3t− O(σ5)t, (5.14)

with |φ̃(x, t)〉 satisfying the second order diffusive differential equation

i∂t|φ̃(x, t)〉 = s

(
iv
∂

∂x
− 1

2
D
∂2

∂x2

)
|φ̃(x, t)〉, (5.15)

with the drift v and the diffusion D coefficients depending on k and m as
follows

v := ω
(1)
0 =

√
1−m2

1 +m2 cot2(k0)
, (5.16)

D := ω
(2)
0 =

√
1−m2m2 cos (k0)

(sin2(k0) +m2 cos2(k0))
3
2

. (5.17)

We can test the accuracy of the approximation (5.14) by comparing |ψ̃(x, t)〉
with the exact |ψ(x, t)〉 given by the automaton simulation.
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Figure 5.2: Test of the approximation (5.14) of the Dirac automaton (4.31) evolu-
tion. The smooth-state (5.1) is a superposition of Hermite functions (the polyno-
mials Hj(x) multiplied by the Gaussian) peaked around momentum k0 = 3π/10,
specifically |ψ(x, 0)〉 = Aeik0x

∑
j∈N cje

−x2/4σ̂2
Hj(x/2σ̂)|+〉k0 where σ̂ = σ−1 = 20

is the position variance corresponding to momentum variance σ, and the nonvanish-
ing terms are c0 =

√
1/3, c2 =

√
4/9, c7 =

√
2/9. The automaton mass is m = 0.6.

In the picture we show a comparison at four different times t = 0, 100, 200, 600
between the automaton probability distribution |ψ(x, t)|2 (in red) and the solution
of the differential equation (5.15) |ψ̃(x, t)|2 (in blue). The drift and the diffusion
coefficients are respectively v = 0.73 and D = 0.31. The mean position moves at
the group velocity given by the drift coefficient v. The approximation remains ac-
curate even for position spread σ̂ = 20 “Planck” lengths. According to Eq. (5.14)
one has significant deviations for t ≈ γσ3, which is t = 600 in the present case.
However, a reasonable spread σ̂ in a typical particle physics scenario is the Fermi
length σ̂ ≈ 1020, that would need a time t comparable to many universe life-times
to introduce a significant error. The ε error in Eq. (5.14) can be taken very small by
considering nσ instead of σ in Eq. (5.2). For Gaussian states it is enough to consider
3σ to get ε ≈ 10−3.

In Fig. 5.1 it is m = 0.4 and the initial smooth-state is a Gaussian peaked
around the momentum k0 = 0.1 and having width σ

|ψ(x, 0)〉 = Aeik0xe−x
2/4σ̂2 |+〉k0

, σ̂ = σ−1 = 10, (5.18)

where σ̂ is the width in position and A represents the normalization factor.
The differential equation in Eq. (5.15) can be easily solved for Gaussian states
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and the approximate solution (5.14) at time t is

|ψ̃(x, t)〉 = A′ exp

(−(x+ vt)2 − iω
4σ̂(t)

)
|+〉k0

,

σ̂(t) = σ̂

√
1 + i

D

2σ̂2
t,

(5.19)

where the drift and diffusion coefficients are respectively v = 0.22 and D =
2.30.

In Fig. 5.2 it is m = 0.6 and the initial smooth-state (5.1) is a superposition
of Hermite functions (the Hermite polynomialsHj(x) multiplied by a Gaussian)
peaked around the momentum k0 = 3π/10 and having width σ

|ψ(x, 0)〉 = Aeik0x
∑

j∈N

cje
−x2/4σ̂2

Hj(x/2σ̂) |+〉k0
σ̂ = σ−1 = 20, (5.20)

(see the Figure for the details).
One can notice how the approximation remains accurate even for states

having a position width of few sites on the lattice (few “Planck” lengths). In
Figs. 5.1 and 5.2 we have respectively σ̂ = 10 and σ̂ = 20. For example,
according to Eq. (5.14), in the simulation of Fig. 5.2 one has a significant
deviation for t ≈ γσ3 = 600 while the error ε can be taken arbitrary small by
considering nσ instead of σ in Eq. (5.2) (for Gaussian states it is enough to
consider 3σ to get ε ≈ 10−3).

On the other hand, in a more typical scenario it is reasonable to assume
the state width σ̂ of the order of one Fermi, as in a typical particle physics
context. In this case the time t needed for a significant departure would be
comparable to many universe life-times.

5.1.1 First order correction to the Dirac and Scrödinger
free evolution

In the relativistic regime, namely for

k,m� 1, k/m� 1, (5.21)

the momentum-dependent differential equation (5.15) approaches the Dirac
equation. The leading order and the corrections to the drift and diffusion
coefficients introduced by the automaton evolution are

v = vD

(
1− 1

3
m2 +

1

6

m2k2

k2 +m2

)
, vD :=

k√
k2 +m2

, (5.22)

D = DD

(
1 +

1

3
m2k2 − 1

2

m2k4

k2 +m2

)
, DD :=

m2

√
(k2 +m2)3

. (5.23)

The leading order terms correspond to the Dirac equation drift vD and diffusion
DD coefficients.
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In the non relativistic regime, namely

k,m� 1, k/m� 1, (5.24)

the usual Schrödinger drift and diffusion coefficients are recovered with the
following corrections

v = VS

(
1 +

1

3
m2

)
, vS :=

k

m
, (5.25)

D = DS

(
1 +

5

6
k2

)
, DS :=

1

m
. (5.26)

Notice that the leading terms are the usual group velocity vS and diffusion
coefficient DS of the Schrödinger equation.

5.2 Evolution of Position and momentum op-

erators

In this Section we show how the Dirac automaton reproduces a typical feature
of the one-particle Dirac dynamics, namely the Zitterbewegung.

The Zitterbewegung was first recognized by Schrödinger in 1930 [155] who
noticed that in the Dirac equation describing the free relativistic electron the
velocity operator does not commute with the Dirac Hamiltonian. It follows
that in the evolution of the position operator, in addition to classical motion,
it appears a very fast periodic oscillation with frequency 2mc2 and amplitude
equal to the Compton wavelength ~/mc, with m the mass of the relativistic
particle. This jittering motion, first encountered in the Dirac theory of the elec-
tron, was then shown [134] to arise from the interference of states corresponding
to the positive and negative energies resulting from the Dirac equation, with
the trembling disappearing for long time evolutions [156]. The Zitterbewegung
oscillation cannot be directly observed by current experimental techniques for a
Dirac electron since its amplitude results to be very small ≈ 10−12 m. However,
it can be seen in a number of solid-state, atomic-physics, photonic-cristal and
optical waveguide simulators, as quoted in the introduction to the Chapter.

5.2.1 The automaton position and momentum opera-
tors

Up to now we have considered only smooth-states 5.1 whose Dirac automaton
evolution is well described by the approximate differential equation derived
in Proposition 5.1. On the other hand in the automaton framework are al-
lowed states very far apart from the smooth-ones and in the limit one can also
consider perfectly localized states:

|ψ〉 = |ζ〉 |x〉 x ∈ Z, ζ = cr |r〉+ cl |l〉 , |cr|2 + |cl|2 = 1, (5.27)
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where |r〉 and |l〉 denote the C2 basis vectors corresponding to the Dirac field
representation in Eq. (4.25).

The position operator X providing the representation |x〉, i.e. such that
X |η〉 |x〉 = x |η〉 |x〉, is defined as follows

X =
∑

x∈Z

x(I ⊗ |x〉〈x|). (5.28)

Accordingly the average position for an arbitrary one-particle state

|ψ〉 =
∑

x∈Z, η=r,l

gη(x) |η〉 |x〉 , (5.29)

is given by

〈ψ|X |ψ〉 . (5.30)

The definition of the mechanical momentum would need an interacting
theory allowing momentum exchange between different particles. However, in
Chapter 4 and Section 5.1 we have seen that for small k and m, the wave-vector
k (namely the conjugated variable of x via the Fourier transform) corresponds
to the Dirac particle momentum. Moreover the momentum operator should
correspond to the generator of translations over the discrete one-dimensional
lattice. Therefore, as conjugated momentum we take the following operator

P =

∫ π

−π

dk

2π
k(I ⊗ |k〉〈k|). (5.31)

We can now compute the commutator between X and P as defined in Eqs.
(5.28) and (5.31), that is

[X,P ] =
∑

x

∫ π

−π

dk

2π

∑

y

xk|x〉〈y|e−ik(x−y) −
∫ π

−π

dk

2π

∑

zν

zk|ν〉〈z|eik(z−ν)

=
∑

xy

∫ π

−π

dk

2π
(x− y)k|x〉〈y|e−ik(x−y), (5.32)

where in the second equality it was possible to interchange the sum and the
integral according to the Fubini Theorem. Now integrating by parts we get

〈ψ| [X,P ] |ψ〉 = i− i

2

∑

η=r,l

(
|ĝη(π)|2 + ĝη(−π)|2

)
, (5.33)

where |ψ〉 is the generic state of Eq. (5.29) and ĝ(k) is the discrete Fourier
transform of g(x). Eq. (5.33) differs from the usual canonical commutation
relation [X,P ] = i by a boundary term. This is in agreement with the existence
of perfectly localizable states on the automaton (5.27),

|ζ〉 |x〉 =
∑

y∈Z, η=r,l

gη(y) |η〉 |y〉 , gη(x) = cηδxy, (5.34)
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for which ĝη(π) = ĝη(−π) = cη and the expectation value of the commuta-
tor (5.33) vanishes. From now on we will consider states having negligible
boundary term in (5.33).

In Section 4.3.2 we have derived the momentum eigenstates (4.52) of the
Dirac automaton

U(k) |s〉k = e−isH(k) |s〉k = e−isω(k) |s〉k , s = ± (5.35)

where we remind the Hamiltonian (4.40) to be

H(k) = ω (|+〉k 〈+|k − |−〉k 〈−|k) = sinc−1ω(−n sin k σ3 +mσ1). (5.36)

We observed that the positive (s = 1) and negative (s = −1) eigenstates
correspond to the particle and antiparticle states of the automaton. As in
qft, one can define the Newton-Wigner position operator XNW which does
not mix positive and negative eigenstates. In order to do that we introduce
the operator UFW providing the Foldy-Wouthuysen representation of the Dirac
automaton in which the Hamiltonian H(k) is diagonal

UFW (k) : {|r〉 , |l〉} → {|+〉k , |−〉k}, U−1
FW (k)H(k)UFW (k) = ωσ3. (5.37)

By direct computation we find that

UFW =

∫ π

−π
dk UFW (k)⊗ |k〉〈k| (5.38)

UFW (k) = U−1
FW (k) = 1√

2
(
√

1− vσ3 +
√

1 + vσ1), (5.39)

and the Newton-Wigner rotated position operator is thus defined as

XNW = UFWXUFW . (5.40)

5.2.2 The Zitterbewegung

In the following analytical derivation we work with continuous x and t (see
Remark 5.1). However, as in the previous Section, the numerical results will
be given only for discrete t, namely for repeated applications of the automaton
unitary operator (4.31).

The evolution of the position operator (5.28)

X(t) = U−tXU t (5.41)

can be easily computed via the velocity and the acceleration operators

V (t) =

∫ π

−π
dk V (k, t)|k〉〈k|, A(t) =

∫ π

−π
dk A(k, t)|k〉〈k|,

derived by the commutator with the automaton Hamiltonian (5.36)

V (t) = i[H,X(t)], A(t) = i[H, V (t)]. (5.42)
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From an easy computation it follows

V (k) =
sin(ω)− ω cos(ω)

sin(ω)ω
vH(k)− ω

sin(ω)
n cos(k)σz, (5.43)

A(k) = − 2ω2

sin2(ω)
nm cos(k)σy, (5.44)

and the analytical expression of X(t) is obtained by doubly integrating the
acceleration operator A(t). This is eased by the anticommutation between H
and A which gives

A(k, t) = e2iHtA(k). (5.45)

Therefore, integrating the first time we get

V (k, t) = V̂ (k) + VZ(k, t), (5.46)

V̂ (k) = −v2σz + v
√

1− v2σx, VZ(k, t) =
1

2i
H−1(k)A(k, t), (5.47)

with H−1(k) = ω−2H(k), and integrating again one has

X(t) = X(0) + V̂ t+XZ(t)−XZ(0), (5.48)

XZ(k, t) = −1

4
H−2(k)A(k, t). (5.49)

The operator V̂ in Eqs. (5.46) and (5.48) is the classical component of the
velocity operator which, in the Hamiltonian diagonal basis (5.37), is propor-
tional to the group velocity v(k)

V̂ (k) = v(k)σz. (5.50)

In addition to the classical contribution V̂ t, we see that the position operator
(5.48) presents, as in the usual Dirac theory, a time dependent component
XZ(t) and a constant shift term XZ(0). Again, it the Hamiltonian (5.37)
diagonal basis it is

XZ(t) =

∫ π

−π
dk e2iω(k)σztZX(k)⊗ |k〉〈k|, (5.51)

XZ(k) = z(k)σy, z(k) =
m cosω(k)

2 sin2 ω(k)
. (5.52)

Consider now a generic one-particle state and separate its positive and a neg-
ative energy components as follows

|ψ〉 = |ψ+〉+ |ψ−〉 . (5.53)

Since in the basis {|+〉 , |−〉} it is V̂ ∝ σz (5.50) and XZ ∝ σy (5.52) we have

k 〈∓| V̂ (k) |±〉k = 0, k 〈±|XZ(k) |±〉k = 0, (5.54)

83



5.2. Evolution of Position and momentum operators

and the position operator X(t) (5.48) mean value for the generic state (5.53)
can always be written as

〈ψ|X(t) |ψ〉 =x+
ψ (t) + x−ψ (t) + xint

ψ (t) (5.55)

x±ψ (t) := 〈ψ±|X(0) + V̂ t |ψ±〉 (5.56)

xint
ψ (t) := 2<[〈ψ+|X(0)−XZ(0) +XZ(t) |ψ−〉], (5.57)

with < denoting the real part.
The first two terms x±ψ (t) simply correspond to the “classical” evolution of

the particle and antiparticle components of the initial state |ψ〉, which evolve
independently according to the classical component (5.50) of the velocity oper-
ator. The interference between positive and negative frequencies is responsible
for the term xint

ψ (t) in Eq. (5.57). Obviously in case of |ψ〉 having only posi-
tive or negative component, the interference disappears. The additional term
xint
ψ (t) consists of two contributes: a constant shift and a time dependent term.

In the following Proposition we show that the time dependent contribution is
an oscillating term that for t→∞ goes to 0 as 1/

√
t, and whose amplitude is

bounded by 1/m—say by the Compton wavelength ~/mc in the usual dimen-
sional units. We will also provide a bound for the magnitude of the constant
shift term. These results show that xint

ψ (t) is the automaton analogue of the
so called Zitterbewegung:

Proposition 5.2 (Zitterbewegung) Let |ψ〉 be a generic one-particle state
of the form

|ψ〉 = |ψ+〉+ |ψ−〉 ,

|ψ±〉 =

∫ π

−π

dk√
2π

g±(k) |±〉k |k〉 , g±(k) ∈ C∞0 [−π, π],
(5.58)

with 〈ψ|X(t) |ψ〉 = x+
ψ (t) + x−ψ (t) + xint

ψ (t) the mean position value at time t

given in Eq. (5.55). The time dependent component of xint
ψ (t) has the following

asymptotic behavior and bounded amplitude

2<[〈ψ+|XZ(t) |ψ−〉] t�0−−→ 1√
t
, |2<[〈ψ+|XZ(t) |ψ−〉]| 6

1

m
. (5.59)

The constant shift term in xint
ψ (t) has magnitude bounded as follows

|2< 〈ψ+|X(0)−XZ(0) |ψ−〉 | 6
1

m
+

2

m2
. (5.60)

Proof. Given the state in Eq. (5.58) and using Eqs. (5.51) and (5.52) one has

2<[〈ψ+|XZ(t) |ψ−〉] =

∫ π

−π

dk

π
z(k)<

[
ig∗+(k)g−(k)e2iω(k)t

]
,

which shows the oscillating nature of the term 2<[〈ψ+|XZ(t) |ψ−〉].

84



5. The Dirac automaton in one dimension: free evolution and scattering from
potential

One can notice that z(k) ∈ L1[−π, π] for anym 6= 0 andXZ(k) is a bounded
operator, hence according to the Riemann-Lebesgue Lemma (see Appendix B)
it is

lim
t→∞

2<[〈ψ+|XZ(t) |ψ−〉] = 0. (5.61)

However, we are interested in the analytical dependence on t in the asymptot-
ical limit. Since, for any m 6= 0, ω(k) has three stationary points in k = 0, ±π
(ω(1)(0) = ω(1)(±π) = 0 and ω(1)(k) 6= 0 elsewhere in the closed interval
k ∈ [−π, π], with ω(2)(0) 6= 0, ω(2)(±π) 6= 0), the stationary phase approxima-
tion (see Appendix B) gives

2<[〈ψ+|ZX(t) |ψ−〉] t�0−−→
∑

k=0,±π

z(k)<
[
ig∗+(k)g−(k)e2iω(k)t

√
i

πω(2)(k)t

]
,

(5.62)

showing the first part of (5.59), namely that the term 2<[〈ψ+|XZ(t) |ψ−〉] goes
to 0 as 1/

√
t1. The upper bound (5.59) on the oscillation amplitude can be

easily evaluated by the following elementary chain of inequalities

|2<[〈ψ+|XZ(t) |ψ−〉]| 6 2|XZ(t)| 6 2|XZ(0)| 6

6 2 max
k∈[−π,π]

|z(k)| = 2z(0) =

√
1−m2

m
6

1

m
. (5.63)

Similarly one can evaluate an upper bound (5.60) on the constant shift
term. First we notice that

|2<[〈ψ+|X(0)−XZ(0) |ψ−〉]| 6 2| 〈ψ+|X(0) |ψ−〉 |+ 2|XZ(0)|. (5.64)

Now defining the C∞0 [−π, π] test function ϕ(k, k′) = g∗+(k)g−(k′) 〈+| k |−〉k′ ,
we have

| 〈ψ+|X(0) |ψ−〉 | =
∣∣∣∣
〈

dδ(k − k′)
d(k − k′)

∣∣∣∣ϕ(k, k′)

〉∣∣∣∣ =

∣∣∣∣
〈
δ(k − k′)

∣∣∣∣
dϕ(k, k′)

d(k − k′)

〉∣∣∣∣ =

=

∣∣∣∣
∫ π

−π

dk dk′

2π
δ(k − k′)g∗+(k)g−(k′)

d

d(k − k′) 〈+| k |−〉k′
∣∣∣∣ =

=

∣∣∣∣
∫ π

−π

dk

2π
g∗+(k)g−(k)f(k)

∣∣∣∣ 6

6 max
k∈[−π,π]

|f(k)| = f(0) =

√
1−m2

m2
6

1

m2

f(k) :=
n

sin2 ω
. (5.65)

1Notice that this asymptotic beahaviour could be different in the presence of a potential as
shown in Refs. [157,158], where a revival of the Zitterbewegung occurs for a Dirac oscillator.
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5.2. Evolution of Position and momentum operators

Finally, exploiting Eqs. (5.65) and (5.63) in Eq. (5.64) we get the upper bound
(5.60). �

Proposition 5.2 allows to state that xint
ψ (t) in Eq. (5.57) is the automaton

analogue of the Zitterbewegung. The results of this Section are in agreement
with the ones for the Hadamard walk in Ref. [159].

In Fig. 5.4 we compare our analytical results with some simulations of the
automaton evolution. In the simulations we have considered states (5.58) with
particle and antiparticle components smoothly peaked around some momen-
tum eigenstate (see Definition 5.1), namely

c+ |ψ+〉+ c− |ψ−〉 , |ψ±〉 =

∫
dk√
2π

gk0(k) |±〉k |k〉 ,

|c+|2 + |c−|2 = 1,

(5.66)

where gk0 is a Gaussian peaked around k0 with width σ. An easy computation
shows that for these states the shift contribution reduces to

2<[〈ψ|X(0) + ZX(0) |ψ〉] = =(c∗+c−)/(2π)

∫ π

−π
dk |gk0(k)|2z(k), (5.67)

with the function z(k) = m cosω(k)/ sin2 ω(k) bounded again by the Compton
wavelength 1/m. From proposition 5.2 we know that in the asymptotic limit
t� 0 the oscillation has frequency ω(0)/π and amplitude damps from z(0) to
zero. On the other hand for small times t it becomes relevant the frequency
ω(k0)/π and the amplitude z(k0), corresponding to the momentum k0 of the
state. In any case the functions z and ω/π determine the oscillation amplitude
and frequency of the position expectation value (see also Fig. 5.3). For exam-
ple, when the wave-packets are both peaked around k = 0, as in the first two
cases of Fig. 5.4, the damping of the oscillation amplitude can be observed for
times much longer than the ones we could consider in our simulations. Indeed,
since the wave-packet is sharp in k = 0, the asymptotic approximation of Eq.
(5.62) results to be accurate only for very large values of t.
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Figure 5.3: Plots of z(k) (left) and ω(k)/π (right) related to the oscillation amplitude
and frequency of the position expectation value in Eq. (5.48). In both cases the plots
are reported for different values of the mass (m = 0.1, 0.2, 0.4, 0.8 from the top in
the left figure and from the bottom in the right figure).
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Figure 5.4: Automaton evolution of a state as in Eq. (5.66) showing the Zitter-
bewegung of the position mean value. Top: m = 0.15, c+ = 1/

√
2, c− = i/

√
2,

k0 = 0, and σ = 40−1. The calculated shift and oscillation frequency are respec-
tively 〈ψ|X(0)+ZX(0) |ψ〉 = 3.2 and ω(0)/π = 0.05, compatibly with the simulation.
Middle: m = 0.15, c+ = 1/

√
2, c− = 1/

√
2, k0 = 0, σ = 40−1. The calculated

shift and oscillation frequency are 0 and 0.13, respectively. Bottom: m = 0.13,
c+ =

√
2/3, c− = 1/

√
3, k0 = 10−2π, σ = 40−1. In this case the particle and

antiparticle contributions are unbalanced and the drift velocity of the mean position
is 〈ψ+| V̂ |ψ+〉+ 〈ψ−| V̂ |ψ−〉 = (|c+|2− |c−|2)v(k0) = 0.08, corresponding to a mean
position x+

ψ (800)+x−ψ (800) = 464 at t = 800 (see Eq. (5.56)). Notice that for t→∞
the term 2<[〈ψ+|ZX(t) |ψ−〉, which is responsible of the oscillation, goes to 0.

Remark 5.2 (Newton-Wigner position operator evolution) As in the
usual qft the Newton-Wigner position operator (5.40) does not suffer the
jittering of the mean position even for states having both a particle and an
antiparticle component. Indeed, in this case, the velocity operator is

V (t) = [H,XNW (t)], V (k) = V̂ (k), (5.68)
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5.3. Scattering with a square potential barrier

corresponding to the classical component (5.50) of the velocity operator in
Eq. (5.46) and leading to a null acceleration

A(t) = [H, V̂ (t)] = 0. (5.69)

By integrating (5.68) we see that the position operator XNW (t) is simply

XNW (t) = XNW (0) + V̂ t. (5.70)

5.3 Scattering with a square potential barrier

In this Section we add a position-dependent potential to the Dirac automaton
(4.31) evolution and study the scattering with a square potential barrier. We
will derive explicitly the transmission T and reflection R coefficients as func-
tions of the energy and mass of the incident wave-packet and of the potential
barrier’s height. We will find a general behavior independently on the energy
and mass of the incident particle: increasing the value of the potential barrier
beyond a certain threshold a transmitted wave reappears and the reflection
coefficient starts decreasing. The width of the R = 1 region is an increasing
function of the mass which is proportional to the gap between the positive-
and the negative-frequency eigenvalues of the automaton unitary evolution.

The Dirac unitary matrix (4.31) can be written as follows

U :=
∑

x

(
n|x− 1〉〈x| −im|x〉〈x|
−im|x〉〈x| n|x+ 1〉〈x|

)
, (5.71)

describing a Quantum Walk on the Hilbert space C2 ⊗ l2(Z) as noticed in
Section 4.16. Since the “energy” of the Dirac field is represented by the au-
tomaton dispersion relation ω, introducing a potential in the evolution simply
means to modify the dispersion relation of the automaton. In the free case the
dispersion relation ω appears in the phases e±iω corresponding to the Dirac
automaton eigenvalues (see Section 4.3.2), and we can introduce a potential
as an additional phase eiφ. Hence, for a generic potential φ(x), the unitary
evolution (5.71) becomes

Uφ :=
∑

x

e−iφ(x)

(
n|x− 1〉〈x| −im|x〉〈x|
−im|x〉〈x| n|x+ 1〉〈x|

)
, (5.72)

as also proposed in Refs. [125,159].
Here we analyze the simple case

φ(x) := φ θ(x) θ(x) =

{
0 x < 0,

1 x > 0,
(5.73)

(θ(x) is the Heaviside step function) that is a potential step which is 0 for
x < 0 (region I) and has a constant value φ ∈ [0, 2π] for x > 0 (region II) as
illustrated in the left Fig. 5.5.
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Figure 5.5: Left Figure: Schematic of the square potential in Eq. (5.73) . Right
Figure: Schematic of the boundary conditions at the junction between the regions
I and II where the square potential (5.73) turns on.

A plane wave eigenstate of the Dirac qca without the potential barrier has
the form

|Φ(ω)〉 = |s〉k |k〉 = eikx |s〉k |x〉 , U |Φ(ω)〉 = e−isω(k)|Φ(ω)〉, (5.74)

where the vectors

|s〉k =

(
usk
dsk

)
usk = 2−1/2

√
1− sv, dsk = 2−1/2s

√
1 + sv, (5.75)

are the Dirac qca momentum eigenstates U(k) |s〉k = e−isω |s〉k derived in
Section 4.3.2.

When the potential barrier (5.73) is turned on, the plane wave eigenstates
of the automaton Uφ are no longer of the simple form (5.74). Let us study the
eigenstates of Uφ of the form

|Φ(ω)〉 = ΠI |+〉k |k〉+ ΠIβk |+〉−k |k〉+ γkΠII |+〉k′ |k′〉 , (5.76)

ΠI :=
∑

x<0

I ⊗ |x〉〈x|, ΠII :=
∑

x>0

I ⊗ |x〉〈x|, (5.77)

where βk, γk and k′ are functions of k. The condition that |Φ(ω)
k 〉 is an eigenstate

of Uφ, i.e. Uφ|Φ(ω)
k 〉 = e−iω(k), implies

ω(k′) = ω(k)− φ. (5.78)

Physically in region I we have an incident wave and a reflected wave

|+〉k |k〉+ βk |+〉−k |k〉 , (5.79)

which must have the same momentum k with opposite sign. In region II we
have the transmitted wave

γk |+〉k′ |k′〉 , (5.80)
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5.3. Scattering with a square potential barrier

whose momentum k′ depends on the height of the potential barrier according
to Eq. (5.78).

The derivation of the coefficients βk, γk requires the boundary conditions
at site x = 0 separating the regions I and II. When the potential barrier (5.73)
is turned on any plane wave eigenstate

∣∣Φ(ω)
〉

of the automaton Uφ (5.72)
having energy ω must satisfy the following boundary conditions (see also right
Fig. 5.5)

e−iωu(−1) = ne−iφu(0)− imd(ω)(−1), (5.81)

e−iωd(0) = nd(−1)− ime−iφu(0), (5.82)

as one can easily check applying the automaton (5.72) to the wave
∣∣Φ(ω)

〉
.

Using the expression (5.76) for the eigenstate
∣∣Φ(ω)

〉
, the boundary conditions

(5.81,5.82) become

e−iω(k)(e−iku+
k + βke

iku+
−k) = ne−iφγku

+
k′ − im(e−ikd+

k + βke
−ikd+

−k), (5.83)

e−iω(k)γkd
+
k′ = n(e−ikd+

k + βke
ikd+
−k)− ime−iφγku+

k′ . (5.84)

Now we can use the identity U(k) |+〉 = e−iω |+〉 (see Eq. (4.38) for U(k)) to
simplify (5.83,5.84) as follows

u+
k + βku

+
−k = e−iφγku

+
k′ , (5.85)

e−ikd+
k + βke

ikd+
−k = e−iφe−ik

′
γkd

+
k′ , (5.86)

and by an easy manipulation we get

βk =
e−ik

√
(1 + v)(1− v′)− e−ik′

√
(1− v)(1 + v′)

−eik
√

(1− v)(1− v′) + e−ik′
√

(1 + v)(1 + v′)
,

γk =
2eiξ(v cos k − i sin k)

−eik
√

(1− v)(1− v′)) + e−ik′
√

(1 + v)(1 + v′)
,

with v := v(k) and v′ := v(k′) the group velocities of the incident and trans-
mitted wave.

The states in Eq. (5.76) are the equivalent of the plane waves for the free
case and are not normalized. Let us consider smooth-states (see Definition
5.1) given by the superposition

|Ψ(0)〉 :=

∫
dk√
2π

gk0(k) |Φk〉 ,

where gk0(k) is a function in C∞0 [−π, π] and is assumed to be smoothly peaked
around k0. The state at time t is then

|Ψ(t)〉 :=

∫
dk√
2π

gk0(k)e−iω(k)t |Φk〉 ,
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and one can verify that for t� 0 the state is negligible in region II while the
only appreciable contribution in region I comes from the term eik0x, describing
a wave-packet that moves at the group velocity v(k0) and hits the barrier form
the left. When t � 0 the state can be approximated by a superposition of a
reflected and a transmitted wave-packet as follows

|Ψ(t)〉 t�0−−→β(k0)

∫
dk√
2π

gk0(k)e−iω(k)t |+〉−k |k〉+

+γ̃(k0)e−iφt
∫

dk√
2π

g̃k′0(k′)e−iω(k′)t |+〉k′ |k′〉 ,

where we defined

k′0 s.t. ω(k′0) = ω(k0)− φ,

γ̃(k0) := γ(k0)

√
v(k′0)

v(k0)
, g̃k′0(k′) :=

√
v(k′0)

v(k0)
gk′0(k′)

(one can check
∫

dk√
2π
|g̃k′0(k′)|2 = 1), whose group velocities are −v(k0) for the

reflected wave-packet and v(k′0) for the transmitted one (see Fig. 5.7).
We denote by R (reflection coefficient) and T (trasmission coefficient) the

probability of finding the particle respectively in the reflected and transmitted
wave-packet, namely

R = |β(k0)|2 =
1− vv′ − cos(k − k′)

√
(1− v2)(1− v′2)

1 + vv′ − cos(k + k′)
√

(1− v2)(1− v′2)
, (5.87)

T = |γ̃(k0)|2 =
2(v2 cos2(k) + sin2(k))

1 + vv′ − cos(k + k′)
√

(1− v2)(1− v′2)
, (5.88)

R + T = 1, (5.89)

where R + T = 1 verifies the consistency of the result.
For k � m � 1 (see the non relativistic regime of the Dirac qca in

Eq. (5.25)) we recover the usual reflection and transmission coefficient for the
Schröedinger equation with a step potential barrier.

5.3.1 The Klein paradox

In Fig. 5.6 we plot the reflection coefficient R as a function of φ and k for
different values of the mass m. Clearly when the height of the potential barrier
is φ = 0 we have R = 0 and, increasing φ while keeping k fixed, the value
increases up to R = 1

φ = 0⇒ R = 0, T = 1, (5.90)

0 < φ < ω(k)− arccos(n)⇒ R > 0, T > 0, (5.91)

φ = ω(k)− arccos(n)⇒ R = 1, T = 0. (5.92)
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5.3. Scattering with a square potential barrier

Figure 5.6: Reflection coefficient as a function of the potential barrier height φ and
of the momentum k of the incident particle state. From the left to the right the re-
flection coefficient is depicted for different values of the mass: m = 0.1, 0.2, 0.4, 0.8.

Figure 5.7: Group velocity of the transmitted wave-packet as a function of the
potential barrier height φ and of the momentum k of the incident particle state.
From the left to the right the transmitted group velocity for different values of the
mass: m = 0.1, 0.2, 0.4, 0.8.

One notice that when ω(k) − arccos(n) < φ < ω(k) + arccos(n) Eq. (5.78)
has solution for imaginary k′ which implies an exponential damping of the
transmitted wave corresponding to a pure reflection

ω(k)− arccos(n) < φ < ω(k) + arccos(n)⇒ R = 1, T = 0. (5.93)

By further increasing the value of φ beyond the threshold ω(k) + arccos(n)
Eq. (5.78) has solution for real k′ and negative ω(k′), and then a transmitted
wave reappears with the reflection coefficient decreasing

φ > ω(k) + arccos(n)⇒ R > 0, T > 0. (5.94)

The revival of the transmitted wave for an high enough potential barrier is
the so called “Klein paradox” which is originated by the presence of positive-
and negative-frequency eigenvalues of the unitary evolution. Usually it is in-
terpreted as the generation of an antiparticle with negative momentum which
moves in the direction of the transmitted wave. In the automaton context the
interpretation is very simple since Eq. (5.78) has solution for real k′ < 0 and
negative ω(k′) < 0, which gives rise to a wave having group velocity v(k′) > 0
(remember that the group velocity corresponding to negative ω(k) is positive
when k < 0 as shown in Fig. 4.9).

The width of the R = 1 region (see Fig 5.6) is an increasing function of the
mass and is equal to 2 arccos(n), namely

− arccos(n) < φ < arccos(n), (5.95)
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Figure 5.8: Reflection coefficient (left) and transmitted-wave group velocity (right)
for m = 0.4 and momentum of the incident particle k0 = 2 as functions of the
potential barrier height φ (section of plots in Figs. 5.6 and 5.7 for m = 0.4, k0 = 2).

Figure 5.9: Simulations of the Dirac automaton evolution with a square potential
barrier. Here the automaton mass is m = 0.2 while the barrier turns on at x =
140. In the simulation the incident state is a smooth-state of the form |ψ(0)〉 =∫

dk√
2π
gk0(k) |+〉k peaked around the positive-energy eigenstate |+〉k0

with k0 = 2
and with gk0 a Gaussian having width σ = 15−1. The incident group velocity is
v(k0) = 0.90. The simulation is run for four increasing values of the potential
φ. Top-Left: Potential barrier height φ = 1.42, reflection coefficient R = 0.25,
velocity of the transmitted particle v(k′0) = 0.63. Top-Right: φ = 1.55, R = 0.75,
v(k′0) = 0.1. Bottom-Left: φ = 2, R = 0.1, v(k′0) = 0. Bottom-Right: φ = 2.4,
R = 0.50, v(k′0) = 0.33.

which is the gap between positive and negative-frequency solutions (see Fig.
4.7).
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5.3. Scattering with a square potential barrier

In Fig. 5.8 we plot the reflection coefficient R and the transmitted-wave
velocity group v(k′0) as a function of the potential barrier height φ with the
incident wave-packet having k0 = 2 and m = 0.4. From the figure it is clear
that after a plateau with R = 1 the reflection coefficient starts decreasing for
higher potentials. Finally In Fig. 5.9 we show the scattering simulation for four
increasing values of the potential, say φ = 1.42, 1.55, 2, 2.4 (see the caption
to figure for the details).
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CHAPTER6

Discriminating the Dirac
automaton and the usual Dirac

evolutions

A major aim of the automaton approach to qft is the connection to the
phenomenology, namely to some experiment that could discriminate between
the predictions of the automaton model and the usual qft ones.

In Chapter 4 we have shown how the Dirac automaton recovers the Dirac
equation in the large-scale limit of small masses and momenta. Here we make
this notion more rigorous comparing the Dirac unitary operator with the au-
tomaton one in a quantum informational scenario, evaluating the probability
of discriminating between the two evolutions in a generic experiment. The
discrimination probability will be given in terms of the parameters of the ex-
periment, namely the number of particles involved, their masses and their
momenta. Finally we discuss possible ways of testing of the theory along with
effects of the Planck scale discreteness on wave-packets fly-times.

The content of this Chapter is based on Ref. [59].

6.1 Theoretically optimal discrimination

The problem here is to experimentally discriminating between two different
dynamics, the Dirac automaton and the usual Dirac evolutions. In quantum
informational language this is a problem of discriminating optimally between
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6.1. Theoretically optimal discrimination

two different unitaries and is usually refereed to as “discrimination between
two black boxes”.

6.1.1 Discrimination between two black boxes

We can consider the following scenario. An experimentalist is given a black
box that can be either the box A or the box D with equal probability 1

2
, and

he is asked to guess which box. Without loss of generality we can include the
processing of the experimental data in the experiment itself, therefore the box
discrimination is a two-outcome experiment, with outcomes A and D: if the
outcome is A the experimentalist will guess A and if the outcome is D he will
guess D. In general the correct answer can be given with some probability
and the challenge for the expermentalist is to design the experiment which
minimizes the probablity of error (wrong guess)

pe = 1
2

[p(A|D) + p(D|A)] , (6.1)

where p(X|Y ) is the probability of getting outcome X when the black box is
Y . We want now to minimize pe over all possible experiments. It is clear from
this scenario that the minimum over all the possible experiments of the error
probability is a well defined measure of how much the models A and D are far
apart.

The optimal discrimination between the two black boxes is a special case of
discrimination between quantum channels (see see Section 2.2.1 for the defini-
tion of quantum channel) , namely the discrimination between the two unitary
evolutions described by UA and UD.

Let us begin our analysis by describing the most general experiment which
discriminates between two unitary evolutions that act on a quantum system B
with Hilbert space HB. The experimental procedure can be divided into three
steps:

(i) Prepare a quantum state ρ possibly entangled with an ancillary system
C with Hilber space HC.

(ii) Apply the unknown unitary evolution UX (X = A,D) to system HB (the
ancillary system evolves with the identity map).

(iii) Perform a two-outcome measurement on system HB ⊗HC: the two out-
comes A and D correspond to the two possible evolutions. The measure-
ment can be described by a povm P = {PA, PD}, where PA and PD are
positive operators on HB ⊗HC which satisfy PA + PD = I, I denoting
the identity on HB ⊗HC (see Section 2.2.1 for the definition of povm).

We can pictorially represent the above procedure as follows:

ρ
GF
@A

B
UX

B

C P
ED
BC . (6.2)
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6. Discriminating the Dirac automaton and the usual Dirac evolutions

The probability of error in Eq. (6.1) becomes then

pe =
1

2
Tr[PA(UDρUD

† − UAρUA†)], (6.3)

where we have used the trivial identity PD = I − PA.
Minimizing expression (6.3) over all possible experiments becomes a min-

imization over the set of the povms and the set of the available states. Ac-
cording to the old Helstrom’s result [160] the minimization over the povm set
gives

inf
06PA6I

pe =
1

2
− 1

2
||UDρUD† − UAρUA†)||1 (6.4)

where || · ||1 denotes the trace norm1. Clearly in order to have the minimal
error probability pe we have now to maximize the term ||UDρUD†−UAρUA†)||1
in Eq. (6.4) over all states ρ. Generally, the optimal discrimination between
quantum channels needs entangled states [161], namely states ρBC (see the
circuit in Eq. (6.2)) where the system B is entangled with the ancilla C . On
the other hand for the case of two unitaries with a single copy of each box, the
optimal error probability p̄e is simply given by

p̄e = 1
2
− 1

2
||UA − UD|| = 1

2
− 1

2
sup

ρ∈St(HB)

||UAρU †A − UDρU †D||1, (6.5)

where the supremum is taken only on the system B.

6.1.2 The Dirac black boxes case

We are interested in discriminating between the unitary evolution of the Dirac
automaton and the unitary evolution of the Dirac equation. Clearly the evolu-
tion will involve an arbitrary state of the Dirac field ψ as discussed in Chapter
4. Since the discrimination experiment can have a generic duration t, the op-
erators to be discriminated are the unitaries at time t. By direct computation
using the Hamiltonians in Eqs. (4.38) and (4.45) we find

U t = e−iH(k)t =

(
cos(ωt) + i sin(ωt)

ω
a −ib sin(ωt)

ω

−ib sin(ωt)
ω

cos(ωt)− i sin(ωt)
ω

a

)
(6.6)

a :=
ω

sin(ω)
n sin(k) b :=

ω

sin(ω)
m

U t
D = e−iHD(k)t =

(
cos(ωDt) + i sin(ωDt)

ωD
k −im sin(ωDt)

ωD

−im sin(ωDt)
ωD

cos(ωDt)− i sin(ωDt)
ωD

k

)
(6.7)

1This is the operational norm defined in Eq. (2.16) for a general probabilistic theory
which in the qt case becomes the trace norm of (2.26).
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6.1. Theoretically optimal discrimination

where ω and ωD are the automaton (4.41) and the usual Dirac (4.46) dispersion
relations.

We have now to evaluate the minimal probability of error in Eq. (6.5). The
supremum is taken over all possible experiments involving the two unitary
evolutions (6.6) and (6.7), namely over all possible states ρ ∈ St(HB) of the
Dirac field ψ. These states are characterized by three parameters:

(i) The number N of particles involved in the experiment.

(ii) The momenta k of the particles involved in the experiment.

(iii) The masses m of the particles involved in the experiment.

For large dimension for the Hilbert space HB and with no restriction on
the states of the Dirac field, the probability (6.5) would be vanishingly small.
However, in a typical physical scenario the available states for the experimen-
talist are limited, namely the particles involved in the experimental set up are
limited both in number and in momentum. We thus consider the physical
bounds on the number of particles N 6 N̄ <∞ and their momenta k 6 k̄ < π
according to the following definition:

Definition 6.1 (Set of physical restricted states Tk̄,N̄) By Tk̄,N̄ we denote
the set of physically restricted states ρ ∈ St(HB) such that

Tr[ρNk̄] = Tr[ρPN̄ ] = 0, (6.8)

where PN̄ is the projector on the N > N̄-particles sector and Nk̄ is the op-
erator that counts the number of particles with momentum |k| > k̄, i.e Nk̄ =∫
|k|>k̄ dk ψ†(k)ψ(k).

Within the restricted set of sates the optimal probability of error in Eq. (6.9)
becomes

p̄e = 1
2
− 1

2
sup
ρ∈Tk̄,N̄

||U tρU t† − U t
DρU

t
D
†||1. (6.9)

The explicit computation of p̄e cannot be done analyticly. However, we are
able to derive an analytic lower bound for Eq. (6.9) which is the main result
of this Section.

Proposition 6.1 (Lower bound for the probability of error (6.9)) The
optimal probability of error (6.9) in discriminating between the Dirac automa-
ton (6.6) and the Dirac equation (6.7) unitary evolutions can be lower bounded
as follows

p̄e > 1
2
− 1

2

√
1− cos2(g(k̄,m, N̄ , t)), (6.10)

where

g(k̄,m, N̄ , t) := N̄ arccos
(
cos(ᾱt)− β̄

)
,

ᾱ := max
k∈{0,k̄}

|ωD − ω|,

β̄ := max
k∈{0,k̄}

∣∣∣∣
1

2

(
1− vvD −

√
(1− v2)(1− v2

D)

)∣∣∣∣ ,
(6.11)
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6. Discriminating the Dirac automaton and the usual Dirac evolutions

with ω and ωD the automaton (4.41) and the Dirac (4.46) dispersion relation,
and v = ∂kω and vD = ∂kωD the automaton (5.16) and the Dirac (5.22) group
velocity.

We stress that the bound (6.10) is very general and can be trivially com-
puted for any kind of experiment having a certain duration t and involving N̄
particles having mass m and momentum k̄. The proof of the lower bound (6.10)
goes through three Lemmas and one Proposition. The reader not interested in
the technical details of the proof can directly skip to the next Section.

Lemma 6.1 Let U t
D(k) and U t(k) be defined according to Eqs. (6.6) and (6.7).

Upon defining V (k, t) = U t
D(k)U t†(k), let eiµ(k,m,t) be an eigenvalue of V (k, t).

Then the following bound holds:

cos(µ(k,m, t)) > cos(αt)− β (6.12)

where

α(k,m) := ωD − ω

β(k,m) :=
1

2

(
1− vvD −

√
(1− v2)(1− v2

D)

)
.

(6.13)

Proof. Since both U t
D(k) and U t†(k) are SU(2) matrices, we have that V (k, t)

is an SU(2) matrix and its eigenvalues must be of the form eiµ(k,m,t) and
e−iµ(k,m,t). This implies the equality cos(µ(k,m, t)) = 1

2
Tr[V (k, t)] which by

direct computation gives

cos(µ(k,m, t)) =

(
1− β

2

)
cos(αt) +

β

2
cos(γt) (6.14)

where α and β are defined as in Eq. (6.13) and γ := ω+ωD. Finally, from Eq.
(6.14) one can easily find the bound cos(µ(k,m, t)) > cos(αt)− β �

The second Lemma shows the monotonicity of the two functions α, β in
Lemma 6.1:

Lemma 6.2 Let α(k,m) and β(k,m) be defined as in Eq. (6.13) and 0 6 k̄ <
π. Then we have

ᾱ := max
k∈[−k̄,k̄]

|α| = max
k∈{0,k̄}

|α|

β̄ := max
k∈[−k̄,k̄]

|β| = max
k∈{0,k̄}

|β| ∀m ∈ [0, 1] . (6.15)

Proof. Since both ω and ωD are even function of k, from Eq. (6.13) we have
that also α and β are even function of k. For this reason we can restrict to
k ∈ [0, k̄]. The equality (6.15) can be proved by showing that α and β are
nondecreasing functions of k for k ∈ [0, k̄].
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Since ∂kα = vD − v, if v2
D − v2 > 0 for k ∈ [0, π) then ∂kα > 0 in the same

interval. By direct computation one can verify that

(vD)2 − (v)2 =
x(k,m)

y(k,m)
(6.16)

x(k,m) := k2 − sin2(k)(1−m2) (6.17)

y(k,m) := (k2 +m2)(sin2(k) +m2 cos2(k)) . (6.18)

Clearly we have y(k,m) > 0 and since k > sin(k) for 0 6 k < π, the thesis is
proved for the function α.

Again the monotonicity of β for k ∈ [0, π) follows from ∂kβ > 0 in the same
interval. By elementary computation we have

∂kβ = x(k,m)y(k,m)z(k,m), (6.19)

x(k,m) :=
m2

ωD sin2(ω)
, (6.20)

y(k,m) := (n sin(k)− k), (6.21)

z(k,m) :=
n cos(k)

sin2(ω)
− 1

ω2
D

. (6.22)

Clearly x(k,m)y(k,m) 6 0 for k ∈ [0, π) and we just have to verify that
z(k,m) 6 0 in that interval, namely

m2 cos2(k) + sin2(k)− n cos(k)ω2
D > 0 . (6.23)

The last equation is trivially satisfied for k ∈ [π/2, π] therefore we restrict to
k ∈ [0, π/2]. This allows to divide the left side of Eq. (6.23) by cos(k) achieving

m2 cos(k) +
sin2(k)

cos(k)
− nω2

D > 0 (6.24)

which is satisfied if

w(k,m) := m2 cos(k) + sin2(k)− nω2
D > 0 . (6.25)

It is easy to see that, for any m ∈ [0, 1], we have
(
∂

(i)
k w(k,m)

)
k=0

= 0 for i =

0, 1, while ∂
(2)
k f(k,m) > 0 for any k ∈ [0, π/2], which gives the monotonicity

of β. �

Lemma 6.3 Let 0 6 k̄ < π, N̄ be a positive integer number, and ᾱ, β̄ be
defined as in Eq. (6.15). If β̄ 6 1− cos( π

2N̄
) and t 6 f(k̄,m, N̄), where

f(k̄,m, N̄) :=
arccos(cos

(
π

2N̄

)
+ β̄)

ᾱ
, (6.26)

then

N̄µ(k,m, t)) 6 g(k̄,m, N̄ , t) 6
π

2
(6.27)

where g(k̄,m, N̄ , t) := N̄ arccos
(
cos(ᾱt)− β̄

)
.
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6. Discriminating the Dirac automaton and the usual Dirac evolutions

Proof. The conditions t 6 f(k̄,m, N̄) and β̄ 6 1− cos( π
2N̄

) imply

0 6 ᾱt 6 arccos
(

cos
( π

2N̄

)
+ β̄

)
⇒ 1 > cos(ᾱt)− β̄ > cos

( π

2N̄

)
⇒

⇒ cos(αt)− β > cos(ᾱt)− β̄ > cos
( π

2N̄

)
. (6.28)

By exploiting the bound (6.12) into Eq. (6.28) we have

cos(µ(k,m, t)) > cos(ᾱt)− β̄ > cos
( π

2N̄

)
⇒

⇒ N̄µ(k,m, t) 6 N̄ arccos
(
cos(ᾱt)− β̄

)
6
π

2
.

(6.29)

�
We are now ready to prove the bound (6.10)

Proposition 6.2 Let U t and U t
D be the unitary evolutions given by the Dirac

automaton and by the Dirac equation respectively. If the hypothesis of Lemma
6.3 hold then we have

sup
ρ∈Tk̄,N̄

||(U tρU t† − U t
DρU

t
D
†
)||1 6

√
1− cos2(g(k̄,m, N̄ , t)). (6.30)

Proof. First we notice that thanks to the convexity of the trace distance we
can, without loss of generality, consider ρ to be pure. If ρ is a pure state |χ〉〈χ|
the trace distance becomes

√
1− | 〈χ|U tU t†

D |χ〉 |2 =
√

1− | 〈χ|V (t) |χ〉 |2. If

we expand |χ〉 on a basis of eigenstates of V , i.e. |χ〉 =
∑

N,k,s

√
pN,k,s |N,k, s〉,

we have

| 〈χ|V (t) |χ〉 | =
∣∣∣∣∣
∑

N,k,s

pN,k,s exp

(
i

N∑

j=0

sjµ(kj,m, t)

)∣∣∣∣∣ >

>

∣∣∣∣∣
∑

N,k,s

pN,k,s cos

(
N̄∑

j=0

sjµ(kj,m, t)

)∣∣∣∣∣ . (6.31)

Combining the bound (6.27) and Eq. (6.31) we have

∣∣∣∣∣
∑

N,k,s

pN,k,s cos

(
N̄∑

j=0

sjµ(kj,m, t)

)∣∣∣∣∣

2

> cos2(g(k̄,m, N̄ , t))

which finally implies

√
1− | 〈χ|V (t) |χ〉 |2 6

√
1− cos2(g(k̄,m, N̄ , t)) .

�
Inserting the bound (6.30) into Eq. (6.9) we finally have the bound (6.10).
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6.2. Discrimination via particle fly-time

6.1.3 Discrimination in the regime of small masses and
momenta

As already observed the bound in Eq. (6.10) can be computed for any ex-
periment involving the free evolution of the Dirac field. The bound is useful
both from the theoretical and from the phenomenological point of view: it
allows to verify the theoretical discriminability between the automaton and
the Dirac evolutions and it gives insights on the suitable experimental scenario
for seeking eventual violations of the Dirac dynamics. On the other hand the
analytical expression of (6.10) is very complicated and one cannot easily judge
the order of magnitude of the error probability just looking at the formula.

A simplified version of the bound in the typical particle physics regime,
namely k,m� 1, is obtained by expanding in series the function g in Eq. (6.11)
near m = k̄ = 0. Truncating the expansion at the leading order and neglecting
a small constant term we have

g(m, k̄, N̄ , t) ≈ 1

6
m2k̄ N̄ t, (6.32)

and then the following expression for the optimal probability of error

p̄e > 1
2
− 1

2

√
1− cos2

(
1

6
m2k̄ N̄ t

)
. (6.33)

In Section 4.3 we have shown how the Dirac automaton recovers the Dirac
equation in the limit of small masses and momenta. This is now made rigorous
by the optimal probability (6.33) of discriminating between the two evolutions.
Indeed for k,m� 1 the probability of error approaches 1

2
and then the optimal

discrimination experiment is equivalent to a random guessing. This means that
in the typical particle-physics regime the two evolutions are very similar.

By putting p̄e = 0, corresponding to g(m, k̄, N̄ , t) = π/2, we obtain the
minimum time

tmin(m, k̄, N̄) ≈ 3π
1

m2k̄N̄
. (6.34)

required for discriminating perfectly between the automaton and the Dirac
evolution in a given experiment. Notice that this is an in-principle optimal
result, without any specification of the actual apparatus needed to achieve it.
For a proton uhecr (see [132]) with k̄ = kCR ≈ 10−8 we have

tmin(mp, kCR, 1) ≈ 3π1046 Planck times ≈ 103s. (6.35)

6.2 Discrimination via particle fly-time

In this Section we consider an elementary experiment for discriminating be-
tween the Dirac automaton and the Dirac equation evolution based on par-
ticle fly-time. Then we will compare the result with the theoretical optimal
in-principle testing of Section 6.1.
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6. Discriminating the Dirac automaton and the usual Dirac evolutions

The dispersive differential equation (5.15) along with the leading order cor-
rections to the drift and the diffusion coefficients in the relativistic and non
relativistic regime (see Eqs. (5.22,5.23) and Eqs. (5.25,5.26)) provide a useful
analytic tool for evaluating the macroscopic evolution of the automaton, which
otherwise would not be computable in-practice. As a possible experiment for
the falsification of the quantum automaton evolution we consider a measure-
ment of fly-time of a particle. As for order of magnitude, we consider numerical
values corresponding to uhecrs.

Consider then a proton with mp ≈ 10−19 and momentum peaked around
kCR ≈ 10−8 in Planck units, with a spread σ. We ask what is the minimal
time tCR for observing a complete spatial separation ∆ between the trajectory
predicted by the cellular automaton model and the one described by the usual
Dirac equation. Thus we require the separation between the two trajectories
to be

∆x > σ̂ = σ−1, (6.36)

that is the initial width in the position space. Notice that uhecrs still belong
to the relativistic regime mp, kCR � 1, where the automaton is well approxi-
mated by the usual Dirac evolution.

We describe the state evolution of the proton wave-packet using the disper-
sive differential equation (5.15) for an initial Gaussian state, as in the example
of Eq. (5.18). The time required to have a separation σ̂ between the automaton
and the Dirac particle is

t ≈ σ̂/∆v = σ̂

∣∣∣∣∣
6
√

(k2 +m2)3

m2k2(2m2 + k)

∣∣∣∣∣ , (6.37)

where ∆v = v−vD is the difference between the automaton and the Dirac drift
coefficients in the relativistic regime (5.23). Since it is mp/kCR � 1 Eq. (6.37)
further simplifies as follows

tCR ≈ 6
σ̂

m2
p

. (6.38)

In order to be visible the separation ∆x = σ̂, the overall broadening σ̂br(t) of
the two packets must be much smaller than σ̂. Using Eq. (5.19), which express
the time broadening of a Gaussian in terms of the diffusion coefficient, and
Eq. (5.23), which provides the automaton diffusion coefficient in the relativistic
regime, one has

σ̂br(t) = σ̂



√

1 +

(
D

2σ̂2
t

)2

+

√
1 +

(
DD

2σ̂2
t

)2

− 2




≈ 2σ̂

(√
1 +

m4
p

4σ̂4k6
CR

t2 − 1

)
,

(6.39)
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where we used mp/kCR � 1. According to Eq. (6.38) we see that σ̂ � σ̂br
when

σ̂ � (kCR)−3 = 1022 Planck lengths = 102fm. (6.40)

This result is physically consistent if we observe that the proton wave-packet
should have a width bigger than the Fermi length. With σ̂ = 102 fm the
fly-time for a complete separation between the two trajectories is

tCR ≈ 6× 1060 Planck times ≈ 1017s, (6.41)

comparable with the age of the universe. In Eq. (6.35) we evaluated the mini-
mal theoretical time required for discriminating perfectly between the automa-
ton and the Dirac evolution using uhecrs, that is 103 s. Unfortunately this
means that the particle fly-time is not a good experimental setup for discrim-
inating the automaton evolution and the usual Dirac one. On the other hand
the theoretical optimal discrimination shows the in-principle possibility of test-
ing the automaton and one should consider different kind of experiments.

Here we have considered an experiment on uhecrs which have the benefit
of carrying a very high momentum. On the other hand they are very rare events
and it is possible to consider only experiments involving one cosmic ray. Taking
different, less energetic, particles one could engineer experiments involving
many particles reducing the minimal time for the discrimination according to
Eq. (6.34).

Alternative tests that can be considered are experiments based on quantum
interferometry and/or ultra-cold atoms as in Refs. [28,162–164].
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CHAPTER7

Deformed Relativity and
emergent spacetime

The XX century has been the stage for the two theories that have completely
modified our intuition in physics—say Special Relativity and qt. Special rela-
tivity was generalized in order to solve the tension with the Newtonian theory
of gravity while the dichotomy between the resulting General Theory of Rela-
tivity and qt is still a severe issue in modern theoretical physics.

In the last decades many approaches to quantum gravity have been pro-
posed, and some of them have become complete theories like String The-
ory [18, 19] and Loop Quantum Gravity [165–168]. Other relevant approaches
are the causal sets of Bombelli et al. [20], the non-commutative spacetime of
Connes [21] and the quantized spacetime of Synder [22].

As pointed out in [169] the existence of a fundamental scale of length or
mass, which could be identified with the Planck scale, seems to be a model-
independent feature of quantum gravity. The appearance of this minimum
length is the result of combining quantum mechanics (~), special relativity (c)
and gravity (G),

`P =
√

~G/c3, (7.1)

with its inverse giving the Planck energy EP . This scales are commonly re-
garded as the thresholds beyond which the old description of spacetime breaks
down and a new phenomenology should appear. The existence of such a scale
leads naturally to wonder what is the fate of Lorentz symmetry at the Planck
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scale. Moreover in which reference frame lP and EP are the thresholds for the
new phenomenology?

A possible way of tackling the above questions is a theory with two observer-
independent scales, the speed of light and the Planck energy, as proposed by
Amelino-Camelia in his seminal papers [23, 24, 170, 171] on Deformed Special
Relativity (dsr) and later by Smolin and Magueijo who studied models of
dsr is a quite general scenario [25, 62]. As we will discuss in the next Sec-
tion all the dsr realizations have the common feature of predicting a Planck
scale deformed kinematics which has the immediate benefit of providing a rich
in-principle testable phenomenology. The deformed kinematics exhibits two
major physical predictions, (i) a wavelength dependence of the speed of pho-
tons and (ii) modified threshold conditions for particles production in certain
collision processes. It is worth mentioning that the possibility of having a
deformed covariance in the presence of a varying speed of light was also con-
sidered independently by Magueijo in the pioneering works [172–174]. The
relevance of the two classes of phenomena owns to the fact that they can be
investigated with very high sensitivity in astrophysical context (see for exam-
ple the Greisen-Zatsepin-Kuzmin theoretical threshold for uhecrs [132] and
the equivalent for gamma cosmic-rays [175] which have been largely discussed
in the last decade). However, in the class of dsrs not all the representatives
have both the above features and the analysis of the emergent phenomenology
is clearly model dependent. A particular realization comes from the simple
automaton model introduced in this thesis.

In Chapters 4,5 and 6 we have proposed a qca model for the Dirac field
evolution and we have shown that assuming hypothetically the scale of the
automaton to be the Planck scale, the usual qft Dirac dynamics is recovered
in the limit of small masses and momenta. The automaton theory does not
enjoy an underling notion of Minkowski spacetime (which is for example the
starting point of the algebraic approach to qft), but only a discrete causal
network of events with, at most, the metric given by the “event counting”.
Within this perspective most of the symmetries of qft, along with the Lorentz
covariance, do not correspond to symmetries of the qca and thereby are broken
at the Planck scale. However, in recovering the qft dynamics as a large-
scale approximation, one should also restore its symmetries—say the Lorentz
covariance— as approximated symmetries of the emergent theory.

Here we move the first steps toward the emergence of Special Relativity
from the automaton framework. In Section 7.1, after a short discussion about
the literature on dsr, we show how the Dirac automaton provides a dsr model
with an invariant energy scale. We also show that the emergent spacetime
exhibits the feature of relative locality [63,64], namely different observers which
are very far apart, construct different spacetimes starting from the invariant
phase space. It is worth stressing that the deformed relativistic model based
on the automaton dynamics introduces relative locality in a quantum scenario,
which is a quite unusual feature according to [65]. Finally in the last Section
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7. Deformed Relativity and emergent spacetime

7.2, which is not strictly related to the automaton physics, we show how a
digital version of the Lorentz transformations can be obtained by a kind of
Einstein synchronization protocol on a classical causal network.

The content of this Chapter is based on Refs. [66], and on Refs. [67,176].

7.1 Deformed Special Relativity from the Dirac

automaton

The dsr proposal started off with the consideration that the Planck length
(7.1) (or the Planck energy) represents a threshold below which the smooth
spacetime geometry could be replaced by a discrete quantum geometry. On the
other hand lengths and energies are not invariant under Lorentz transforma-
tions and different observers could disagree on the threshold for the appearance
of the new quantum effects. This issue can be cured if the lorentz transfor-
mations may be modified as to preserve not only the speed of light but also a
single energy (or momentum), above which all observes agree that the smooth-
ness of spacetime breaks down. The first model of this kind was proposed by
Amelino-Camelia in [23, 170, 171]. Later it has been shown [25, 62] that an
invariant energy scale can be introduced keeping the principle of the relativity
of inertial frames, and simply modifying the laws by which energy and mo-
menta measured by different inertial observers are related to each other by
introducing a non-linear action of the Lorentz transformations on momentum
space. As a consequence the quadratic invariant of the Poincaré algebra, also
called Casimir element of the algebra,

E2 = p2 +m2 (7.2)

is replaced by a non-linear invariant, which in turn corresponds to a modified
dispersion relation.

One of the interesting aspects of dsr is that in some of its realizations
it can be treated in a well established mathematical framework. Amelino-
Camelia suggested to consider quantum groups (also called Hopf algebras1) for
describing the symmetries of deformed relativity. Indeed it turned out [178,179]
that a class of dsrs is equivalent to a “quantum group like” deformation of the
usual Poincaré algebra, denoted k-Poincarré algebra, with the deformation
parameter k representing an Hopf algebra invariant “energy scale” [180,181].

From a very general point of view a dsr realization is a physical model
whose momentum-energy space is described by a k-deformed Poincaré agebra,
which is by definition a non-linear agebra. Alternatively, as pointed out in
[25,62], a dsr model is described by a non-linear action of the Poincarré group
on the momentum-energy space. Clearly in both cases the usual Poincaré linear
action is restored at energies much below the Planck one. As observed by many

1For a complete reference on Hopf algebras see the book [177] by Majid.
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7.1. Deformed Special Relativity from the Dirac automaton

authors working in the field of deformed relativity (see for example Kowalski-
Glilman et al. [182]), the formalization of a full dsr theory has necessarily to
deal with the following three aspects:

(a) Contrary to the usual Special Relativity, where the Poincaré algebra acts
linearly on the momentum-energy space, in the dsr scenario there are
essentially no restrictions on the non-linear momentum-energy transfor-
mations, allowing for a variety of mathematically equivalent models. On
the other hand these models are likely to be inequivalent from the physical
point of view and it is still an open problem how to single out one of them
via physical principles.

(b) Usually it is provided an algebra which describes only the momentum-
energy sector of the theory. On the other hand there is no unique pre-
scription for deriving a picture of the full phase space, that is deforming
the momentum-energy sector without providing a connection to the physics
of the emergent spacetime could be unjustified. Instead it would be inter-
esting to have a sort of “Einstein protocol” based on some physical model
of spacetime at the Planck scale leading to a deformed momentum-energy
sector of the kind proposed in dsr.

In the k-deformed Poincaré algebra scenario there is a way out of this issue.
Indeed the dual nature of Hopf algebras 2 exhibits the deep connection
between the k-Poincaré algebra and the non-commutative k-Minkowski
spacetime: the k-Poincaré algebra describes the symmetries of a non-
commutative spacetime. The full phase space of a k-deformed algebra
was first derived in [183] for the Majid bicrossproduct realization [181]
and then extended to other models in [184]. Finally in [182] the authors
tried to figure out which properties of the emergent phase space are model
dependent and which are not, in order to indicate the second ones as phys-
ically observable features of the theory.

Another relevant aspect on the phase space emergent from dsr is the
relative locality phenomenon [64]. As a consequence of deforming the mo-
mentum space, absolute locality—say the assumption that all observers
live in the same spacetime—can be violated. More precisely absolute lo-
cality is equivalent to the assumption that the momentum space is a linear
manifold, which is not the case in dsr.

(c) While classical field theories with k-deformed symmetry have been recently

2An Hopf algebra A is actually a bialgebra, namely an object which is both an algebra
(with the usual product A ⊗ A → A and unit), and a co-algebra (with the co-product
A→ A⊗A and co-unit) which satisfies logical compatibility rules. As the natural extension
of the notion of group an Hopf algebra enjoyes the additional operation called antipode
which gives the“inverse”of an element in the algebra upon the application of the co-product.
Clearly also the antipode has to satisfy compatibility rules with the underlying bialgebra
operations. The algebra and co-algebra structures are in a precise dual relation and the
commutativity (non-commutativity) of the product is related to the commutativity (non-
commutativity) of the co-product.
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7. Deformed Relativity and emergent spacetime

considered (see [185] and references therein), the ambiguities concerning
how momenta are added and how composite quantities transform slows
down the development of k-deformed quantum field theories (see [186] for
some recent developments).

The one-dimensional Dirac automaton (4.31) derived in this thesis pro-
vides a potential microscopical description of the Dirac field free dynamics at
the Planck scale, where it is a causal network of quantum systems in local
unitary interaction. Here we show that the automaton provides a special mod-
ification of the dispersion relation (7.2) which turns out to be compatible with
a deformed relativity with an invariant energy scale.

Concerning point (a), it is interesting to notice that the deformation con-
sidered here is motivated by the informational framework at the basis of the
quantum field automaton theory, and it is verified a posteriori to satisfy some
of the usual features of dsr, as the existence of an invariant energy scale. Re-
garding point (b) we will discuss the relative locality phenomenon assuming
an ansatz for connecting the momentum space to the position one in the au-
tomaton dsr realization. Turning to issue (c) we proceed to the analysis of
the one-particle sector as in the mainstream literature on dsr.

7.1.1 Invariance of the dispersion relation and deformed
Lorentz covariance

The (1+1)-dimensional Dirac automaton (4.31) has been derived imposing its
invariance with respect to the symmetries of the causal network and describes
the one step evolution ψ(x) → Uψ(x) of a two components field ψ(x) :=
(ψr(x), ψl(x))T , with ψr and ψl denoting the left and right modes respectively.
The states of the field are obtained by applying the creator operators ψ†r(l) to

the vacuum state |Ω〉. In the following we restrict to the one-particle sector
for which a orthonormal basis is given by the states |η〉 |x〉 := ψ†η |Ω〉, η = r, l.
A generic one-particle state is |ψ〉 =

∑
x,η gη(x) |η〉 |x〉 and Eq. (4.31) becomes

a unitary matrix U on C2 ⊗ l2(Z).
In the Fourier transformed basis |η〉 |k〉, with |φ(k)〉 := (2π)−1/2

∑
x e
−ikx |x〉,

k ∈ B := [−π, π], the matrix U is written as in Eq. (4.38) and the momentum-
energy sector of the automaton is characterized by the dispersion relation
(4.41), here reported (in a slightly different form) for the convenience of the
reader

cos2 ω = (1−m2) cos2 k. (7.3)

Remember that the automaton model is naturally band-limited

k ∈ Bk := [−π, π], ω ∈ Bω := [0, π], (7.4)

and that m ∈ [0, 1] with m = 1 corresponding to Planck mass. In Section 4.3
we discussed how in the limit k,m� 1 Eq. (7.3) reduces to

ω2 = k2 +m2, (7.5)
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7.1. Deformed Special Relativity from the Dirac automaton

(see also Fig. 4.7) and by interpreting the wave-vector k and the frequency ω
as momentum and energy3 we recover the Lorentz dispersion relation (7.2).

Disregarding the internal degrees of freedom, we consider the dispersion
relation in Eq. (7.3) as the dynamical equation of the theory which should be
independent on the reference frame. In one dimension the usual Lorentz group
consists in the only boost transformations which in the momentum-energy
sector are represented by the linear map

Lβ : (k, ω) 7→ (k′, ω′) = γ(k − βω, ω − βk), (7.6)

with γ := (1 − β2)−1/2. It is immediate to check that the Dirac automaton
is not Lorentz covariant since its dispersion relation (7.3) changes under the
standard boosts of Eq. (7.6). However, the fact that in the regime of small
momenta and masses the usual Lorentz quadratic invariant (7.5) is restored
suggests that in the automaton framework Lorentz invariance comes as an
approximate symmetry, which is broken at high energy scales, exactly as in
the dsr models.

We want now to investigate which are the invariance transformations for
the automaton dynamics and verify their compatibility with a model of dis-
torted relativity. Since the one-particle sector of the automaton is completely
specified by the dispersion relation (7.3) we seek for the transformation which
leave it invariant. Following the dsr proposal of preserving the Lorentz group
structure, the linear Lorentz boosts (7.6) should be replaced by a non-linear
representation of the kind

LDβ : (k, ω) 7→ (k′, ω′) = D−1 ◦ Lβ ◦D(k, ω) =: LDβ (k, ω), (7.7)

where D : R2 → R2 is a non-linear map. The specific form of D gives raise
to a particular energy-momentum Lorentz deformation. As highlighted in [25]
the non-linear map D has to satisfy some constraints:

(i) The Jacobian matrix JD(k, ω) of the map D evaluated in k = ω = 0 must
be

JD(0, 0) = I, (equivalently JLDβ (0, 0) = Lβ) (7.8)

with I the two by two identity matrix, ensuring the non-linear trans-
formations to recover the standard boosts (7.6) in the regime of small
momenta and energies.

(ii) According to Eq. (7.7) the map D must be invertible in a suitable (see
next point (iii)) sector of the momentum-energy space. This sector is
included in the interval B = B1 × B2 of Eq. (7.4) and we will denote it
Bph: D restricted to Bph is invertible.

3It is worth stressing that the correspondence between wave-vector and momentum can
only be established within an interacting theory. For example a different possibility is to
define the energy as the eigenvalue of the finite-difference Hamiltonian 2iHf = U − U† (see
Eq. (4.50)), which gives ωf = sinω, and to identify the momentum with p = sin k.
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Figure 7.1: The automaton dispersion relation (left) and group velocity (right) for
m = 0.1, 0.2, 0.4, 0.8, 1, from bottom to top on the left and from top to bottom on
the right). Notice the fixed point ω = π/2 in the dispersion relation at k = ±π/2.
The same points correspond to the maximum group velocity.

(iii) Since the ordinary Lorentz boosts span the whole interval [0,∞], both for
momentum and energy, the range of the map D must include the whole
interval [0,∞]. Notice that the invertibility region of (ii) must include
the interval [0,∞].

(iv) A dsr model exhibits an invariant energy scale only if the map D has a
singular point, namely some energy ωinv which is mapped to ∞ by D

D2(kinv, ωinv) =∞, ωinv = ω(kinv). (7.9)

Indeed Eq. (7.7) shows that the invariants of the new deformed theory
are the inverse images via D of the Special Relativity invariants, namely
infinite energy.

Let us now focus on the automaton dispersion relation (7.3) and observe
that by simple manipulation it can be restated as

sin2 ω

cos2 k
− tan2 k = m2. (7.10)

Therefore we find that the non linear map D in Eq. (7.7) can be taken to be

D(k, ω) :=

(
tan k,

sinω

cos k

)
, (7.11)

and corresponds to the following deformed Lorentz transformations

k′ = arctan

(
γ

(
tan k − β sinω

cos k

))
,

ω′ = arcsin

(
γ

(
sinω

cos k
− β tan k

)
cos k′

)
.

(7.12)

The map (7.11) derived from the invariance of the automaton dispersion
relation automatically satisfies the requirements (i-iv) and then provides a dsr
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7.1. Deformed Special Relativity from the Dirac automaton

model with an invariant energy scale. One can easily verify that JD(0, 0) = I
and in the relativistic regime, namely k, ω � 1 and for β sufficiently small to
keep k′, ω′ small, D approaches the identity function with the transformations
(7.12) approaching the usual Lorentz boosts. According to (iv) since ω = π

2
is

mapped to ∞ by D,

D2(±π
2
, π

2
) =∞⇒ ωinv = π

2
, (7.13)

it is an invariant energy. Looking at the modified dispersion relation (7.3) (see
also left Fig. 7.1) we notice that it has two symmetrical fixed points at k = ±π

2

which correspond to the invariant energy ω(k) = π
2

independently on the mass
m. Finally the invariant energy separates the two physical regions

Bph = B1
ph ∪B2

ph,
B1
ph = (-π

2
, π

2
)× [0, π

2
),

B2
ph = (-π, -π

2
) ∪ (π

2
, π)× (-π

2
, π]

(7.14)

in which D is invertible with full range [0,∞].
In the right Fig. 7.1 we plot the automaton group velocity v = ∂ω(k)/∂k

(4.53) which, as discussed in Chapter 5, represents the velocity of propagation
of“particles”(see for example the automaton velocity operator (5.50) expressed
in the automaton particle-antiparticle basis). For massless particles the Dirac
qca dispersion relation (7.3) coincides with the undistorted one ω2 = k2 and
the group velocity is the maximal speed (the speed of light c = 1) on the causal
network. In [187,188] it is possible to find a discussion on the propagation ve-
locity of particles in dsr. In [188] it is argued that any massless particle should
have the same speed c, while in [187] the authors show that the appropriate
description of the propagation speed is given by the group velocity.

One can easily check that the two “physical regions”B
1(2)
ph remain separated

under all possible boosts (7.12), namely

(k, ω) ∈ B1(2)
ph ⇒ (k′, ω′) ∈ B1(2)

ph . (7.15)

The fixed ponts k = ±π/2 at the separation between the two regions corre-
spond to a maximum of the group velocity (see right Fig. 7.1). While in region
B1
ph an increase in k corresponds to an increased group velocity, in region B2

ph

we see the opposite trend with an increasing k corresponding to a decreasing
group velocity. On the other hand, as one can verify using the transformations
(7.12), a boosted observer who sees an increased group velocity in B1

ph, also
sees an increased group velocity in B2

ph since in both cases the wave-vector k is
mapped closer to the invariant point. Since the two regions exhibit the same
kinematics they are undistinguishable in a non interacting framework. In Sec-
tion 4.3.1 we have shown that the monotonicity of the automaton dispersion
relation avoids the Fermion doubling issue arising in the Lattice Gauge Theory
scenario, on the other side it seems that from the kinematical point of view
the momentum-energy sector could present a novel “particle doubling”. The
answer to this question need the analysis of a more general interactive scenario
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7. Deformed Relativity and emergent spacetime

in which the two sectors could lead to a different phenomenology. In case of
indistinguishability one should reduce the periodicity of the qca momentum
space (7.4) to the smaller region k ∈ [-π

2
, π

2
] 4.

7.1.2 Position representation and relative locality

The action of the boosts (7.12) on the states of the automaton (disregarding
the internal degrees of freedom) reads

|ψ〉 =

∫
dµk g(k)|k̃〉

LDβ−−→
∫

dµk g(k)|k̃′〉 =

∫
dµk′ g(k(k′))|k̃′〉 (7.16)

where k′ is as in Eq. (7.12),

dµk = dk (2(1−m2) tanω(k))−1 (7.17)

is the invariant measure in the momentum space and we defined

|k̃〉 = (2(1−m2) tanω(k))1/2 |k〉 . (7.18)

One can verify that the transformation (7.16) is unitary.

Let us now deepen our analysis considering how the features of the present
framework affect the geometry of space and time. The aim is then to de-
rive the position-time deformed Lorentz transformations corresponding to the
momentum-energy ones (7.12). As remarked in the introduction to this Section
(see point (b)) in the general dsr scenario there is not a unique way to connect
the momentum space (k, ω) to the position space (x, t). This is mainly due
to the non trivial geometry of the momentum space induced by the non-linear
deformed Lorentz transformations.

Under the action of the deformed boost LDβ a function f(k, ω) transforms as
f ′(k, ω) = f(k′, ω′) and, following an ansatz due to Schützhold et al. [189], one
can express the boosted function in the variables x, t by conjugating the boost
LDβ with the Fourier transform F 5 i.e. first we take the Fourier transform F to
the momentum space, then the deformed boost (7.12) in the momentum space

4Following an analogy between the automaton lattice and a crystal in solid-state physics
this corresponds to take a smaller Brillouin zone which, by definition, describes the full
momentum space.

5Here F denotes the Fourier transform in both position and time variables: F(f)(ω, k) =∑
t,x e

i(ωt−kx)f(ω, k), F−1(f)(t, x) =
∫

dµ e−i(ωt−kx)f(t, x).
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7.1. Deformed Special Relativity from the Dirac automaton

is applied, and finally the function is Fourier transformed back 6

f ′ = F−1 ◦ LDβ ◦ F f,

f ′(x′, t′) =
∑

x,t∈Z

∫
dµ′ e−iχ(k′,ω′,x,t,x′,t′)f(x, t),

χ(k′, ω′, x, t, x′, t′) := k(ω′, k′)x− k′x′ − ω(ω′, k′)t+ ω′t′.

(7.19)

Notice that, due to the non linearity of D, the map (7.19) does not corre-
spond to a change of coordinates from (x, t) to (x′, t′) and therefore we cannot
interpret the variables x and t as the coordinates of points in a continuum
spacetime interpolating the automaton cells: this may be regarded as manifes-
tation of the quantum nature of spacetime. Following the idea that space-time
should emerge from a collection of physical events labelled by means of a syn-
chronization procedure (like the Einstein protocol), we now define a point of
the “emergent spacetime” as the “crossing of the trajectories of two particles”
(see Fig. 7.2).

In the automaton context a particle corresponds to a wave-packet narrowly
peaked in the momentum space around some k0. Thus in the following we
consider smooth-states peaked around some momentum k0 and having width
σ according to Definition 5.1. We can imagine a collection of wave-packets
gk0(t, x) and the emergent spacetime as the collection of all the collision points
of these particles. Within this perspective a collision point p is an extended
object corresponding to a region in the (x, t) plane, whose coordinates (xp, tp)
can be identified with the mean values of x and t in the collision area.

The deformed Lorentz transformations in position space can now be derived
applying the transformation (7.19) to the points (xp, tp) given by the coinci-
dences of localized wave-packets. In order to have a consistent definition of
spacetime as emergent from coincidences we have to verify that a peaked state
remains peaked after a non-linear Lorentz boost. If we look at the wave-packet
gk0(x, t) at a given time step and we move to the momentum representation,
we can consider the dependence on k only, using the dispersion relation ω(k)

6We are aware that the validity of this construction relies on the definition of the Fourier
transformation and its inverse in the context of the distorted relativity theories where the
integration process could turn out to be non-trivial both in momentum and in position
space [190]. We have already discussed (see point (b) in the introduction to this Section)
the example of k-Poincaré deformed relativity where the “curved momentum space” corre-
sponds to the k-Minkowski spacetime whose non-commutative structure implies a non-trivial
integral calculus.

In the continuos spacetime case, assuming the usual definition for the Fourier transfor-
mation corresponds to the prescription ip ↔ ∂/∂x, [X,P ] = i. However, in the Planckian
regime the commutator [X,P ] = i could be modified as discussed in [182, 184] or in [191]
where the author showed how quantum-gravitational effects and the presence of a mini-
mal length could give a “generalized uncertainty principle” instead of the usual Heisenberg
uncertainty relation.

The qca commutator [X,P ] has been evaluated in Eq. (5.33) and differs from the usual
Heisenberg uncertainty relation by an additional term. This term is relevan for highly
localized states while it becomes negligible for wave-packets narrow-band in momentum.
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Figure 7.2: Two coincidences of travelling wave-packets in the automaton evolution.

(7.3) and writing D(k) for D(k, ω(k)) in Eq. (7.7). If the initial wave-packet
is peaked in k0 and has width σ in momentum space, the boosted state in the
momentum representation

g′k′0(k′) = gk0(k(k′))

(
dk

dk′

)1/2

, (7.20)

has respectively momentum and position width given by

σ′ ≈ σ

(
dk

dk′

∣∣∣∣
k′=k′0

)−1

= σ
dk′

dk

∣∣∣∣
k=k0

, σ̂′ ≈ σ̂
dk

dk′

∣∣∣∣
k′=k′0

, (7.21)

where σ̂ = σ−1 and k′0 is the the boosted wave vector given by Eq. (7.12). The
narrow-band wave-packet in the unprimed reference frame corresponds to a
still narrow-band wave-packet peaked around k′0 in the primed one, indeed the
Jacobian

dk′

dk
= γ

1 + β(v cos k + sin2 ω(k) sin k)

cos2 k + γ2(sin k + β sinω(k))2
(7.22)

assumes small values for any β, k, and m (except for k = π/2, β = 1 and
k = 0, β = 1) as one can check in Fig. 7.3. In Fig. 7.4 we also show some
examples of deformed boosts on smooth-states.

In the following analytical derivation we work with continuous x and t
interpolating exactly the automaton (4.31) discrete evolution as described in
Remark 5.1 and replacing summations in Eq. (7.19) with integrals. Since for
a wave-packet gk0(t, x) peaked around k0 the boosted wave-packet g′k0

(x′, t′) is
still narrow-band and peaked around k′0, the map (7.19) can be approximated
by taking the first order Taylor expansion of k(ω′, k′) and ω(ω′, k′) around k′0
and ω′(k0) in the function χ. Truncating the Taylor expansion at the first
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Figure 7.3: Plot of the Jacobian (dk′/dk)k=k0 providing the width (7.21) of the
boosted wave-packet for an initial smooth-state peaked around k0 and having width
σ. The jacobian is plotted as a function of k0 and β. From the left to right the
Jacobian is depicted for different values of the mass: m = 0.01, 0.2, 0.4, 0.8.
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Figure 7.4: Simulation of the transformation of a smooth-state (see Definition 5.1)
due to a deformed boost (7.12). Here the mass is m = 0.01 and the initial state
is a Gaussian (in black) peaked around momentum k0 = 5 × 10−3 and position
x0 = 2×104. The initial momentum and position widths are respectively σ = 1/500
and σ̂ = σ−1 = 500. The left (right) figure shows the boosted state in the momentum
(position) representation for two different values of β, say β = −0.99 (in blue)
and β = −0.999 (in red). Using Eq. (7.12) we find that the boosted states are
respectively peaked in k′0 = 0.11 and k′0 = 0.35, according to the figure. Notice the
spreading (narrowing) of the state in the momentum (position) representation with
the jacobian in Eq. (7.21) given by (dk′/dk)k0 = 10, 28 for the two values of β.

order

k ≈ k(k′0, ω
′
0) +

∂k

∂k′

∣∣∣∣
k′0

(k′ − k′0) +
∂k

∂ω′

∣∣∣∣
ω′0

(ω′ − ω′0)

ω ≈ ω(k′0, ω
′
0) +

∂ω

∂k′

∣∣∣∣
k′0

(k′ − k′0) +
∂ω

∂ω′

∣∣∣∣
ω′0

(ω′ − ω′0)

(7.23)

we find the following relation

gk0(x′, t′) ∝ gk0

(
∂k

∂k′

∣∣∣∣
k′0

x− ∂k

∂ω′

∣∣∣∣
ω′0

t ,
∂ω

∂k′

∣∣∣∣
k′0

t− ∂ω

∂ω′

∣∣∣∣
ω′0

x

)
,

which corresponds to the momentum-energy dependent Lorentz transforma-
tions (

x′

t′

)
≈
(
∂k′k −∂ω′k
−∂k′ω ∂ω′ω

)

k′0,ω
′
0

(
x
t

)
. (7.24)
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Since Eq. (7.24) defines a linear transformation of the variables x and t and
the wave-packets move along straight lines, we could interpret (7.24) as the
transformation of the coordinates xp and tp of a point p which is identified
by the crossing of the trajectories of two particles having k’s close to some
common k0. It is immediate to verify that the usual Lorentz boosts (7.6) are
recovered for k, ω � 1 and k′, ω′ � 1.

However, the k-dependance of the transformations (7.24) prevents a well
defined notion of a common spacetime shared by all the observers. Consider a
point p which is given by the intersection of four wave-packets, the first pair
peaked around k1 and the second pair peaked around k2 (k1 6= k2). Because of
the k dependence in (7.24), a boosted observer will actually see the first pair
intersecting at a point which is different from the one where the second pair
intersects (see Fig. 7.5). As an example suppose the two pairs crossing at (x, 0)
for some observer. According to Eq. (7.24) the spatial separation between the
two crossings in the boosted frame is

|x′1 − x′2| ≈
∣∣(∂k′k)k′1 − (∂k′k)k′2

∣∣ |x| (7.25)

and can be made arbitrarily big taking the spatial origin x big enough. In
particular the spreading/narrowing of the wave-packets due to the boost (see
Eq. (7.21)) can be made negligible with respect to the relative distance taking
the origin in a position such that

|x| � σ̂′1(t′1) + σ̂′2(t′2)∣∣(∂k′k)k′1 − (∂k′k)k′2
∣∣ . (7.26)

The loss of coincidence effect, first noticed in Ref. [189], is the characteristic
trait of the so-called relative locality [63, 64]. According to relative locality
spacetime is no longer an objective entity but different observers infer different
spacetimes and interactions that are local in the spacetime constructed by one
observer may be non-local to another one. In this scenario the only invariant
object under change of reference frame is the full phase space of the theory.
Therefore the sole coincidence in spacetime is not an objective event (and it is
not paradoxical that different observers could disagree on it) while the points
of the full phase space must be regarded as objective—say different observers
agree on the coincidence of two “trajectories in the phase space”.

Relative locality appears as an unavoidable features of all the models in
which the momentum space has a non-flat geometry. This has been proved
in [63] where the authors show that absolute locality is equivalent to the as-
sumption that momentum space is a linear manifold. This can be easily seen
as follows. In order to recover absolute locality, and then the invariance of
coincidences in spacetime, we require that the transformation (7.24) does not
depend on k0 and ω0, that is

(
∂k′k −∂k′ω
−∂ω′k ∂ω′ω

)

k′0,ω
′
0

=

(
α1(β) α3(β)
α3(β) α4(β)

)
∀ k′0, ω′0, (7.27)
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Figure 7.5: Example of the relative locality phenomenon in automaton dsr model.
Here we consider an automaton having m = 0.4 and two pairs of Gaussian wave-
packets respectively peaked around k1 ≈ 0 and k2 ≈ π/5 (group velocities v1 = 0,
v2 = 0.8). In the rest frame the packets have spatial width σ̂1 = σ̂2 = 103 and
cross at (x, t) = (105, 0). After a boost β = 0.99, the transformed wave-vectors are
k′1 = −1.2 and k′2 = −0.6 (group velocities v′1 = −0.9, v′2 = −0.8) and by Eq. (7.24) it
is possible to find the coordinates in the boosted frame: (x′1, t

′
1) ≈ (7×105,−6×105)

and (x′2, t
′
2) ≈ (4× 105,−4× 105).

for some functions αi. Noticing that the map (7.27) depends only on β and
that in the regime of small momenta and energies it has to correspond to the
usual Lorentz map Lβ (see constraint (7.8)), we find that (7.27) must coincide
with the Lorentz transformation. Any non linear mapping D of the momentum
space (7.7) is then incompatible with the assumption that all observers live in
the same spacetime.

7.1.3 Boost of perfectly-localized states and distorted
Lorentz contraction

We have already noticed that a novel feature of the automaton description of
field dynamics is to accommodate perfectly-localized states, see for example
Fig. 4.6 and Eq. (5.27). It is then interesting to evaluate the deformed Lorentz
transformations for these states. For a state g(x) = δx0 perfectly localized in
x = 0 it is g(k) = 1/

√
2π and according to Eq. (7.20) one has

g′(x′) = F (g′(k′)) , g′(k′) =
1√
2π

(
dk

dk′

)1/2

, (7.28)

namely the boosted state in position representation is simply the Fourier trans-
form of the Jacobian square root. In the left Fig. 7.6 it is shown how a perfectly-
localized state delocalizes when submitted to a boost. It is also interesting look
at the transformed state in the momentum representation (see right Fig. 7.6)
where the it coincides with the Jacobian square root. The flat distribution
becomes peaked in the extremal points k = 0,±π and in the invariant point
k = π

2
(k = -π

2
) for negative (positive) β. Since in k = 0,±π the group ve-
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Figure 7.6: Left figure: delocalization (in black) of a state (in red) perfectly local-
ized at x = 0 in the rest frame after a boost of β = −0.99 for mass m = 0.1. The
top figure depicts the momentum representation, the bottom one the position rep-
resentation. Right figure: momentum representation of a boosted localized state
for different values of the mass (top) and of the boost velocity β (bottom). In the
top figure it is β = −0.99 and m = 0.1, 0.3, 0.8, we notice that the higher is the
mass the larger is the peak around the invariant momentum k = π/2 with the other
peaks disappearing. In the bottom it is m = 0.1 and β = 0.4, 0.8, 0.99, we notice
that the higher is β the more peaked is the transformed function.

locity is zero, the wave-packet acquires a drift contribute corresponding to the
maximal group velocity v(π

2
) (v(-π

2
)) (see Fig. 7.1).

Besides relative locality, another example of how the non-linear momentum-
energy transformations affect the bahaviour in the spacetime constructed by
different observers, is the distortion to the length contraction factor. Consider
two reference systems sharing the origin (x, t) = (x′, t′) = 0 with the primed
reference boosted by β. In the unprimed frame consider a smooth-state peaked

0.0 0.2 0.4 0.6 0.8 1.0
0.0

0.5

1.0

1.5

2.0

Β

x'
�x

Figure 7.7: Deformed Lorentz contraction factor (7.30) as a function of the boost
velocity β and for four different values of the mass m = 0.1, 0.2, 0.3, 0.5, from
bottom to top. At the very bottom is the usual Lorentz contraction factor γ−1.
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around k0 = 0 and with average position x. Exploiting the transformations
(7.24) we find that the average position x′ in the boosted reference frame is
equal to

x′ =
∂k

∂k′

∣∣∣∣
k′0

x +
∂k

∂ω′
∂ω′

∂k′

∣∣∣∣
k′0

x, (7.29)

where the second term on the rhs of the equation is due to the fact that the
wave-packet in the boosted frame is peaked around k′0 6= 0 and is then moving
with a group velocity v′ = (∂ω′/∂k′)k′0 for a time interval t′ = (∂k/ω′)k′0 .
Therefore the deformed length contraction coefficient is

x′

x
=

dk

dk′

∣∣∣∣
k′0

=

(
dk′

dk

∣∣∣∣
k0=0

)−1

= γ−1[1− β2(1−m2), (7.30)

where we have used Eq. (7.22) in k0 = 0. In Fig. 7.7 the length contraction
factor is plotted as a function of the boost velocity β and for different values of
the mass. Notice that for boosts which bring k′0 close the invariant momentum,
the contraction instead becomes a dilation.

7.2 Digital Lorentz transformation on a clas-

sical causal network

In last Section we have studied the phase space of the Dirac qca which corre-
sponds to a model of dsr. In the context of dsr the emergent spacetime has
been derived as a “linear projection” of the non trivial phase space. On the
contrary it would be interesting to have the spacetime emergent from the syn-
chronization protocol of a “clock” defined on the qca providing an operational
procedure for the emergence of spacetime from the automaton elementary de-
scription. The notion of clock in a quantum scenario has been considered since
the seminal paper by Salecker and Wigner [192] where they argued that a
quantum clock has a “limited precision” due to his size and mass. In order
to be a clock, a physical system has to be localized in a finite region of space
for an interval of time long enough to allow the time measure in that interval.
The trade-off between the spatial resolution and the temporal resolution of
the clock appears also in the automaton context. Indeed one can imagine a
clock as a “localized smooth state” (see Definition 5.1) evolving with a certain
group velocity and diffusion coefficient as described in Chapter 5: if the state
is perfectly localized (maximal resolution) then it diffuses immediately and is
not suitable for measuring long time intervals, on the other hand if it is very
delocalized its spatial resolution decreases. This is also related with the so
called Margolous Levitin bound [193] later studied as the quantum speed limit
by Lloyd et al. [194]. The deepening in this direction is beyond the purpose of
the present thesis and is still under investigation.
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7. Deformed Relativity and emergent spacetime

In this Section we consider a slightly different and simpler scenario which
is not directly related with the qca framework. We we analyze the mecha-
nism of emergence of spacetime from the homogeneous topology of a classical
causal network in 1 + 1 dimensions. Upon considering the causal connections
as exchanges of classical information, we can establish coordinate systems via
a kind of Einstein protocol, leading to a digital version of the Lorentz trans-
formations. In a computational analogy first noticed by Leslie Lamport [195],
the foliation construction can be regarded as the synchronization protocol with
a global clock of the calls to independent subroutines (the causally indepen-
dent events) in a parallel distributed computation. In this scenario a clock is
simply a periodic sequence of causally connected events on the network and
each clock corresponds to a foliation of the network. Hence, the Lorentz time-
dilation corresponds to an increased number of leaves within a clock tic-tac,
whereas space-contraction results from the corresponding decreased density of
events per leaf of the foliation. We will see that the operational procedure of
building up the coordinate system introduces an in-principle indistinguishabil-
ity between neighboring events, resulting in a network that is coarse-grained,
the thickness of the event being a function of the observer’s clock. The digital
version of the Lorentz transformation is an integer relation which differs from
the usual analog transformation by a multiplicative real constant correspond-
ing to the event thickness. The composition rule for velocities is independent
on such constant, and it is the same in both the analog and the digital versions.

7.2.1 Causal networks

We now introduce the main notion of causal network (cn) as a partially ordered
set of events with the partial order representing the causal relation between
two events.

Definition 7.1 (Causal Network) A cn is a set N of elements called events
a, b, c . . . ,∈ N equipped with a partial order relation � which is:

(i) Reflexive: ∀a ∈ N we have a � a.

(ii) Antisymmetric: ∀a, b ∈ N, we have a � b � a⇒ a = b.

(iii) Transitive: ∀a, b, c ∈ N, a � b � c⇒ a � c.

(iv) Locally finite: ∀a, c ∈ N, |{b ∈ N : a � b � c}| < ∞, where |S| denotes
the cardinality of the set S.

In the following we will also write a ≺ b to state that a � b with a 6= b. A causal
network is represented by a graph with points being the events and the edges
drawn between any two points a and b for which a � b—i.e. that are causally
connected, as in Fig. 7.8. Usually a cn is unbounded in all directions, while a
finite region on it is called causal set. In order to satisfy transitivity, the cn is
a directed acyclic graph ( dag), i.e. loops are forbidden (arrows on edges are
usually not drawn by orienting the graph e.g. from the bottom to the top).
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7.2. Digital Lorentz transformation on a classical causal network

a

Tuesday, August 13, 2013

Figure 7.8: Left figure: Illustration of the past/future light-cone of the event a in a
cn. Right figure: The three possible homogeneous topologies for causal networks
in 1 + 1 dimensions.

Due to the causal structure the cn is endowed with the notion of light-
cone Ja of an event a ∈ N, along with those of past/future light-cone J−a /J+

a ,
respectively (see Fig. 7.8)

J−a := {b ∈ N : b � a}, J+
a := {b ∈ N : a � b}, Ja := J−a ∪ J+

a . (7.31)

Accordingly, one has that a � b is equivalent to a ∈ J−b and to b ∈ J+
a . We will

call independent or space-like two events a, b ∈ N that are not causally related,
say a 6∈ Jb (or b 6∈ Ja), and causally dependent or time-like otherwise, namely
a ∈ Jb (or b ∈ Ja). We call a cn connected if for every a, b ∈ N there exists
c ∈ Ja ∩ Jb. Two events that are not space-like are connected by at least a
causal chain, e.g. a � b are connected by the causal chain

C(a, b) := {ci}Ni=1, a ≡ c1 ≺ c2 ≺ . . . cN ≡ b. (7.32)

It is convenient to orient the chain, generalizing its definition to include the
case b � a. The verse of the chain is taken into account by a signed cardinality
|C(a, b)|± := σ|C(a, b)| with σ = + for a ≺ b, and σ = − for b ≺ a.

Definition 7.2 (Homogeneous causal network) For any event a denote
by lin(a) = {i1(a), i2(a), . . . in(a)} and lout(a) = {o1(a), o2(a), . . . om(a)} the
set of input and output links of a. We now say that a cn is topologically
homogeneous if for each couple of events a, b ∈ N one has the isomorphism

ij(a) ' ij(b), j = 1, . . . n oj(a) ' oj(b), j = 1, . . .m. (7.33)

It is easy to see that in 1 + 1 dimensions there are only three possible
lattices corresponding to a homogeneous cn: the square, the triangular, and
the honeycomb ones as shown in the right Fig. 7.8. However, the honeycomb-
lattice has two inequivalent types of events (having one input and two output
links and viceversa), and the corresponding “undressed” topology—where each
couple of connected inequivalent events are merged into a single event—reduces
to the square lattice. The triangular-lattice, on the other hand, has redundant
causal links (the middle vertical ones). We are thus left with the square-lattice
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Tuesday, August 13, 2013

Figure 7.9: Homogeneous cn and equivalent representation as a circuit.

as the most general homogeneous cn in 1 + 1 dimensions. In this case there
are only two types of link: toward the right and toward the left—shortly r-link
and l-link (see Fig.7.9 where the network is also depicted as a circuit whose
elementary gate has the same input-output structure all over the network).
Notice that the cn of the 1d Dirac automaton derived in Section 4.2 is a
square-lattice (see Figs. 4.3 and 4.4). Indeed the automaton description of
qft was motivated by a homogeneous computation which corresponds to a
homogeneous cn.

In the following we will call light signals those sequences of events that
are connected only by r-links or only by l-links. Their “speed” is equal to
“one event-per-step”, and it is the maximum speed allowed. Regarding the
homogeneous cn as the description of physical systems in interaction, the
causality is sufficient to guarantee a bound for the speed of the “information
flow”.

7.2.2 Foliations and digital coordinates

Now we can introduce a notion of simultaneity for the events on the cn. Being
the equivalent of a world line an unbounded causal chain on the cn can be
identified with an observer. Hence, an observer will be denoted as

C = {ci}i∈Z, ci � ci+1 ∀i ∈ Z, (7.34)

where c0 represents the origin while the index i ∈ Z plays the role of the ob-
server’s proper time. Thanks to the topological homogeneity, we can translate
the origin of the observer to any event a ∈ N (more in general we could denote
by C the equivalence class of all observers translated over all the events of the
cn). Among all the possible observers we consider a special subclass denoted
clocks

Definition 7.3 (Clock) A clock is a causal chain of events periodically os-
cillating between two different “positions” of the cn, namely the oscillation
(tic-tac) is a periodic sequence of α r-links followed by β l-links identifying
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7.2. Digital Lorentz transformation on a classical causal network

events in the same “position” (see Fig. 7.10). We denote the chain of events
in the same position as Cαβ.

=3

D tac

tic
E

=5

Figure 7.10: The tic-tac of the clock is represented by the number α of r-links
between the emitter E and the mirror, and the number β of l-links between the
mirror and the detector D. From the left to the right we have the rest-frame clock,
corresponding to α = β = 1, and boosted-frames for α = 3, β = 1, α = 6, β = 2, and
α = 7, β = 2, respectively, corresponding to digital speed v = 1

3 , v = 1
3 and v = 2

7 ,
respectively. The case α = 6, β = 2 has doubled imprecision, compared to the case
α = 3, β = 1.

A clock introduces a notion of simultaneity for the events on the cn. From
the clock Cαβ a light signal is sent (sending event as ∈ Cαβ) to an event a ∈ N
and then received back at the clock (receiving event as ∈ Cαβ) . The event
ci ∈ Cαβ at the intermediate step between the sending as and the receiving ar
event is taken as synchronous with the event a at the turning point—denoted

as a
Cαβ∼ b—while the number of tic-tacs divided by two is taken as the distance

from the turning point a and the clock.
The given notion of simultaneity allows us to associate each observer with

a foliation of the cn. For each event ci ∈ Cαβ there is a leaf Li(Cαβ), which is
the set of events simultaneous to ci with respect to the observer Cαβ, namely

Li(Cαβ) := {b ∈ N; b
Cαβ∼ ci}. (7.35)

The collection of all leaves for all the events in Cαβ is the foliation L(Cαβ) of
N associated to the observer Cαβ

L(Cαβ) := {Li(Cαβ),∀i ∈ Z}. (7.36)

Notice that to any clock Cαβ, with origin in c0, is associated a reference
frame R which is just the foliation of the network built up using the Einstein
protocol leading to the following digital coordinates for an event a ∈ N

t(a) := |Cαβ(c0, ar)|± +
1

2
|Cαβ(as, ar)|±,

s(a) :=
1

2
|Cαβ(as, ar)|±,

(7.37)
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Figure 7.11: Illustration of the Einstein protocol for establishing a reference frame.
Left figure: Rest-frame. The blue lines represent the reference frame established
using the clock with α = β = 1 (see Fig. 7.10). The green lines represent light
signals bouncing between the clock and four particular events in the network. These
events are synchronous, since the intermediate time between the sending and the
receiving event on the clock is the same for all of them. They lie on the same leaf
of the foliation, but at different distance from the clock, 0, 1, 4, 7, respectively: the
spatial coordinate is obtained by counting the tic-tacs between the the sending and
the receiving event (0, 2, 8, 14,respectively) divided by two. Right figure: Reference
frame (blue lines) for α = 3, β = 1, built up using the same protocol as in the felt
figure.

where the foil Lt(a) contains the event a and s(a) is the number of events on
the same foil in between the clock and the event a.

In Fig. 7.11 the Einstein protocol is illustrated in two particular reference
frames. The figure on the left corresponds to the rest-frame, with the blue lines
depicting the coordinate system established using the clock with α = β = 1.
The green lines represent light signals bouncing between the clock and four
particular events in the network. These events are synchronous, since the
intermediate time between the sending and the receiving event on the clock
is the same for all of them. They lie on the same leaf of the foliation, but at
different position, 0, 1, 4, 7, respectively: the spatial coordinate is obtained by
counting the tic-tacs between the the sending and the receiving event divided
by two. The right figure represents a frame for α = 3, β = 1, built up using
the same protocol as in the left figure.

7.2.3 Boosted frames and digital Lorentz transforma-
tion

One can associate to any frame R a parameter v, in terms of the α and β of its
clock, by simply evaluating the “distance in space” and the “distance in time”
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7.2. Digital Lorentz transformation on a classical causal network

between the starting and the ending point of the tic-tac, namely

v =
α− β
α + β

. (7.38)

Then any couple of reference frames R1 and R2 can be related by the same
parameter

v12 =
α12 − β12

α12 + β12

, (7.39)

where now it is

α12 = α2/α1 ∈ Q, β12 = β2/β1 ∈ Q (7.40)

(Q denoting rational numbers). The parameter v12 ∈ Q is interpreted as the
relative velocity of the frame R2 with respect to the frame R1 and R2 is said
to be boosted with respect to R1. Accordingly one has

v21 =
α21 − β21

α21 + β21

= −v21. (7.41)

Now, considering three reference frames R1, R2 and R3 and using the trivial
identities

α13 = α12α23, β13 = β12β23, (7.42)

one has

v13 =
α12α23 − β12β23

α12α23 + β12β23

, (7.43)

which by simple algebraic manipulations immediatley gives

v13 =

(
α12−β12

α12+β12

)
+
(
α23−β23

α23+β23

)

1 +
(
α12−β12

α12+β12

)(
α23−β23

α23+β23

) =
v12 + v23

1 + v12v23

, (7.44)

which corresponds to the composition rule of parallel velocities in Special Rel-
ativity.

We have shown how the Einstein protocol on the cn allows to associate
coordinates (7.37) to a given event in a certain reference frame R. Now we
derive the coordinates in a boosted frame in terms of the rest frame ones, along
with the relative coordinate systems between any couple of boosted frames.

Consider a the rest reference frame R1 with α1 = β1 = 1 and a boosted
frame R2 with certain α2, β2. In order to connect the coordinate systems in
the two frames we have chosen the same origin (0, 0) on both R2 and R1. The
generic event on R2∩R1 has coordinates (s2, t2) and (s1, t1) in the two frames,
respectively. One can see that a spatial step in R2 corresponds to (α12 +β12)/2
space and (α12 − β12)/2 time steps in R1 while a time step in R2 corresponds
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Figure 7.12: Illustration of the derivation of Eqs. (7.45) and (7.46), leading to
the digital version of the Lorentz transformations in Ref. (7.51). Left figure: the
reference frame R1 with α1 = β1 = 1 is represented by the tiny network in black,
whereas the coarser network in blue represents the boosted reference frame R2 with
α2 = 4, β2 = 2. According to Eq. (7.39) the relative velocity of R2 with respect to
R1 is v12 = 1/3. In order to connect the coordinate systems in the two frames we
have chosen the same origin (0, 0) on both R2 and R1. The generic event on R2

has coordinates (s2, t2) = (3, 2) and (s1, t1) = (11, 9) in the two frames, respectively.
Right figure: a spatial step in R2 corresponds to (α12 + β12)/2 space and (α12 −
β12)/2 time steps in R1. In the same way a time step in R2 corresponds to (α12 −
β12)/2 space and (α12 + β12)/2 time steps in R1. This correspondence allows to
determine the coordinates (s1, t1) of a given event in the frame R1 in terms of its
coordinates (s2, t2) in the frame R2. The resulting transformations are in Eqs. (7.45)
and (7.46).

to (α12 − β12)/2 space and (α12 + β12)/2 time steps in R1 (one can also check
this in right Fig. 7.12). Accordingly we have

s1 = 1
2
(α12 + β12)s2 + 1

2
(α12 − β12)t2, (7.45)

t1 = 1
2
(α12 + β12)t2 + 1

2
(α12 − β12)s2, (7.46)

and the invariance of the topology with boosts guarantees that the same equa-
tions hold between any couple of boosted frames. By elementary manipulation
Eqs. (7.45) and (7.46) can be written in the more familiar way

s1 = 1
2
(α12 + β12) (s2 + v12t2) , (7.47)

t1 = 1
2
(α12 + β12) (t2 + v12s2) . (7.48)

Upon defining the following constant depending on the clocks Cα1β1 and
Cα2β2 of the two frames

χ12 :=
√
α12β12, (7.49)

and using the identity

1
2
(α12 + β12) =

χ12√
1− v2

12

, (7.50)
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we obtain the digital Lorentz transformations

s1 = χ12
s2 + v12t2√

1− v2
12

, t1 = χ12
t2 + v12s2√

1− v2
12

. (7.51)

The equations in (7.51) differ from the usual analog Lorentz transforma-
tions by the multiplicative factor χ12, which makes the transformations ratio-
nal, compensating the irrationality of the boost factor

√
1− v2

12. The digital-
analog conversion is thus just a rescaling of both space and time coordinates by
the factor (αβ)

1
2 depending on the boost. In the next Section we observe that

the events of the boosted frame can be seen as coarse-graining of the events in
the rest frame. The rescaling factor corresponds to the square-root of the vol-
ume of the coarse-grained event measured as the number of rest-frame events
that it contains. Such event volume also affects the Lorentz space-contraction
and time-dilation factor, which in the digital case is given by 1

2
(α12 + β12),

whereas in the analog case is rescaled by the ratio of event volumes, leading to
1

2
√
α12β12

(α12 +β12). Thus, for example, for α12 = 1 and β12 = 3, corresponding

to v12 = 1/2, the digital factor is 2 whereas the analog one is 2/
√

3. As we
will notice in next Section the rescaling factor is due to the different precision
of the clocks used for building up the reference frames coordinate systems.

7.2.4 Clock precision, events coarse-graining and the
Lorentz limit

Due to the indivisibility of the clock tic-tac, we see that there are indiscernible
events, for which the synchronisation occurs in the middle of the tic-tac. We
are thus led to identify events, and merge them into thicker coarse-grained
events. This is done as follows. We identify the events along the tic and those
along the tac so that the tic-tac is always regarded as the bouncing between
two nearest neighboring events. Then we merge events into minimal sets so
that the topology is left the invariant, namely the usual square-lattice one (see
Figs. 7.13 and 7.14).

We can distinguish between two different kinds of coarse-graining: one
due to the boosting (in yellow in the figures), and one due to the intrinsic
imprecision of the clock (in gray). The difference between the two is clarified
in Fig. 7.14: in the left figure events along the tic and events along the tac are
identified in the boosted frame. Then events are merged into minimal sets (in
yellow) so that the topology is left invariant (the merged events are again events
of a square-lattice network). In the middle figure the coarse graining associated
to the intrinsic imprecision is added in gray, and finally, in the bottom figure
the circuit is stretched so to have all synchronous events on horizontal lines,
and events located in the same position on vertical lines. Notice that in the
special case of the rest-frame, see Fig. 7.13, the coarse-graining is just due to
the intrinsic imprecision of the clock.
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7. Deformed Relativity and emergent spacetime

Figure 7.13: Illustration of the coarse-graining procedure due to the intrinsic impre-
cision of the clock (in gray).

Figure 7.14: First figure: events along the tic and events along the tac are identified
in the boosted frame. Then events are merged into minimal sets (in yellow) so that
the topology is left invariant (the merged events are again events of a square-lattice
network). Second figure: the coarse graining associated to the intrinsic imprecision
is added in gray. Third figure: the circuit is stretched so to have all synchronous
events on horizontal lines, and events located in the same position on vertical lines.
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It is reasonable to wonder if the digital Lorentz transformations derived
in Section 7.2.3 admit a limit in which the usual Lorentz transformations are
recovered and this will be considered in the forthcoming publications. In a
reasonable physical scenario one should compare reference frames built up
using clocks having similar precision. Given a clock Cαβ we can define its
precision as the number of events in the corresponding coarse-graining, namely

p(Cαβ) = αβ. (7.52)

Moreover, as in the Dirac automaton case, one can imagine the cn scale to
be very small with any macroscopical clock including numerous events of the
network

α, β � 1. (7.53)

In this scenario we should compare reference frames R1 and R2 such that

α1β1 ≈ α2β2 � 1. (7.54)

In this case we have χ23 ≈ 1 and the digital Lorentz transformations in (7.51)
are approximated by the usual ones. Notice that since αiβi � 1 we can obtain
almost any relative velocity according to Eq. (7.39).
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CHAPTER8

Quantum Theory with
superselection: the Fermionic

case

In Chapter 4 we have defined a Quantum Field Cellular Automaton as an
automaton evolving Bosonic or Fermionic quantum fields. Within the field
qca perspective the difference between the two scenarios is in the nature of
the local systems on the lattice: in the Bosonic case they are commuting
quantum systems—say qubits—while in the Fermionic case they are anticom-
muting systems—say Fermionic modes. One could wonder if a field automaton
for Fermionic systems can be simulated by an automaton evolving commuting
quantum systems. This issue was first raised by Richard Feynman in the 1982
when in his seminal work on physical computation [42] he wondered about the
possibility of simulating Fermions by local quantum systems in interaction—
what we would call nowadays a quantum computer.

Since the pioneering paper by Feynman the relation between Fermions and
quantum systems has been largely investigated both from the computational
and from the physical viewpoint. On one hand one can simply consider the
Fermionic modes as the elementary systems of a computational model different
from qt and study its features as a theory of information processing. On the
other hand one can focus on the compatibility between local operations in the
Fermionic and in the quantum case, namely on the possibility of mimic local
interactions of Fermionic modes by local interactions of qubits and viceversa.

The Jordan-Wigner map [128] transforms isomorphically the Fermionic an-
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8.1. Superselection rules for a general probabilistic theory

ticommuting algebra into a commuting qubit algebra. Such a correspondence
has been a valuable instrument for solving the 1d xy spin-chains [196, 197]
and has been used to extend to the Fermionic case computational notions as
the entanglement [198], the entropic area law [199], and the universal com-
putation [200]. However, the Jordan-Wigner isomorphism is not a “physical
isomorphism” since it does not map local Fermionic operations into local quan-
tum ones, and nonlocal to nonlocal ones. One could say the Jordan-Wigner
map is not isolocal. This leads to some ambiguities in defining the partial
trace [201–204], and in assessing the local nature of operations [205].

Here the Wigner superselection rule comes to help. The Wigner superse-
lection rule for Fermionic systems forbids superpositions between states with
odd and even particle number, based on the simple argument of the impossi-
bility of discriminating a 2π rotation from the identity [32, 206]. The Wigner
superselection rule avoids the problems connected to the isolocality [198], but
it is still not clear if it can restore the isolocality of the Jordan-Wigner map
showing the reciprocal simulability of Fermionic and quantum interactions.

In this Chapter we consider the Fermionic model from the aforementioned
first perspective, namely as a probabilistic theory of the kind considered in
Chapter 2, and derive the consequences of the Wigner superselection rule on
the informational features of the theory—say on its degree of holism and on
the monogamy of entanglement1. After introducing for the first time a notion
of superselection rule for a general probabilistic theory, corresponding to a
linear constraint over the convex set of states, we provide a link between the
cardinality of the rule (the number of linearly-independent constraints) and
the degree of holism of the resulting theory. Then we define the Fermionic
Quantum Theory (fqt) and show that it is rigorously a superselected version
of qt which lacks local tomography and monogamy of entanglement. The
monogamy violation goes hand in hand with the existence of mixed maximally
entangled states and of non trivial mess [90] (see Section 2.4.3) for bipartite
states (unlike qt where non-trivial mess occur starting from the tripartite
case).

The content of this Chapter is based on Ref. [68].

8.1 Superselection rules for a general proba-

bilistic theory

In Chapter 2 we have introduced the framework of operational probabilistic
theories. Here we restrict to general probabilistic theories that are convex (all

1Local tomography has been extensively discussed in Section 2.3, and corresponds to the
possibility of discriminating between two multipartite states using only local measurements
[10,207]. As stated in Section 2.3 a theory that lacks local tomography is called holistic [71].
The monogamy of entanglement, defined in Section 2.4.4, is loosely speaking the limitation
on the sharing of entanglement. For example, if two qubits are completely entangled with
each other, neither of them can be entangled with any other object.
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8. Quantum Theory with superselection: the Fermionic case

sets of transformation are convex, see Remark 2.2) and causal [10] (namely,
the probability of the preparation is independent of the choice of the obser-
vation test, see Axiom 2.1). As usual we denote by St(A) and Eff(A) the
convex set of (generally subnormalized) states and the convex set of effects of
a system A, while Transf(A,B) denotes the convex set of transformations from
the input system A to the output system B. We remind that the dimension
of a system A is given by DA := dim(StR(A)) = dim(EffR(A)), with StR(A)
and EffR(A) the the linear spans of the set of states and effects. Remind also
that these two linear spaces are in a duality relation EffR(A) = StR(A)∗, with
effects corresponding to non negative linear functional on the set of states and
viceversa.

For simplicity we assume the no restriction hypotesis of Remark 2.1, namely
all the complete state preserving transformations are transformations of the
probabilistic theory. Since also effects are special kind of transformations—
say transformations with no output system—then in the presence of the no
restriction hypotesis a system A is fully specified by its set of states. In this
case we can identify the theory itself as a collection of systems and their set of
states

T := {A, St(A)}. (8.1)

Imposing a superselection rule σ on a theory T corresponds to sectioning
linearly all sets of transformations for each multipartite system, which under
the no restriction hypothesis is equivalent to linear sectioning the sole sets of
states. We can give the following formal definition of superselection rule:

Definition 8.1 (Superselection rule) Given a probabilistic theory T a su-
perselection rule σ

σ : T → T̄, A 7→ σ(A) =: Ā, (8.2)

maps any system A ∈ T to a new system σ(A) ∈ T̄ whose set of states St(σ(A))
is a linear section of St(A), namely for any system A one has

St(σ(A)) := {ρ ∈ St(A); (sσi |ρ) = 0, i = 1, . . . , V σ
A },

where

sσi ∈ EffR(A), i = 1, . . . V σ
A (8.3)

are V σ
A linear independent constraints.

Notice the set of states and effects of the constrained theory T̄ are included
in the sets of the original theory T

St(Ā) ⊆ St(A), Eff(Ā) ⊆ Eff(A), (8.4)

133



8.1. Superselection rules for a general probabilistic theory

and one has
DĀ = DA − V σ

A . (8.5)

Moreover the linearity of σ preserves the convexity of the theory, that is the
sets St(Ā), Eff(Ā) and Transf(A,B) are still convex sets. We will see that for
certain superselection rules the set of states of the constrained theory splits into
two or more sectors each one corresponding to a different “quantum number”,
with superselection preventing from superimposing states in different sectors.
However, since the superselected theory is still convex, one can always mix
them.

For consistency of the theory, the superselection map σ must commute
with the systems parallel composition (see Section 2.1.1) and this implies the
following definition of parallel composition for the constrained theory

σ(A)σ(B) := σ(AB). (8.6)

The number of linear constraints that one can impose on a certain theory
is not completely arbitrary and in the following proposition we derive both a
lover an upper bound for the number of constraints on a composite system AB
given the constraints on the component ones.

Proposition 8.1 (Bounds on the linear constraints) Consider a proba-
bilistic theory T and a superselection rule σ as in Definition 8.1. Then, for
the consistency of the superselected theory T̄, we have the following lower and
upper bound for the number of linear constraints on composite systems

V σ
AB > DAV

σ
B +DBV

σ
A − 2V σ

AV
σ

B , (8.7)

V σ
AB 6 DAV

σ
B +DBV

σ
A − V σ

AV
σ

B +DAB −DADB. (8.8)

Proof. We first prove the upper bound (8.8). In a general probabilistic theory
it is StR(A)⊗ StR(B) ⊆ StR(AB) from which it follows the relation

DAB > DADB (8.9)

for the dimension of the composite systems. Applying (8.9) to the systems of
the constrained theory T̄ and using Eq. (8.5) we get the bound (8.8).

The lower bound (8.7) is proved showing that all the local constraints on
the component systems A and B are also constraints of the composite system
AB, namely for any b ∈ Eff(B̄) and any i = 1, . . . , V σ

A , one has that sσi ⊗ b ∈
EffR(AB) is a constraint for AB. Indeed, suppose by contradiction that for
ρ ∈ St(AB) it is

(sσi ⊗ b|ρ) 6= 0, (8.10)

then since |ρb) = (b|ρ) ∈ St(Ā) is a valid state for the system Ā, we have
(sσi |ρb) 6= 0 against the hypothesis. The same argument holds reversing the
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8. Quantum Theory with superselection: the Fermionic case

roles of the subsystems Ā and B̄ , and we conclude that the composite system
AB must satisfy at least a number of constraints

DĀV
σ

B +DB̄V
σ

A , (8.11)

which, using Eq. (8.5), gives the bound (8.7). �
In principle, given a theory T, one could build “bottom-up” a superselected

theory defining the constraints only on the elementary systems (the ones that
cannot be obtained by composition of other systems) and taking the minimal
number of linear constraints (8.7) on the composite ones. These theories are
denoted minimally superselected according to the following definition:

Definition 8.2 (Minimally superselected theory) We call minimal a su-
perselected theory that saturates the lower bound in Eq. (8.7). For such a theory
the constraints on bipartite systems are of the form sσi ⊗ b and a ⊗ rσj , with
a ∈ Eff(Ā) and b ∈ Eff(B̄).

If instead we saturate the upper bound Eq. (8.8) we have a maximal super-
selected theory:

Definition 8.3 (Maximally superselected theory) We call maximal a su-
perselected theory that saturates the upper bound in Eq. (8.8).

8.1.1 Superselection-holism trade-off.

In Section 2.3 we introduced rigorously the notion “tomography” for a prob-
abilistic theory. In simple terms it regards the possibility of reconstructing
any multipartite state from the statistics of measurements on the component
systems, or equivalently the possibility of discriminating between multipartite
states using measurements on the component systems. Accordingly a theory
has been defined strictly n-local-tomographic if the set of n-local effects (but
not the n− 1 one) is separating for multipartite states2. In Definition 2.12 we
denoted such a theory n-holistic—say it has degree of holism n.

For convenience of the reader we remind that a local-tomographic theory
(i.e. n = 1) is characterized by the following relation on the dimension of the
composite systems

DAB = DADB, (8.12)

while a strictly bilocal-tomographic theory, as shown by Hardy and Wootters
in [71], must satisfy

DAB > DADB, (8.13)

DABC 6 DADBDC + D̃ABDC + D̃BCDA + D̃CADB, (8.14)

2Remember that a set of effects E is called separating for a set of states S if any two
states of S are discriminated by an effect of E (see Definition 2.7).
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8.1. Superselection rules for a general probabilistic theory

with
D̃AB := DAB −DADB. (8.15)

In particular a bilocal-tomographic theory can saturate the bound (8.14) and
in that case we call it maximally bilocal-tomographic

Definition 8.4 (Maximal bilocal tomography) When the upper bound in
Eq. (8.14) is saturated we say that the theory is maximally bilocal-tomographic,
and it requires all 2-local effects to separate multipartite states.

In principle the constraints on the systems of a probabilistic theory could
affect its degree of holism. Taking a superselection of the theory T, we explore
the relation between the number of linear constraints on its systems and the
degree of holism of the constrained theory T̄.

Physically it is interesting to consider superselected versions of qt and we
consider the case in which the original theory T is local-tomographic. In this
scenario we have the following striking relation:

Proposition 8.2 (Superselection-holism trade-off) Let T̄ be a superse-
lection of a local-tomographic theory T. Then we have

(i) Minimal superselection ⇒ T̄ maximally bilocal-tomographic.

(ii) Maximal superselection ⇒ T̄ local-tomographic.

Proof. First we prove the implication (i). The superselected theory T̄ is
maximally bilocal-tomographic if it saturates the bound (8.14), namely

DABC = DĀDB̄DC̄ + D̃ABDC̄ + D̃BCDĀ + D̃CADB̄. (8.16)

We prove this equality evaluating the lhs and the rhs of the equation and
imposing the minimal superselection given by the lower bound (8.7)

V σ
AB = DAV

σ
B +DBV

σ
A − 2V σ

AV
σ

B . (8.17)

lhs: using Eq. (8.5) we have

DABC = DABC − V σ
ABC, (8.18)

and taking the partition ABC = Ā(BC), the minimal superselection constraint
(8.17) gives

DABC = DABC − (DAV
σ

BC +DBCV
σ

A − 2V σ
AV

σ
BC). (8.19)

Now we use again (8.17) for expanding V σ
BC and V σ

BC in the last equation and
after a simple manipulation we get

DABC = DADBDC − (DADBV
σ

C +DADCV
σ

B +DBDCV
σ

A )

+ 2(DAV
σ

B V
σ

C +DAV
σ

C V
σ

B +DBV
σ

C V
σ

A )

− 4V σ
AV

σ
B V

σ
C ,

(8.20)
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where we used the identityDXY = DXDY (remember that the non-superselected
theory is local-tomographic).

rhs: After using the identities (8.15) and (8.5) we exploit the minimal
superselection constraint (8.17). Finally we use the local tomography condition
DXY = DXDY for the non-superselected theory and by direct computation we
get exactly the expression in (8.20) showing that the superselected theory is
maximally bilocal-tomographic.

Let us now consider the implication (ii). The bound (8.8), corresponding
to the maximal superselection, has been derived in Proposition 8.1 using the
general constraint (8.9) for the superselected theory T̄, that is DAB > DĀDB̄.
On the other hand when the last bound is saturated

DAB = DĀDB̄, (8.21)

the resulting theory T̄ is local-tomographic.�
While the relation (i) of Proposition 8.2 is quite surprising the relation

(ii) is very intuitive. Suppose to have a local-tomographic theory T and to
impose a superselection rule on its elementary systems. This in general breaks
down the local tomography of the theory with the number of local effects of
T̄ reduced by the linear constraints. However, if we remove from the bipartite
systems all the states that cannot be tomographied using the superselected
local effects, we are left with a theory T̄ which is again local-tomographic.

Remark 8.1 (n-local-tomographic superselected theories) In Proposi-
tion 8.2 we have considered the extremal cases of minimal and maximal su-
perselection which respectively lead to theories having degree of holism n = 2
and n = 1. On the other hand between these two cases there is a full range of
possible constraints where one can find superselected theories with any degree
of holism.

In the following we focus on the Fermionic theory which can be regarded
as the qt with a minimal superselection on the elementary qubit systems.

8.2 The Fermionic Quantum Theory

We consider a network where each site, called local Fermionic mode (lfm),
can be either empty or occupied by a spinless Fermion. In the following we
will denote the multipartite Fermionic systems as

1F, 2F, . . . ,NF, . . . . (8.22)

We define creation and annihilation operators ψ†i and ψi—where i labels
the i-th lfm on the network—as operators satisfying the canonical anticom-
mutation relations

[ψ†i , ψj]+ = δijI, [ψi, ψj]+ = 0, (8.23)
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and we will denote by fqt the probabilistic theory having lfms as elementary
systems.

The vacuum state of the theory |Ω〉 corresponds to the unique joint eigen-
vector |Ω〉 of the operators ψ†jψj with zero eigenvalue zero. It corresponds to
all modes unoccupied and is then annihilated by the field operators

ψi |Ω〉 = 0 ∀ψi. (8.24)

The vacuum state of the single lfm will be denoted by |0〉, with ψ† |0〉 = |1〉,
while the vacuum state |Ω〉 of N <∞ lfms is unique and it is given by

|Ω〉 = ⊗Ni=1 |0〉i . (8.25)

A representation of the Fermionic algebra can be given fixing an order 1, 2, . . . N
of the lfms and considering the orthonormal basis for C2N given by

|q1, q2, . . . , qN〉 := ψ†q11 ψ†q22 . . . ψ†qNN |Ω〉 (8.26)

with qi = 0, 1 for i = 1, . . . , N corresponding to the occupation number at the
i-th site. In this representation, corresponding to the Jordan-Wigner construc-
tion [54], the Hilbert space H of N lfms is then the Fock space spanned by
the basis vectors |q1, . . . , qN〉,

H = span(|q1, . . . , qN〉 ; qi ∈ {0, 1}). (8.27)

We now can define locality of transformations. We say that the transformation
of the NF system is local on the subsystem MF with M < N if the Kraus
operators belong the representation of the field algebra of MF.

One can decompose the Fock Hilbert space (8.27) in the direct sum

H = H0 ⊕H1, (8.28)

where H0 and H1 are respectively the eigenspaces of the parity operator

P = 1
2
(I +

n∏

i=1

(ψiψ
†
i − ψ†iψi)) (8.29)

whose eigenvalues p = 0, 1, correspond respectively to an even/odd total oc-
cupation number.

The main difference between fqt and qt, due to the anticommuting nature
of Fermionic field, is that in the Fermionic case the parity is conserved [32,206],
namely any physical state or observable commutes with the operator P . This
implies that the linear space of states and effects

StR(NF) = EffR(NF) (8.30)

corresponds to the operator space spanned by products of an even number of
ψi and ψ†i . In the following we will seek out the consequences of this parity
prescription on the structure of fqt.
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8.2.1 Maximal bilocal tomography

We denote by NQ the multipartite system of N qubits, having Hilbert dimen-
sion dNQ

= 2N . The linear space of states is the set of 2N × 2N Hermitian
matrixes

StR(NQ) = EffR(NQ) = Herm(C2N ) (8.31)

and according to Eq. (2.17) we have

DNQ
= d2

NQ
= 22N . (8.32)

For example the system 1Q corresponds to the qubit whose pure states are

|ψ〉 = α |0〉+ β |1〉 , |α|2 + |β|2 = 1, (8.33)

and whose dimension is

D1Q
= 22 = 4. (8.34)

Notice that qt is local-tomographic

DNQ
= DN

1Q
= 22N . (8.35)

Consider now the Fermionic case. Here the single-lfm system 1F has only
two possible pure states |0〉, |1〉 and corresponds to the classical bit. Indeed
|0〉 and |1〉 have different parity and one cannot consider their superpositions
(8.33). Due to the parity prescription the set of states is a direct sum of two
disjoint components (see Eq. (8.28)) with the linear space of states for the
system of N lfms given by

StR(NF) = EffR(NF) = Herm(C2N−1

)⊕ Herm(C2N−1

), (8.36)

namely the direct sum of two copies of the state-space of N − 1 qubits. It is
easy to see that the dimension of the system NF is

DNF
= 22N−1 =

1

2
DNQ

. (8.37)

Now we can prove that fqt is a minimal superselection of qt:

Proposition 8.3 (Minimal superselection) The fqt, namely the proba-
bilistic theory having lfms 1F as elementary systems, is a minimal superselec-
tion of qt with the following constraints on the qubit system 1Q

St(σ(1Q)) := {ρ ∈ St(1Q); Tr[σxρ] = Tr[σyρ] = 0}. (8.38)
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Proof. We have already noticed that, due to the parity prescription, the
single Fermionic mode 1F has only two pure states |0〉 , |1〉. Then the density
matrices ρ ∈ St(1F) must be diagonal

Tr[σxρ] = Tr[σyρ] = 0, (8.39)

showing that the superselection on the elementary systems is as in Eq. (8.38)
with

1F = σ(1Q), D1F
= D1Q

− V σ
1Q
, V σ

1Q
= 2. (8.40)

Now we have to show that the whole fqt is built bottom-up extending in
the minimal way the constraint (8.38) on the composite systems. According
to Definition 8.2 we can simply check that fqt achieves the lower bound (8.7),

V σ
NQMQ

= DNQ
V σ

MQ
+DNQ

V σ
MQ
− 2V σ

NQ
V σ

MQ
. (8.41)

Observing that by definition it is DNF
= DNQ

− VNQ
, using Eq. (8.37) we have

DNF
= VNQ

=
1

2
DNQ

, (8.42)

and Eq. (8.41) is trivially satisfied.�
Therefore, as a corollary of Proposition 8.2, fqt is maximally bilocal-

tomographic. This can also be verified observing that for elementary Fermionic
systems the bounds (8.13) and (8.14) are satisfied

8 = D2F
> D2

1F
= 4, (8.43)

D3F = D3
1F

+ 3D̃2F
D1F

= 16, (8.44)

where D̃2F
= D2F

− D2
1F

= 4 is the dimension of the non-local component of
2F. The theory is maximally bilocal-tomographic as one can check counting
the number of independent local and 2-local effects for the system NF of N
lfms and observing that it is exactly the dimension of NF

bN/2c∑

k=0

(
N

2k

)
DN−2k

1F
D̃k

2F
= 22N−1 = DNF

. (8.45)

We emphasize that fqt provides an example of a bilocal-tomographic the-
ory whose systems do not satisfy the dimensional prescription in Ref. [71]:
after showing that the dimension of the non-local component of a bipartite
system D̃AB = DAB−DADB can be factorized as D̃AB = LALB, and assuming
that the two functions

DA + LA, DA − LA, (8.46)
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are strictly increasing functions of the number of perfectly discriminable states
dA, the authors prove that in a bilocal-tomographic theory, the dimension of
the system A must be

DA =
1

2
(drA + dsA), (8.47)

for some integers r, s satisfying r > s > 0. This is not true for the Fermionic
computation where for example D2F

= 8 cannot be achieved in this way. The
strict monotonicity of the function DA − LA is too restrictive and excludes
the Fermionic case, which has DNF

− LNF
= 0 for any NF, from the set of

admissible bilocal-tomographic theories.

Remark 8.2 (The Real Quantum Theory case) It is worth mentioning
that fqt is not the unique minimal superselection of qt. Another example is
given by rqt (see Section 2.2.3). We denote by NR the multipartite system
of N rebits, with Hilbert space having dimension dNR

= 2N . In the literature
rqt is defined [71] as the qt of real matrices and as such, the set of states
StR(NR) corresponds to the symmetric component of the quantum counterpart
StR(NQ) (8.31) and has dimension

DNR
= dNR

(dNR
+ 1)/2. (8.48)

The rqt is actually a superselection of qt (see Definition 8.1) since the reality
of quantum states is given by the linear constraint ρ−ρT = 0, with T denoting
transposition with respect to a fixed basis taken as real. Thus one has NR =
σ(NQ) where the number of constraints for the system NR is given by

V σ
NR

= DNQ
−DNR

= 1
2
dNR

dMR
(dNR

dMR
− 1). (8.49)

One can easily check that rqt is minimally superselected, since the number
of constraints for the composite systems

V σ
NRMR

= 1
2
dNR

dMR
(dNR

dMR
− 1) (8.50)

saturates the lower bound (8.8). Then according to Proposition 8.2 rqt is
maximally bilocal-tomographic, as pointed out in [71].

Notice that for the rebit system 1R the linear constraint is

Tr[σyρ] = 0, (8.51)

with

1R = σ(1Q), D1R
= D1Q

− V σ
1Q

V σ
1Q

= 1, (8.52)

and the full rqt is achieved taking the minimal extension of this constraint to
the composite systems.
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Remark 8.3 (n-local-tomographic superselected theory) As noticed in
Remark 8.1 a theory with V σ

AB strictly included in the bounds of Eqs. (8.7) and
(8.8) can have an arbitrary degree of holism. Due to the parity constraint, the
fqt retains only superpositions of pure states with total occupation number
equal modulo 2. If instead we allow only superpositions with total occupation
number equal modulo 3 we get a theory that is k-local-tomographic with k > 3.

8.2.2 Fermionic entanglement

Now we focus on another characteristic trait of qt—say the entanglement—
and explore how its properties change in fqt as a consequence of the parity
superselection.

In Section 2.4 we have discussed the problem of defining the entanglement
in a general probabilistic theory and we stressed that entanglement must be
quantified in operational terms. For bipartite states in qt all measures of
entanglement refer to a standard unit of entanglement, the ebit (which is the
amount of entanglement of a singlet state (2.37)), and the so called entan-
glement of formation is the number of ebits that are needed to achieve the
state by locc (see Section 2.4.1). A full theory of entanglement would require
a complete analysis of the transformations of states under locc, which is a
very difficult task form many reasons, e.g. a complet characterization of locc
is still lacking also in qt. However, independently of such analysis, we can
show that in fqt one can assess features that are very different from those of
entanglement in qt. These are:

(i) Existence of mixed states with maximal entanglement of formation.

(ii) Need of mes (see Section 2.4.3) for bipartite states.

(iii) Violation of monogamy of entanglement.

Similar features have been shown for rqt in Refs. [208] (for (i)) and [209] (for
(iii)). These phenomena are due to the fact that both theories are superselected
versions of qt. One would conjecture that these features may be related to the
non-local-tomographic nature of the theories, however, this remains an open
issue.

The Fermionic entanglement of formation and concurrece

In Section 2.4.1 we have defined the entanglement of formation and the con-
currence in the usual quantum scenario and we refer to that Section for the
details regarding the original definitions and the relative literature. For the
convenience of the reader we remind that in qt, the entanglement of formation
for a generally mixed state ρ is defined as

E(ρ) := min
Dρ

∑

i

piE(|Ψi〉), (8.53)
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8. Quantum Theory with superselection: the Fermionic case

where Dρ := {{pi, |Ψi〉} | ρ =
∑

i pi|Ψi〉〈Ψi|} is the set of all the pure decompo-
sitions of the mixed state ρ and E(|Ψ〉) is the entanglement entropy of the pure
state |Ψ〉, while for a mixed state ρ of two qubits the quantum concurrence
C(ρ) is defined as

C(ρ) := min
Dρ

∑

i

piC(|Ψi〉), (8.54)

with the formula for the concurrence of a pure state given in Eq. (2.52).
We know from Section 2.4.2 that the entanglement of formation extends

to mixed states the operational meaning of the entanglement entropy: if two
parties wants to prepare n copies of a pure state |ΨAB〉 by means of locc, they
need nE(|ΨAB〉) pairs of singlet states (2.37) in order to achieve their task. We
also know that both the entanglement of formation and the concurrence are
zero if and only if the state ρ is separable, and for two qubits they reach the
maximum value 1 if and only if ρ is a maximally entangled state in the sense
of mes (see Section 2.4.3), namely that it can be used to reach any other state
by locc operations.

The entanglement of formation and the concurrence can be specialized
to fqt by the convex-roof extensions3 of the relative quantum quantities in
Eqs. (8.53) and (8.54) as follows

EF(ρ) := min
DF
ρ

∑

i

piE(|Ψi〉), (8.55)

CF(ρ) := min
DF
ρ

∑

i

piC(|Ψi〉), (8.56)

where DF
ρ is the set of all the pure decompositions of ρ that satisfy the parity

superselection rule. Notice that on pure states |Ψ〉 we have the same entan-
glement entropy E(|Ψ〉) and concurrence C(|Ψ〉) of qt. The same extension
has been considered for rqt in Ref. [208] considering the decompositions DR

ρ

on real states.
In the following proposition we show that, due to the parity superselection,

the Fermionic entanglement of formation and concurrence can be expressed in
terms of the usual quantum quantities. Accordingly we can recover a lower
bound on the operational asymptotic measure of entanglement in the Fermionic
case.

Proposition 8.4 (Fermionic measure of entanglement) In fqt the en-
tanglement of formation (8.55) and the concurrence (8.56) of a mixed state ρ
are

EF(ρ) = p0E(ρ0) + p1E(ρ1), (8.57)

CF(ρ) = p0C(ρ0) + p1C(ρ1), (8.58)

3Both the entanglement of formation (8.53) and the concurrence (8.53) are defined as the
minimum over all the convex decompositions of ρ. In this way the entanglement of formation
and the concurrence of pure states are extended to the mixed ones. This is a special case of
the so called convex-roof extension.
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where

ρ = p0ρ0 + p1ρ1, p0 + p1 = 1, Supp(ρi) ⊆ Hi, (8.59)

is the unique parity-decomposition of ρ and E(ρi) is the usual quantum entan-
glement of formation. Moreover (8.57) provides a lower bound for the for the
operational asymptotic measure of entanglement in the bipartite case.

Proof. Consider first the entanglement of formation. A Fermionic density
matrix ρ can always be decomposed in its even and odd parity components
as in Eq. (8.59) and this decomposition must be unique since Supp(ρ0) and
Supp(ρ1) are orthogonal. Thus we have

EF(ρ) = EF(p0ρ0 + p1ρ1), (8.60)

and by convexity of EF (see Eq.(8.55)), one has

EF(ρ) 6 p0EF(ρ0) + p1EF(ρ1). (8.61)

Now suppose by absurd that EF(ρ) < p0EF(ρ0) + p1EF(ρ1) and let {p̄i, |Ψ̄i〉}
be the pure decomposition achieving the minimum of EF(ρ). Exploiting the
uniqueness of the parity-decomposition (8.59) we have

EF(ρ) =
∑

i

p̄iEF(|Ψ̄i〉) =

= p0

∑

even

p̄0
i

p0

E(|Ψ̄0
i 〉) + p1

∑

odd

p̄1
i

p1

E(|Ψ̄1
i 〉) < p0EF(ρ0) + p1EF(ρ1)

(8.62)

which is clearly an absurd since EF(ρi) are defined as minimum among all the
(admissible) pure decompositions. Moreover, since the convex decomposition
of a state ρ can only contain states in the support of ρ we have

DF
ρi
≡ Dρi , (8.63)

which gives Eq. (8.57). The same proof applies to Eq. (8.58) for the Fermionic
concurrence.

In order to prove that (8.57) provides a lower bound for the operational
asymptotic measure of entanglement we observe that the Fermionic entan-
glement of formation of ρ is expressed as average of the respective quantum
quantities, which have a clear operational meaning. We know that in the
asymptotic limit, allowing all quantum bipartite loccs operations, the two
parties can generate n copies of ρ using n(p0EF(ρ0) + p1EF(ρ1)) singlets (see
Section 2.4.2). Since bipartite fermionic loccs are all admissible quantum
loccs (one cannot do better in the Fermionic case) and any resource-state
in the fermionic mes has a quantum entanglement entropy smaller than (or
equal to) one we can conclude that (8.57) is a lower bound for the fermionic
entanglement.
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8. Quantum Theory with superselection: the Fermionic case

We noticed that in qt the entanglement of formation and the concurrence
are connected as in Eq. (2.47) by the relation E(ρ) = E(C(ρ)), with E(x) :=

h(1+
√

1−x2

2
) and h the binary Shannon entropy. This is true also in rqt [208]

but not in the fqt case. Nevertheless we have that

EF(ρ) > E(CF(ρ)), (8.64)

and for a maximally entangled state Φ it is EF(Φ) = E(CF(Φ)) = 1. According
to Proposition 8.4 when EF(Φ) = E(CF(Φ)) = 1 the entanglement of formation
corresponds to the operational measure of entanglement.

Mixed states with maximal entanglement of formation

Using the quantities EF and CF we can show that in fqt there exist mixed
states with maximal entanglement of formation. Consider the following state

Φ := 1
4

(I ⊗ I + σx ⊗ σx) , (8.65)

which corresponds to the equal mixture of the Fermionic pure states

|Ψ0〉 = 1√
2

(|00〉+ |11〉) , |Ψ1〉 = 1√
2

(|01〉+ |10〉) . (8.66)

Despite being mixed we have that

EF(Φ) =
1

2
E(|Ψ0〉) +

1

2
E(|Ψ1〉) = 1, (8.67)

CF(Φ) =
1

2
C(|Ψ0〉) +

1

2
C(|Ψ1〉) = 1, (8.68)

i.e. Φ has maximal entanglement of formation in the operational sense. It is
easy to see that Φ cannot be written in a separable form, namely no mixture
of parity-superselected product states can produce the above state Φ. Indeed
according to Proposition 8.3 any mixture ρsep of parity-superselected product
states must satisfy the constraints

Tr[ρsep(σx ⊗ σx)] = Tr[ρsep(σy ⊗ σy)] = 0, (8.69)

but the state ρ does not have zero trace with (σx⊗σx) and is then non separable
in fqt. We can obtain other states with the same property of Φ (8.65) replacing
σx in with any linear combination of σx and σy.

Also rqt has mixed maximally entangled states. Remark 8.2 shows that
rqt have the linear constraint Tr[σyρ] = 0 for one rebit, and the same argu-
ment presented in fqt holds in rqt with σx replaced by σy [208] in the state
(8.65).

In qt the state Φ (8.65) is separable since it can be regarded as the equal
mixture of the pure product states

|+〉|+〉, |−〉|−〉, |±〉 = 1√
2

(|0〉 ± |1〉) (8.70)
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which gives

E(Φ) = C(Φ) = 0. (8.71)

Such a decomposition, however, is not allowed in the Fermionic case, because
the states |±〉 violate the parity superselection rule (and in the rqt case,
because |±〉 violate the real superselection rule).

Maximally entangled sets for bipartite states

The state Φ (8.65), despite having maximum entanglement of formation, is
not maximally entangled in the sense that it can be transformed by locc
into any other state. It actually happens that for two lfms the concept of
maximally entangled state under locc has to be superseded by the concept
of mes introduced in Section 2.4.3. In qt this only happens for n-partite
quantum entanglement with n > 3 [90] while in the bipartite case a single
maximally entangled state can be found (as proved in Section 2.4.3).

In the Fermionic theory the single lfm is a bit system and the only loccs
operations that one can perform are of the kind

I · I, σ1 · σ1, σ2 · σ2, σ3 · σ3, (8.72)

which do not allow to transform the pure states |0〉, |1〉 in any of their super-
positions. This implies that starting from a pure bipartite state |Φ〉 having
Schmidt decomposition

|Φ〉 = α |00〉+ β |11〉 (8.73)

one can never change by locc the magnitude of the coefficients α and β
but can at most change the parity sector via σx · σx or σy · σy on a single
lfm, or apply an arbitrary relative phase. The only case in which one can
vary the magnitude of the Schmidt coefficients is the locc generation of an
arbitrary factorized state: Alice measures its lfm in the computational base
{|0〉 , |1〉} and according to the result classically communicates to Bob which
local operation he has to apply on his lfm, the identity I · I or the bit flip
σx · σx. Clearly, one cannot do the opposite, namely transforming a factorized
state into a superimposed one.

Examples of mes for two lfms are the set of all even non-factorized pure
states with positive coefficients, and the set of all odd non-factorized pure
states with positive coefficients.

Violation of entanglement monogamy

Now it is very easy to see that the Fermionic entanglement is not monogamous
in the sense of the entanglement of formation.

Consider the 3F pure state

|Φp〉 := 1
2
(|000〉+ |110〉+ |011〉+ |101〉). (8.74)
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8. Quantum Theory with superselection: the Fermionic case

If we trace the state |Φp〉 over any one of the three lfms we find that the
reduced bipartite state is the mixed state Φ of Eq. (8.65) which has maximal
entanglement of formation. Therefore, in the fqt, as well as in rqt [209], the
amount of entanglement can be totally shared by each pair systems, a feature
forbidden in qt.

8.2.3 Possible physical effects of monogamy violation

Regarded as a probabilistic theory the fqt results to be very different from
qt and this could have interesting physical consequences, i.e. in the physics
of black holes information.

In 2007 Preskill and Hayden [210] showed that old enough black holes—
say half of the black hole’s qubits have already been radiated away—behave as
mirrors for the information thrown into them, reemitting it as Hawking radi-
ation. In a quantum scenario, they evaluated the “number of emitted qubits”
necessary for recovering the information previously entered the black hole: if
k qubits entangled with a reference are thrown into the old black hole, for any
positive c, once k+c qubits are reemitted the transevent horizon entanglement
between the reference and the interior subsystems will have virtually vanished,
with it appearing instead (with a fidelity of at least 1− 2−c) as entanglement
between the reference and the outgoing radiation. Another interesting paper
about the same effect is [211]. Later in [212] the mirroring behavior has been
generalized in a scenario beyond qt but with local discriminability showing
how in that case the black hole mirrors the information even faster than in the
quantum case.

All the previous results are grounded on the so called decoupling theorem
(see Ref. [213] for an exhaustive review on the subject) which exploit the
monogamy of the entanglement. One could consider the same process in the
Fermionic case where the entanglement is not monogamous.

Monogamy plaies a crucial role also in the so called “firewall paradox” for
black holes and some authors tried to solve it by informational argument, see
for example the recent work [214] of Erik and Herman Verlinde. Again the
fqt is a concrete physical model having a non monogamous entanglement and
should be investigated as a possible way of solving the paradox.
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CHAPTER9

Conclusions and future
perspectives

The aim of this thesis was to present in a coherent way the motivations and
the consequences of describing physical dynamics as the processing of quan-
tum information. The problem connects a broad spectrum of notions in the
fields of Quantum Information Theory, Foundations of Quantum Theory (qt),
Quantum Field Theory (qft) and physics beyond the Standard Model. This
motivated us to consider the most elementary quantum framework satisfying
few informational-theoretical principles that an informational theory of dy-
namics should obey and to procede step by step in the exploration of their
consequences. Since any physical evolution is described by a quantum al-
gorithm the two principles at the basis of our approach have been the finite
complexity of the algorithm and the universality of the“physical law”expressed
by the algorithm. The simplest quantum dynamical model carrying these two
features is the Quantum Cellular Automaton (qca), namely a set of quan-
tum systems with minimal Hilbert-space dimension interacting with a finite
number of neighbors on a homogeneous causal network. These considerations
led to the idea of considering qcas as a microscopical description of quantum
fields and to consider spacetime as emergent from the automata discrete causal
network.

The research program of this presentation started from the derivation in
Chapter 4 of a qca describing the Dirac evolution in one dimension. It has
been shown that assuming the automaton lattice at a scale much smaller than
the usual scale of particle physics—say the Planck scale—the Dirac equation
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is recovered in the large-scale limit of small wave-vectors and masses. We
have seen how the qca represents a novel discretization method for qft. The
automaton provides a discrete unitary evolution and does not correspond to
a finite-difference version of the usual qft Lagrangians (or Hamiltonians).
A first implication is that the qca avoids the fermion doubling phenomenon
affecting the Lattice Field Theories based on finite-difference differential equa-
tions.

Chapter 5 was devoted to the Dirac qca dynamics in the one-particle
sector, recovering many characteristic traits of the Dirac equation. An ap-
proximate dispersive differential equation describes analytically the automa-
ton free evolution with drift and diffusion coefficients depending on the par-
ticle’s momentum and mass. While the coefficients coincide with the Dirac
(Schrödinger) ones in the relativistic (non-relativistic) limit of the automaton,
they significantly differ for high wave-vectors or masses, providing the first
phenomenological corrections to qft. In the free case the Dirac qca exhibits
the Zitterbewegung of the average position due to the interference between
the positive- and the negative-frequency eigenstates of the unitary operator.
The frequency and the amplitude of the trembling have been evaluated and
are compatible with the Dirac equation predictions. Adding a square potential
barrier it was possible to study the scattering of the Dirac qca. This resultes
in another Dirac typical feature, that is the revival of the transmitted wave for
an high enough potential barrier also known as “Klein paradox”. The inter-
pretation of this phenomenon in the automaton scenario is very clear and the
revival of the transmitted wave occurs for any particle wave-vector and mass.
Indeed the values of the potential corresponding to a total reflection are in a
bounded region whose width is equal to the gap between the positive and the
negative frequencies (energies) of the qca.

The experimental verification of the Dirac qca phenomenology has been
rigorously treated in Chapter 6 in a quantum informational scenario. We have
considered the qca and the usual Dirac evolution as two black boxes evaluat-
ing the optimal probability of discrimination between them. The optimality is
defined as the minimization of the error probability with respect to all possible
preparations and measurements performed by the experimenter. The result is
an upper bound on the probability of success as a function of the number, mo-
menta and masses of the particles involved in the experiment. We concluded
that for high energy particles—say cosmic rayes—or for a considerable num-
ber of particles—say in a particle beam—the discrimination can in-principle
be achieved. We have also presented a discrimination experiment based on
particles fly-time whose results are far from the optimal bound. A richer phe-
nomenology will be available introducing the interaction in the qca dynamics.
A qca description of Electrodynamics and the connection to gauge theories
on the automaton is the next step of this research program.

The analysis of Chapter 6 closed the part of the thesis related to the Dirac
qca dynamics in a fixed reference frame. The Dirac qca was shown to be not
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invariant under Lorentz transformations and the usual covariance is manifestly
broken in the automaton framework. In Chapter 7 we have characterized the
invariance transformations of the automaton in the momentum-energy sector
starting from its distorted dispersion relation. We got a model of Deformed
Special Relativity (dsr) with an invariant energy scale whose novelty is to
correspond to a precise microscopical model of field dynamics. The spacetime
emerging from the qca deformed momentum space is not absolutely local,
namely any local observer constructs a different spacetime and the only invari-
ant object is the full phase space of the theory. We have proved the loss of
spacetime coincidences changing reference frame in the qca framework. This
actually happens for any non-linear deformation of the momentum space, with
absolute locality recovered only in the linear Lorentz case. At the end of Chap-
ter 7 we presented a result which is not directly connected with the automata
theory. We showed how starting from an operational Einstein synchronization
protocol on a classical causal network it is possible to derive a digital version
of the Lorentz transformations. This result is included here to provide an
additional motivation in the study of the automaton spacetime. In the dsr
scenario the position-time coordinates are obtained as the linear projection of
the coordinates in the phase space; it would be interesting to have an opera-
tional “Einstein like” synchronization protocol, based on a suitable notion of
clock, for the direct construction of the coordinate system. This is a very hard
topic and deserve further investigation.

The thesis concludes in Chapter 8 where are derived the informational fea-
tures of the Fermionic systems, a fundamental building block of qft. It turned
out that the Fermionic Quantum Theory (fqt), regarded as a theory of infor-
mation processing, is substantially different from qt. On one side it exhibits a
limitation, since it does not satisfy local tomography and local measurements
are not sufficient to discriminate multipartite states. On the other hand, while
in qt the entanglement is monogamous and can only be shared by two parties,
in fqt there are no limitations on the sharing of multipartite entanglement
and this provides the theory with a powerful additional resource. The new
features arise as direct consequences of the parity superselection rule on the
Fermionic systems which avoids superpositions between states having an even
and an odd number of particles. The notion of superselection has also been
generalized in the scenario of operational probabilistic theories proving a trade-
off between the number of constraints imposed on a local tomographic theory
and the degree of holism (how much non-local-tomographic is the theory) of
the superselected theory. We observe that, while the Fermionic computation
and the standard quantum computation have been shown to be equivalent
from the complexity point of view, our findings about Fermionic entanglement
suggest that the same may not hold for distributed Fermionic computation.
Moreover the non monogamy of the entanglement could have striking physical
consequences, i.e. in the physics of black holes information. Indeed it has been
shown that black holes behave as mirrors for the quantum information thrown
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into them, reemitting it as Hawking radiation. However this behavior seems
to depend on the entanglement monogamy in qt and one could consider the
same process in the Fermionic case. Monogamy plaies a crucial role in the so
called “firewall paradox” for black holes and fqt should be investigated as a
possible way out of the paradox.

This thesis has to be considered a preliminary analysis of the field automa-
ton as a theoretical model, based on operational and informational principles,
aiming at the description of physical dynamics. The presented results con-
firm that the automaton discrete evolution is compatible with the qft free
dynamics which is restored as a large-scale effective theory. On the other hand
the qca predictions depart from the usual qft ones at small length distances
(or at high energy scales) where the notion of relativistic spacetime breaks
down and the discreetness of the automaton becomes relevant. The qca pro-
posal could be an alternative way to explore the physics beyond the Standard
Model. Besides the aforementioned future perspectives, due to the key role of
information in the present approach, it could be significant to understand if the
information associated with a part of the emergent space obeys the holographic
principle [215, 216] whose validity is supported by black hole physics [30, 217]
and by theoretical predictions as the ads/cft correspondence [218]. The holo-
graphic principle, which is usually studied in relativistic contexts, has been
recently considered [219, 220] in the completely different context of emergent
spacetime as a possible origin of gravity and inertia, thus reversing the common
logic that lead people from the laws of gravity to holography. However in this
scenario the holographic principle is assumed and a satisfactory informational
justification for it is still missing.
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APPENDIXA

The Sampling Theorem

The Sampling Theorem [221] shows that a continuous band-limited function
may be represented exactly by samples of its points taken at uniform intervals
of ` if ` is sufficiently small. In other words, since the continuous function may
be reconstructed perfectly from its samples, sampling at a high enough rate is
information-lossless. Before stating the main theorem we give the definition of
band-limited function:

Definition A.1 (Band-limited function) Consider a function f ∈ L2(R).
We say f to be band-limited to ∆ if

f̂(k) = 0, for |k| > ∆. (A.1)

The theorem is then as follows:

Theorem A.1 (Nyquist-Shannon Sampling Theorem) Let f ∈ L2(R)
be band-limited to ∆. Then f at all points x can be recovered from its samples
{f(n `), n ∈ Z} at integer multiples of ` = 1/(2∆) as follows:

f(x) =
∑

n∈Z

f(n `)sinc

(
x− n`
`

)
. (A.2)

The theorem just states that a band-limited function can always be recovered
as a weighted sum of its values on a discrete set of points where the weights
are given by the sinc function. Before proving the theorem remember that the
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sinc function and its Fourier transform are

sinc(x) =

{
sin (πx)
πx

, x 6= 0,

1 x = 0
, ŝinc(k) =

{
1, |k| 6 1,

0 |k| > 1
, (A.3)

and in particular an easy change of variable shows that the Fourier transform
of sinc

(
x−n`
`

)
is ` exp(−2πikn`) if |k| 6 ∆ while it is 0 for |k| > ∆, according

to the band-limitness of f in (A.2).
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Figure A.1: Plot of the sinc function

The usual proof of the Sampling Theorem presented here is just an easy
application of the Fourier series expansion of a limited function.

Proof. By hypothesis f is band-limited to ∆. Therefore, by definition of band-
limited function, its Fourier transform f̂ is limited to the interval k ∈ [−∆,∆]
and then can be expanded in Fourier series as follows

f̂(k) =
∞∑

n=−∞

f̂ne
−2πink`, k ∈ [−∆,∆], (A.4)

f̂n =
1

2∆

∫ ∆

−∆

dk f̂(k)e2πink`. (A.5)

Now we can Fourier transform both sides of (A.4) and using the Fourier trans-
form of the sinc function given in (A.3) we get

f(x) =
∑

n∈Z

f̂n
`

sinc

(
x− n `
`

)
. (A.6)

Finally evaluating both sides at x = n` we have f(n`) = f̂n/`, which completes
the proof.�

We can now observe that in general it is possible to approximate the func-
tion f taking a sampling at a rate `′ > 1/2∆.
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APPENDIXB

The stationary phase
approximation

The stationary phase approximation allows the evaluation of the integral of a
function against a rapidly oscillating exponential

I(t) =

∫ b

a

dk f(k)eiω(k)t. (B.1)

In this scenario the integral becomes small as the frequency increases.
Under very weak assumptions the Riemann-Lebesgue lemma allows to state

that asymptotically the integral goes to zero:

Lemma B.1 (Riemann-Lebesgue) Consider a function f ∈ L1[a, b]. Then
we have

lim
t→±∞

∫ b

a

dk f(k)eikt = 0. (B.2)

A similar result holds for f ∈ L1(R).

Imposing some regularity conditions on the functions f and ω, it is possible
to derive the asymptotical behaviour for the oscillating integral (B.1) via the
so called stationary phase approximation. Thus let us assume f and ω smooth
enough to admit Taylor expansion, i.e. f, ω ∈ C∞0 [a, b]. The idea at the basis
of the stationary phase approximation is that the contribution to the integral
I in the regions where there is a rapid oscillation of the exponential term is
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approximately zero, with the only significant non-zero contributions occurring
in the regions of the integration range where

ω(1)(k) = 0, (B.3)

i.e. at points of stationary phase (ω(i) denotes the nth derivative).
Suppose that at some point k0 ∈ [a, b] it is ω(1)(k0) = 0, with ω(1)(k) 6= 0

everywhere else. Assume moreover that ω(2)(k0) 6= 0 and f(k0) 6= 0. Since
for t � 0 the only contribution to the integral is in a small neighbor of the
stationary point k0 we have

I(t) ≈ eiω(k0)t

∫ k0+ε

k0−ε
dk f(k)ei(ω(k)−ω(k0))t (B.4)

≈ f(k0)eiω(k0)t

∫ k0+ε

k0−ε
dk ei(ω(k)−ω(k0))t, (B.5)

where we have pulled f outside the integral since f(k) ≈ f(k0) in the vicinity
of the stationary point and f is assumed slowly varying. Now expanding ω(k)
near k0 one has

I(t) ≈ f(k0)eiω(k0)t

∫ k0+ε

k0−ε
dk e

i
2
ω(2)(k0)(k−k0)2t (B.6)

≈ f(k0)eiω(k0)t

∫ ∞

−∞
dk e

i
2
ω(2)(k0)(k−k0)2t, (B.7)

and computing exactly the integral in (B.7) we finally get the leading order
asymptotic approximation

I(t)
t�0−−→ f(k0)eiω(k0)t

√
2πi

ω(2)(k0)t
. (B.8)
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