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The plot represents the caustics of the Hamiltonian system described
in   Chapter   3.   In   particular,   the   pale   blue   plane   represents   the
“screen”  appearing in the study of the 6j symbol, and the blue larger
contour is the 6j caustic. The two purple sections   are plots of the
two   funciotns       αℓ and   α ℓ̃ .     This   particular   choice   of   the
parameters   corresponds   to   the     “twin”   case   (namely,   when   two
quadrilaterals coincide under the action of the Regge symmetry). In
this case the two sections meet  both in  their    maxima and in  the
origin   ℓ=ℓ̃=0 .
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Chapter 1
Introduction

Motivations of this work are inspired by three papers: Regge’s “General Rela-
tivity without Coordinates” published in 1961 [1], Penrose’s “Angular Momen-
tum: an Approach to Combinatorial Space-time” published in 1971 [2] and the
contemporary paper by Ponzano and Regge “Semiclassical limits of Racah’s
coefficients” [3]. While Regge Calculus, as the discrete approach to classical
Einstein’s theory found by Regge has been called by Wheeler [4] , started to
be applied to quantum theory of gravity in the Euclidean path integral for-
mulation in the 1980s, the ideas of Penrose (and, in the sense which will be
reviewed in Chapter 2, also results found by Ponzano and Regge [3]) were truly
innovative and far-reaching. In Penrose’s words [2]

My basic idea is to try and build up both space-time and quantum
mechanics simultaneously – from combinatorial principles – but not
(at least in the first instance) to try and change physical theory
(...) One scarcely wants to take every concept in existing theory
and try to make it combinatorial: there are too many things which
look continuous in the existing theory. And to try to eliminate the
continuum by approximating it by some discrete structure would
be to change the theory. The idea, instead, is to concentrate only
on things which, in fact, are discrete in existing theory and try
and use them as primary concepts – then to build up other things
using these discrete primary concepts as the basic building blocks.
Continuous concepts could emerge in a limit, when we take more
and more complicated systems.

Thus over the years classical and quantum ‘discretized geometries’, and in
particular Penrose’s ‘spin networks’ in their variety of formulations and ap-
plications, have constituted a very active field of research for both theoretical
physicists and geometers (it is worth recalling the Turaev–Viro model [5] which
provides a regularized counterpart of Ponzano-Regge partition function for Eu-
clidean 3-gravity and represents a topological invariant of closed 3-manifolds
not recognized before).
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1. Introduction

Previous work on spin networks and Regge Calculus

In 1964 and 1965 Chakrabarti [6], Lèvy-Leblond and Lèvy-Nahas [7], looking
for a symmetric treatment of the coupling of three angular momentum oper-
ators, independently introduced a new operator now called ‘volume operator’
as the triple product of the vector operators associated with the three angu-
lar momenta. They provided the matrix representation of the operator and
studied its properties.

During the 1990s the volume operator became the fundamental ingredient
of the loop approach to quantum gravity [8, 9, 10, 11] and for this reason
many have studied its features and its spectrum [12, 13, 14, 15, 16, 17, 18]
until very recently [19, 20, 21]. In loop quantum gravity the volume operator
acts on the four-valent node of a graph. In this node resides the space of the
intertwiners between the representations of the group SU (2) associated with it
[22]. Eigenstates of the volume operator form a convenient base for the space
of the intertwiners.

The volume operator is strictly related to the 6j symbol, the recoupling
coefficient between two binary coupled bases arising in the quantum theory of
angular momenta. Ponzano and Regge [3] found the form of the 6j symbol
in its semiclassical limit extending the previous analysis of Wigner [23]. This
asymptotic analysis chains the 6j symbol to the geometry of an Euclidean
tetrahedron. Other approaches, starting from the three terms recurrence rela-
tion for the 6j symbol and leading to the Ponzano-Regge formula were devel-
oped by Neville in 1971 [24] and by Schulten and Gordon [25], and a formal
proof of the Ponzano-Regge formula was given by Roberts in 1999 [26].

This semiclassical analys of the 6j symbol suggest to use similar tools for
the volume operator along the lines established in Carbone et al. [12]. In
this thesis the semiclassical analysis of the volume operator is based on the
techniques introduced by Braun for the discrete WKBJ method [28, 29] and
the analysis of the semiclassical mechanics of the 6j symbol by Aquilanti et al.
[30]. Although the study of the volume operator by Haggard [31] and Haggard
and Bianchi [19, 20] is compatible with our approach, it is conceptually very
different: they quantize semiclassically the symplectic space associated with
the “shape space” of polyhedra so that they follow a “classical to quantum”
approach. Moreover, the geometric structure involved is associated with the
dual tetrahedron, namely their“variables”are associated with areas of the faces
of tetrahedra while for us the treatment is actually insensible to the choice of
the role for the “variables”: they can be either areas or edge lengths, but we
choose the second option to comply with the original spirit of Wigner and
Ponzano–Regge. An important property that the study of 6j have revealed
is its Regge symmetry [32]. We (see also [20] ) found that volume operator
possesses the same symmetry.

Finally, moving to the collective dynamics of discrete geometries, we based
our treatment on the original paper by Regge [1] and the further developments
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proposed by Wheeler in [33]. There has not been much work on classical
Lorentzian Regge calculus, but only a few interesting sample calculations (e.g.
[34, 35]).

Plan and main results of the thesis

• In Chapter 2, we review the standard recoupling theory for SU (2) an-
gular momenta and some basic facts about Regge Calculus.

• In Chapter 3 we develop the symmetric (re)-coupling theory for SU (2)
angular momenta, introducing the volume operator and evaluating its
semiclassical limit through the associated three-term recurrence relation
to be looked as a discrete Shrödinger equation. A mechanical analogue
of the emerging dynamics is also provided.

• In Chapter 4 a definition of Regge symmetry is given and then general-
ized to quadrilaterals and tetrahedra. A new quaternion parametrization
of quadrilaterals is provided. Regge symmetry is proved to act on quadri-
laterals as a quaternionic conjugation. Finally, the proof of the invariance
for Regge symmetry of the volume operator is completed.

• In Chapter 5 families of orthogonal polynomials associated with the vol-
ume operator are defined. An Askey-like classification of these orthogonal
polynomials is diven using the formalism of the quadratic algebras.

• In Chapter 6 we develop two different triangulations associated with a
space-time of topology S3 × R. We provide some preparatory tools apt
to investigate Lorentzian aspects of discrete models of quantum gravity.
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1. Introduction
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Chapter 2
Recoupling theory and
discretized geometry

In this chapter we review some aspects of the recoupling theory for angular
momenta and of the Regge Calculus. There is no intention of writing a self-
contained introduction to these topics because that would lead us too far,
but we use this chapter to fix the notation and to introduce the reader to
the reference framework of this thesis. We refer to Messiah’s textbook [36,
Chapter XIII], Biedenharn and Louck [37, 38] and the recent review [27] for
the first part of this chapter. On Lorentzian Regge calculus there isn’t yet
an ultimate reference we could use. On the other hand, the Euclidean Regge
Calculus has been treated by many authors. A precious review we refer to for
a comprehensive bibliography and a summary of the state of the art on Regge
Calculus until the 1990s is [39].

2.1 Recoupling theory of

SU (2) angular momentum

Given three angular momentum operators J1,J2,J3 –associated with three
kinematically independent quantum systems– the Wigner–coupled Hilbert space
of the composite system is an eigenstate of the total angular momentum

J1 + J2 + J3 =: J (2.1.1)

and of its projection Jz along the quantization axis. The degeneracy can be
completely removed by considering binary coupling schemes such as (J1 + J2) +
J3 and J1 + (J2 + J3), and by introducing intermediate angular momentum
operators defined by

(J1 + J2) =: J12; J12 + J3 = J (2.1.2)

and
(J2 + J3) =: J23; J1 + J23 = J, (2.1.3)
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2. Recoupling theory and discretized geometry

respectively. In Dirac notation the simultaneous eigenspaces of the two com-
plete sets of commuting operators {J2

1,J
2
2,J

2
12,J

2
3,J

2, Jz} and
{J2

1,J
2
2,J

2
3,J

2
23,J

2, Jz} are spanned respectively by basis vectors

|j1j2j12j3; jm〉 and |j1j2j3j23; jm〉, (2.1.4)

where j1, j2, j3 are labels corresponding to the eigenvalues (ji + 1) ji of the
operator J2

i , and m is the total magnetic quantum number with range −j ≤
m ≤ j in integer steps eigenvalue of the operator Jz. Note that j1, j2, j3
run over {0, 1

2
, 1, 3

2
, 2, . . . } (labels of SU(2) irreducible representations), while

|j1− j2| ≤ j12 ≤ j1 + j2 and |j2− j3| ≤ j23 ≤ j2 + j3 (all quantum numbers are
in ~ units).
The Wigner 6j symbol expresses the transformation between the two schemes
(2.1.2) and (2.1.3), namely

|j1j2j12j3; jm〉 =
∑
j23

[(2j12 + 1)(2j23 + 1)]1/2
{
j1 j2 j12

j3 j j23

}
|j1j2j3j23; jm〉

(2.1.5)
apart from a phase factor1. It follows that the quantum mechanical probability

P = [(2j12 + 1)(2j23 + 1)]

{
j1 j2 j12

j3 j j23

}2

(2.1.6)

represents the probability that a system, prepared in a binary coupled state
(2.1.2), where j1, j2, j3, j12, j have definite magnitudes, will be measured to be
in the state associated with the coupling scheme (2.1.3).

The 6j symbol may be written as sums of products of four Clebsch–Gordan
coefficients or their symmetric counterparts, the Wigner 3j symbols. The
relations between 6j and 3j symbols are given explicitly by (see e.g. [40]){
a b c
d e f

}
=
∑

(−)Φ

(
a b c
α β −γ

)(
a e f
α ε −ϕ

)(
d b f
−δ β ϕ

)(
d e c
δ −ε γ

)
(2.1.7)

where Φ = d + e + f + δ + ε + ϕ. Here Latin letters stand for j–type labels
(integer or half–integers non–negative numbers) while Greek letters denote the
associated magnetic quantum numbers (each varying in integer steps between
−j and j, j ∈ {a, b, c, d, e, f}). The sum is over all possible values of α, β, γ,
δ, ε, ϕ but only three summation indices being independent by definition, the
lower string of quantum numbers in each 3j is such that the summation of the
values must give zero .

On the basis of the above decomposition it can be shown that the 6j sym-
bol is invariant under any permutation of its columns or under interchange
the upper and lower arguments in each of any two columns. These algebraic

1 Actually this expression should contain the Racah W–coefficient W (j1j2j3j; j12j23)
which differs from the 6j by the factor (−)j1+j2+j3+j . Recall that (2j12 + 1) and (2j23 + 1)
are the dimensions of the representations labeled by j12 and j23, respectively.
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2.1. Recoupling theory of
SU (2) angular momentum

relations involve 3!× 4 = 24 different 6j with the same value and are referred
to as classical symmetries as opposite to “Regge” symmetries to be introduced
an discussed in Chapter 4. These algebraic symmetries naturally reflect the
tetrahedral symmetry. Note first that each 3j (or Clebsch–Gordan) coeffi-
cient vanishes unless its j–type entries satisfy the triangular condition, namely
|b− c| ≤ a ≤ b+ c, etc.. This suggests that each of the four 3j’s in (2.1.7) can
be be associated with either a 3–valent vertex or a triangle. Accordingly, there
are two graphical representation of the 6j exhibiting its symmetry properties.
Here we adopt the three–dimensional picture introduced in the seminal paper
by Ponzano and Regge [3], rather than Yutsis’ “dual” representation as a com-
plete graph on four vertices [41]. Then the 6j is thought of as the surface solid
tetrahedron T with edge lengths `1 = a + 1

2
, `2 = b + 1

2
, . . . , `6 = f + 1

2
in ~

units2 and triangular faces associated with the triads (abc), (aef), (dbf), (dec).
This implies in particular that the quantities q1 = a + b + c, q2 = a + e + f ,
q3 = b + d + f , q4 = c + d + e (sums of the edge lengths of each face),
p1 = a + b + d + e, p2 = a + c + d + f , p3 = b + c + e + f are all integer
with ph ≥ qk (h = 1, 2, 3, k = 1, 2, 3, 4). The conditions addressed so far are
in general sufficient to guarantee the existence of a non–vanishing 6j symbol,
but they are not enough to ensure the existence of a geometric tetrahedron T
living in Euclidean 3–space with the given edges. More precisely, T exists in
this sense if (and only if, see the discussion in the introduction of [3]) its square
volume V (T )2 ≡ V 2, evaluated by means of the Cayley–Menger determinant,
is positive.

The features of the “quantum tetrahedron” outlined above represent the
foundations of a variety of results, some of which were discovered in the golden
age of quantum mechanics and have been widely used in old and present ap-
plications to atomic and molecular physics.

2.1.1 Ponzano–Regge asymptotic formula

The Ponzano–Regge asymptotic formula for the 6j symbol reads [3]{
a b d
c f e

}
∼ 1√

24πV
cos

{(
6∑
r=1

`r θr +
π

4

)}
(2.1.8)

where the limit is taken for all entries� 1 (recall that ~ = 1) and `r ≡ jr+1/2
with {jr} = {a, b, c, d, e, f}. V is the Euclidean volume of the tetrahedron T
and θr is the angle between the outer normals to the faces which share the
edge `r.
From a quantum mechanical viewpoint, the above probability amplitude has
the form of a semiclassical (wave) function since the factor 1/

√
24πV is slowly

varying with respect to the spin variables while the exponential is a rapidly

2The 1
2–shift is shown to be crucial in the analysis developed in [3]: for high quantum

numbers (i.e. in the semiclassical limit) [j(j + 1)]1/2 ∼ j + 1
2 .
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2. Recoupling theory and discretized geometry

oscillating dynamical phase. Such kind of asymptotic behavior complies with

Wigner’s semiclassical estimate for the probability, namely
{
a b d
c f e

} 2 ∼ 1/12π V ,
to be compared with the quantum probability given in (2.1.6).

2.1.2 Racah hypergeometric polynomial

The generalized hypergeometric series, denoted pFq, is defined for p real or
complex numerator parameters a1, a2, . . . , ap, q real or complex denominator
parameters b1, b2, . . . , bq and a single variable z by

pFq

a1 . . . ap
; z

b1 . . . bq

 :=
∞∑
n=0

(a1)n · · · (ap)n
(b1)n · · · (bp)n

zn

n!
, (2.1.9)

where (a)n = a(a + 1)(a + 2) · · · (a + n − 1) denotes a rising factorial with
(a)0 = 1. If one of the numerator parameter is a negative integer, as actually
happens in the formula below, the series terminates and the resulting function
is a polynomial in z.
The key expression for relating the 6j symbol to hypergeometric functions is
given by the well–known Racah sum rule (see e.g. [37, 38], topic 11 and [40],
Ch. 9 also for the original references). The final form of the so–called Racah
polynomial is written in terms of the 4F3 hypergeometric function evaluated at
z = 1 according to{

a b d
c f e

}
= ∆(abe) ∆(cde) ∆(acf) ∆(bdf) (−)β1(β1 + 1)!

×
4F3

(
α1−β1 α2−β1 α3−β1 α4−β1

; 1
−β1−1 β2−β1+1 β3−β1+1

)
(β2 − β1)!(β3 − β1)!(β1 − α1)!(β1 − α2)!(β1 − β3)!(β1 − α4)!

, (2.1.10)

where
β1 = min(a+ b+ c+ d; a+ d+ e+ f ; b+ c+ e+ f)

and the parameters β2, β3 are identified in either way with the pair remaining
in the 3–tuple (a+b+c+d; a+d+e+f ; b+c+e+f) after deleting β1. The four
α’s are identified with any permutation of (a+b+e; c+d+e; a+c+f ; b+d+f).
Finally, the ∆–factors in front of 4F3 are defined, for any triad (abc) as

∆ (abc) =

[
(a+ b− c)!(a− b+ c)!(−a+ b+ c)!

(a+ b+ c+ 1)!

]1/2

Such a seemly complicated notation is indeed the most convenient for the
purpose of listing further interesting properties of the Wigner 6j symbol.

• The Racah polynomial is placed at the top of the Askey hierarchy in-
cluding all of hypergeometric orthogonal polynomials of one (discrete or

10



2.2. Regge Calculus

continuous) variable [42]. Most commonly encountered families of special
functions in quantum mechanics are obtained from the Racah polynomial
by applying suitable limiting procedures, as recently reviewed in [43].
Such an unified scheme provides in a straightforward way the algebraic
defining relations of the Wigner 6j symbol viewed as an orthogonal poly-
nomial of one discrete variable, cfr. (2.1.10). By resorting to standard
notation from the quantum theory of angular momentum, such defining
relations are:
the Biedenharn–Elliott identity (R = a+ b+ c+ d+ e+ f + p+ q + r):

∑
x

(−)R+x (2x+ 1)

{
a b x
c d p

}{
c d x
e f q

}{
e f x
b a r

}
=

{
p q r
e a d

}{
p q r
f b c

}
; (2.1.11)

the orthogonality relation (δ is the Kronecker delta)

∑
x

(2x+ 1)

{
a b x
c d p

}{
c d x
a b q

}
=

δpq
(2p+ 1)

. (2.1.12)

• Given the relation (2.1.10), the unexpected new symmetry of the 6j
symbol discovered in 1958 by Regge [44] (see also [37, 40]) is recognized
as a “trivial” set of permutations on the parameters α, β that leaves 4F3

invariant.

• The Askey hierarchy of orthogonal polynomials can be extended to a
q–hierarchy [42], on the top of which the q–4F3 polynomial stands.
It is worth noting that the deformation parameter q was originally as-
sumed by physicists to be a real number related to Planck constant h by
q = eh, and therefore it is commonly referred to as a ‘quantum’ deforma-
tion, while the ‘classical’, undeformed Lie group symmetry is recovered
at the particular value q = 1. In application to quantum gravity models
and topological quantum field theory, q is taken to be a complex root of
unity, the case q = 1 being considered as the ”trivial” one. We refer to
[45, 46] for accounts on the theory of q–special functions and q–tensor
algebras, respectively.

2.2 Regge Calculus

Regge Calculus is a dynamical theory of space-time introduced in 1961 by
Regge as a discrete approximation for the Einstein theory of gravity [1]. The
basic idea is to replace a smooth space-time with a collection of simplices. The
collective dynamics of these geometric objects is driven by the Regge action
and the dynamical variables are their edge lengths (which play the role of
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2. Recoupling theory and discretized geometry

the metric tensor of General Relativity). Simplices are the n−dimensional
generalization of triangles and tetrahedra and are formally defined below. For
the moment it suffices to say that they are convex pieces of space and they
can be suitably glued together to build an extended geometric object e.g.
triangles (or 2−simplices) glued together can form a 2-dimensional surface.
An important point is that even if simplices are flat (so are “pieces” of space
of zero curvature) the spaces they may generate, in general, are not.

Coming back to General Relativity, from a heuristic point of view we can
think to build a (discrete) space-time gluing together pieces of 4−dimensional
Minkowski spaces getting thus a generic, non-globally-flat space-time. Namely,
we are associating to a space-time a piecewise-linear simplicial manifold (PL-
manifold in short ).

2.2.1 Basic definitions

We start with some basic definitions referring to [47, 48] for a more detailed
exposition of the topological construction of the triangulations.

Definition 1. A subspace σi of an n−dimensional vector space V over the real
numbers is an i-simplex if is the convex hull of a set of i+ 1 points {v0, ...,vi}
with i ≤ n which do not lie in a (i− 1) affine subspace. In other terms:

σi :=

{
i∑

j=0

λjvj

∣∣∣ λj ≥ 0,
i∑

j=0

λj = 1, vj ∈ V

}
.

A face τ of an i-simplex is any simplex whose vertices are a subset of those of
σi and is denoted by τ < σi.

Definition 2. A locally finite simplicial complex is a (possibly infinite) collec-
tion K of simplices in Rn such that

• σ ∈ K and τ <σ ⇒ τ ∈ K;

• σ ∈ K and τ ∈ K ⇒ σ ∩ τ < σ and σ ∩ τ<τ ;

• each point in the polyhedron |K| :=
⋃
σ∈K has a neighborhood which

intersects only a finite number of simplices of K.

Definition 3. The star of a simplex σ is the union of all simplices in K of
which σ is a face, namely

St (σ,K) = {τ ∈ K |σ < γ} .

The link is the union of all faces τ ∈ St (σ,K) such that τ ∩ σ = Ø.

12



2.2. Regge Calculus

σ

Figure 2.1: The link (in blue) of a 0-simplex (in red) in a 2-dimensional sim-
plicial complex.

Definition 4. A map f : K → L of the simplicial complex K into the sim-
plicial complex L is a triple (|f |, K, L) where |f | : |K| → |L| is a continuous
map of topological spaces.
The map f : K → L is said to be linear if it maps each simplex of K linearly
into some simplex of L. The map is said simplicial if the image of each simplex
of K is a simplex of L and a simplicial isomorphism if f−1 is also a simplicial
map.

Definition 5. A piecewise-linear homeomorphism f : K → L is a map which
is a simplicial isomorphism for some subdivision K ′ and L′of K and L.

Definition 6. A piecewise-linear n−manifold (or PL-manifold) is a poly-
hedron ∆M = |K| each point of which has a neighborhood, in ∆M, PL-
homeomorphic to an open set in Rn.

As described above the PL-manifold is a fundamental ingredient for the
Regge Calculus, but up to now this is only a topological object if we don’t
introduce a local metric in σn. A natural choice for Rn would be the Eu-
clidean metric gE (v,w) = (vµ − wµ) (vν − wν) δµν (where the Einstein conven-
tion is adopted). This choice would lead to the Euclidean Regge Calculus.
Recalling that the Minkowski space is a Lorentzian manifold whose underlying
smooth manifold is Rn and whose pseudo-Riemannian metric is at each point
the Minkowski metric, we can locally endow each simplex with a Minkowski
metric gη (v,w) = (vµ − wµ) (vν − wν) ηµν where η = diag (−1,+1,+1...,+1).
In this way the PL-manifold inherits a global causal structure. We will focus on

13



2. Recoupling theory and discretized geometry

the Lorentzian aspects of this manifold in Chapter 6. Once given everywhere
a local metric, the structure of the PL-manifold can be determined by the set
of the squared edge lengths of the simplicial complex

{
l2ei
}
ei∈E

where E is the
set of all 1-simplices in K. To introduce the remaining ingredients composing
the Regge Calculus, in this section, we chose the Euclidean metric (from now
we are tacitly assuming that ∆M is compact and without boundary).

In Regge view a space-time M is treated as the polyhedron ∆M and the
smooth geometry is replaced by a suitable PL geometry. Each n−simplex is
flat and has a natural notion of n−dihedral angles which are functions of its
(squared) edge lengths. Any n−simplex is itself endowed with an (n − 1)-
dimensional PL-structure, so for each pair of (n− 1)− simplices there is a
shared (n− 2)-simplex f . The dihedral angle θf is the angle between the nor-
mal vectors of the two (n− 1)−simplices that meet in f . In an n−dimensional
simplicial complex an (n− 1)−simplex is shared by two n−simplices by defi-
nition; the (n− 2)-simplex is shared among several simplices so it is possible
to define the deficit angle as follows

Definition 7. The deficit angle (or defect) εf at the (n− 2)−simplex f is

εf := 2π −
∑
i

θif

where the sum is over all the n−simplices in St(f,∆M) and θif is the associated
dihedral angle.

Now it is possible to introduce the Regge action, the counterpart of the
Hilbert-Einstein action of General Relativity in Euclidean signature.

The Regge action is the functional associated with the simplicial PL-manifold(
∆M,

{
l2j
})

defined as

SR
[{
l2j
}]

:=
∑
f

Af εf , (2.2.1)

where the sum is over all the (n− 2)−simplices ( in Regge Calculus literature
called the “bones”), Af is them natural volume of such a simplex evaluated
with the Euclidean metric and εf is the deficit angle.

Finally we can say that a PL-manifold (∆M, {lei}) in Regge Calculus repre-
sents a discrete space-time if it is an extremal of the Regge action plus possibly
matter actions namely

δ (SR + SM) = 0

where δ represents a suitable variation in the space of admissible lengths.
Jeff Cheeger, Werner Müller, and Robert Schrader in 1984 [49, 50] proved a

local convergence in the sense of measures of the Regge action for an Euclidean
PL-manifold to a scalar curvature of a smooth Riemaniann manifold. They
considered the Regge action as the scalar counterpart of the Lipshitz-Killing
curvature [51].

14



2.2. Regge Calculus

Figure 2.2: Simplicial tiling of a
plane which form a 2-dimensional
simplicial complex.

Figure 2.3: A geometric view of a
simplicial complex with a non-null
deficit angle at the central vertex
(the two edges pointed by the arrow
are identified).

Figure 2.4: The simplicial complex of Fig. 2.3 embedded in R3

2.2.2 A heuristic viewpoint

Here we want to report an example proposed by Sorkin in 1974 [52] which
gives a basic motivation of the assumption of Regge action 2.2.1 as the action
for a discrete gravity. The idea is to evaluate the Einstein-Hilbert action for
a four dimensional Minkowski space-time with a conic singularity residing in
the tz-plane.

In a Minkowski space-time M endowed with orthonormal coordinate base
{t, x, y, z} and flat metric gµν = diag (−,+,+,+) we can introduce a deficit
angle in the xy-plane in the following way. It is convenient to move to polar
coordinates {

x = r · cos (γ)
y = r · sin (γ)

r ∈ [0,∞); t, z ∈ R.
γ = [0, 2π)

Because of the periodicity of this coordinates for the γ variable, we have a nat-
ural identification of points with coordinate γ = 0 with points with coordinate
γ = 2π. A conic singularity can be introduced identifying the points γ = 0

15



2. Recoupling theory and discretized geometry

with γ = 2π − θ, namely{
x = r · cos (k(θ) · φ)
y = r · sin (k(θ) · φ)

r ∈ [0,∞); t, z ∈ R.
φ = [0, 2π)

where

k (θ) ≡ 1− θ

2π
.

It is now possible to evaluate the metric for this new manifold M′,i.e.

g′µν = gρσ
∂xρ

∂x′µ
∂xσ

∂x′ν

where {
x = r · cos (k(θ) · φ)
y = r · sin (k(θ) · φ)


∂x
∂r

= cos (k · φ)
∂x
∂φ

= −k · r sin(k · φ)
∂y
∂r

= sin (k · φ)
∂y
∂φ

= r k cos (k · φ)

and get g′11 = g′rr=
(
∂x
∂r

)2
+
(
∂y
∂r

)2
= sin2(k · φ) + cos2 (k · φ) = 1 g′12 = g′rφ =

∂x
∂r

∂x
∂φ

+ ∂y
∂r

∂y
∂φ

= −r cos (k · φ) sin (k · φ) + r cos (k · φ) sin (k · φ) = 0 g′22 =(
∂x
∂φ

)2

+
(
∂y
∂φ

)2

= r2k2. The metric finally reads

g′ =


−1 0 0 0
0 1 0 0
0 0 r2k2 0
0 0 0 1

 =


−1 0 0 0
0 1 0 0

0 0
(
1− θ

2π

)2
r2 0

0 0 0 1

 .

This metric has a cuspid in the origin r = 0.
We can regularize the metric in r → 0 introducing the function

e2λ(r) =

{
r2 if r → 0

r2
(
1− θ

2π

)2
if r � 0

g′ =


−1 0 0 0
0 1 0 0
0 0 e2λ(r) 0
0 0 0 1


and smoothing the cusp in r → 0.

Christoffel symbols and curvature tensors can be easily calculated to arrive
to the Ricci scalar

R = 2
(
λ′′ (r) + (λ′ (r))

2
)

√
− det g′ = eλ(r).

The Einstein-Hilbert action

SEH =

ˆ

M

d4xR
√
− det g′ =

16



2.2. Regge Calculus

= − 1

16π

ˆ

M

d4x
[
2eλ
(
λ′′ + (λ′)

2
)]

= − 1

16π

ˆ

M

d4x

[
2
d2eλ

dr2

]
. (2.2.2)

This integral can be solved by parts

−1

2

∞̂

0

2πˆ

0

dr dφ 2 ·
(
eλ(r)

)′′
= −2π

∞̂

0

(
eλ(r)

)′
dr

= −2π
(
eλ(r)

)′∣∣∣∞
0
⇒
{
r = 0 eλ = r
r →∞ eλ =

(
1− θ

2π

)
= −2π

(
−1 + 1− θ

2π

)
= θ

so that

SEH = − 1

16π

˘
dφ dr dz dtR

√
− det g′ =

1

8π
θ

¨
dz dt.

If the singularity were confined in a compact region, this action would not
diverge and

˜
dz dt =: A would be the Euclidean area of the compact region.

Since any PL-manifold is flat almost everywhere, and the action is an addi-
tive quantity, we have a contributions to the Einstein-Hilbert action only from
triangles with non-null deficit angle, so we can write the 4-dimensional Regge
Action as

SR =
1

8π

∑
i

Aiεi (2.2.3)

where Ai is the (positive) area of the triangle i in the PL-manifold and εi is
the deficit angle (or defect) associated to it .

2.2.3 Regge equations

In General Relativity the dynamical field is the metric tensor while in Regge
Calculus its role is played by the collections of the squared edge lengths. In
fact, the metric tensor is a symmetric tensor with n (n− 1) /2 independent
entries (where n is the dimension of the space-time) and n (n− 1) /2 are also
the number of edges in a n−simplicial complex (it coincides with the number
of links in a complete graph because each vertex of a simplex is connected
to all the other vertices by an edge). In particular, 4-simplex is completely
determined by its 10 edge lengths. Thus the action has to be variated with
respect to these (square) edge lengths of the simplicial complex, formally

δSR + δSM = 0
1

8π

(∑
t

δAtεt +
∑
t

Atδεt

)
+ δSM

17



2. Recoupling theory and discretized geometry

f
lf

vf

df

Figure 2.5: The triangle f with edge lengths {vf , lf , df}

where areas in terms of the edge lengths {vt, lt, dt} reads (Fig. 2.5)

A2
t:vld =

1

16

[(
v2
t + l2t − d2

t

)2 − 4 v2
t l

2
t

]
.

We get three implicit equations for each triangle of the simplicial complex.

1

8π

∂A

∂vi
εt =

vt
16πAt

(
d2
t + l2t − v2

t

)
εt (2.2.4)

The second term (the variation of the defect εt) vanish as proved by Regge [1]
thanks to the Schlafli identity which in Euclidean 4-space reads∑

t

At (δεt) = 0.

This leads to a overdetermined system of implicit equations, the solutions of
which would be the set of edge lengths which fix the geometry of the dis-
crete space-time. Such set of implicit equations are the discrete counterpart of
the Einstein’s differential equations, the equations of the gravitational field in
General Relativity.

2.3 Discretized geometries and Quantum Grav-

ity

Regge Calculus inspired and is at the base of almost all the present discretized
model for a quantum theory of gravity for at least two reasons: firstly it is a
discretized model, thus it represents a possible atomistic system typical of the
quantum systems, in Einstein’s words, from a letter to Hans Walter Dällenbach
(one of his former students) written in 1916 [53]

But you have correctly grasped the drawback that the continuum
brings. If the molecular view of matter is the correct (appropriate)
one, i.e., if a part of the universe is to be represented by a finite

18



2.3. Discretized geometries and Quantum Gravity

number of moving points, then the continuum of the present theory
contains too great a manifold of possibilities. I also believe that
this too great is responsible for the fact that our present means
of description miscarry with the quantum theory. The problem
seems to me how one can formulate statements about a discon-
tinuum without calling upon a continuum (space-time) as an aid;
the latter should be banned from the theory as a supplementary
construction not justified by the essence of the problem, which
corresponds to nothing “real”. But we still lack the mathematical
structure unfortunately. How much have I already plagued myself
in this way!

Secondly, Regge itself with Ponzano noticed a deep connection between the
Regge action (2.2.1), the asymptotic of the 6j symbol (2.1.8) and a path-
integral formulation of gravity. In [3] (we refers to [54, 27, 55], for recent
reviews) they defined the following state sum:
we denote by T 3 (j)→M3 a particular triangulation of a closed 3–dimensional
simplicial manifold M3 (of fixed topology) obtained by assigning SU(2) spin
variables {j} to the edges of T 3. The assignment must satisfy a number of
conditions, better illustrated if we introduce the state functional associated
with T 3(j), namely

Z[T 3(j)→M3;L] = Λ(L)−N0

N1∏
A=1

(−1)2jAwA

N3∏
B=1

φB

{
j1 j2 j3

j4 j5 j6

}
B

(2.3.1)

where N0, N1, N3 are the number of vertices, edges and tetrahedra in T 3(j),
Λ(L) = 4L3/3C (L is a fixed length and C an arbitrary constant), wA

.
=

(2jA + 1) are the dimensions of irreducible representations of SU(2) which
weigh the edges, φB = (−1)X , X =

∑6
p=1 jp and {:::}B are 6j symbols to

be associated with the tetrahedra of the triangulation. Finally, the Ponzano–
Regge state sum is obtained by summing over triangulations corresponding to
all assignments of spin variables {j} bounded by the cut–off L

ZPR [M3] = lim
L→∞

∑
{j}≤L

Z [ T 3(j)→M3;L ] , (2.3.2)

where the cut–off is formally removed by taking the limit in front of the sum.
The state sum 2.3.2 can be approximated replacing the sum by an integral

and the 6j with its asymptotic formula (2.1.8):

ZPR [M3] ≈ 1√
24π

ˆ N1∏
A

djA (2jA + 1) (−1)2jA

N3∏
B=1

φB
1√
Vk

cos

(∑
l∈B

jlθ
B
l +

π

4

)
.

(2.3.3)
the dominant contribution to the integral comes from the points of stationary
phase, which are given by ∑

B

(
π − θBi

)
= 2π
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2. Recoupling theory and discretized geometry

where the sum is over all tetrahedra B meeting on edge i, namely B ∈ Sr (i).
Now (2.3.3) contains a term of the form

ˆ N1∏
A

djA (2jA + 1) exp

i N1∑
A′

jl

2π −
∑

B∈Sr(i)

(
π − θBl

)
 =

ˆ N1∏
A

djA (2jA + 1) exp

(
i

N1∑
A′

jlεl

)

which looks precisely like a Feynman path-integral (sum over histories) with
in the exponent the Regge Calculus action in three dimension:

ˆ N1∏
A

dµA exp (i SR)

with SR :=

N1∑
A′

jAεA

the 3-dimensional counterpart of (2.2.1) with an appropriate measure in the
space of edge lengths dµi (ji). Once realized that this Ponzano-Regge approach
can be related to a theory of three-dimensional gravity started many attempts
to generalize it to four-dimension. Barrett-Crane model or spin-foam model
have been formulated. We have to notice that these Ponzano-Regge-like mod-
els cannot be considered complete theories of quantum gravity. Most of the
studies have been developed in an Euclidean gravity framework (the gauge
group is in fact SU (2) rather then the complexified Lorentz group SL (2,C))
and a generalizations to the Lorentzian case is at the moment not fully ac-
complished. Related to this, Ponzano-Regge-like models does not involve the
causal structure typical of General Relativity, in fact the the cosine in expres-
sion (2.3.3) generates also other contributes to the path-integral of the form´ ∏N1

A dµA exp (−i SR) which have not a straightforward interpretation in a
causal theory. This issue infects also recent Lorentzian spinfoam and has to
be considered an open problem (see e.g. [56]). Lorentzianity and causality are
basically also the motivations for our last Chapter 6 where we build simple
triangulations and develop their Lorentian structure.
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Chapter 3
The volume operator and
symmetric coupling of SU (2)
angular momenta

3.1 The Volume Operator

Historically, the volume operator was introduced to find convenient symmetric
bases for three-particle states as alternative to the binary coupling schemes
of section 2.1. The total angular momentum of the system is a a self-adjoint
operator defined here as

JT := J1 + J2 + J3, (3.1.1)

where J1, J2 and J3 are the operators associated to the angular momentum of
each of the three particles subsystems. Chakrabarti and then Lèvy-Leblond,
Lèvy-Nahas [6, 7] proposed a fifth operator

K := J1 · (J2 × J3) (3.1.2)

which commutes with J and has been proven [7] to form a complete set of
commuting observables together with the operators: (J1)2 , (J2)2, (J3)2, (JT )2

and Jz (the component of the total angular momentum with respect to the
quantization axis). In this way K would substitute the operator (J12)2 or
the operator (J23)2 which are the squares of the observables J12 := J1 + J2

and J23 := J2 + J3 in solving the degeneracy in the total space (JT , , Jz).
Quantum numbers j12 and j23 associated with eigenvalues of these operators
correspond to the standard binary coupling of section 2.1. On the other hand,
the eigenstates of the operator K provide a basis for the Hilbert space in which
all the components of the system are treated all on the same footing.

21



3. The volume operator and symmetric coupling of SU (2) angular momenta

3.1.1 Formal definition

The Hilbert space where the operators will act is a subspace of H =
⊗4

i=1Hi.
Each Hilbert space is determined by the highest-weight ji representation of
the group SU (2) of dimension (2ji + 1). For future use we redefine the total
angular momenta as JT ≡ −J4 and define each operator in this Hilbert space
as:

Ji :=
4⊗
j=1

I (1− δi j + δi j J)

(e.g. J3 = I⊗ I⊗J⊗ I). The definition given in (3.1.1) now becomes a closure
relation which reduces the Hilbert space to be

ker

(
4∑
i=1

Ji

)
=: H ⊂H .

Definition 8. The volume operator K is a linear operator acting on the Hilbert
space H according to

K := J1 · (J2 × J3) =
∑
µνγ

εµνγJ
µ
1 J

ν
2 J

γ
3 .

where εµνγ is the 3-dimensional completely antisymmetric Levi-Civita symbol.

Remark 9. K is a scalar operator so it is invariant under spatial rotations and
under the action of the SU (2) group. The eigenstates of this operator span
the intertwiner space of the four representation spaces (in fact, the spectrum
is non-degenerate [7]).

Using the binary coupling scheme described in Chapter 2, namely project-
ing the operator on an intermediate basis J12 := J1 + J2, the volume operator
K is represented as a tridiagonal matrix. This matrix picture plays a funda-
mental role and allows a direct numerical inspection as provided in Section
3.2.5.

Theorem 10. The volume operator expressed in the binary basis of the inter-
mediate operator J12 is an antisymmetric tridiagonal matrix

MJ12J12 (K) ≡ 〈j′12 |K| j12〉 =

=


0 i α `min+1

−i α `min+1
. . . . . .
. . . 0 iα`max

−iα`max 0

 (3.1.3)

where

α` =
F (`; j1 + 1

2
; j2 + 1

2
)F (`; j3 + 1

2
; j4 + 1

2
)√

(2`+ 1)(2`− 1)
, (3.1.4)

with F (a, b, c) = 1
4

√
(a+ b+ c) (a+ b− c) (a− b+ c) (−a+ b+ c) is the Heron’s

formula for the area of a triangle having edge lengths a, b, c.
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3.1. The Volume Operator

Proof. see [7] for a proof of the theorem.

3.1.2 The eigenvalue problem

The eigenstates of the volume operator are found as solutions of the formal
equation

K

∣∣∣∣ j1 j2

j3 j4
; k

〉
= λ

(
j1 j2

j3 j4
; k

) ∣∣∣∣ j1 j2

j3 j4
; k

〉
(3.1.5)

where here λ (k) denotes the eigenvalue associated to the kth eigenstate. A
‘generalized’ recoupling coefficients can be defined as a unitary map relating
the binary coupling j12 to the symmetric coupling k. Note that in (3.1.5) (and
in the rest of the thesis) the magnetic quantum number m (eigenvalue of Jz4 )
is dropped since all matrix elements of (scalar, vector) operators are invariant
owing to the Wigner-Eckart theorem. Moreover, once the Hilbert space is
fixed, we use λ (k) and |k〉 in place of those in (3.1.5), omitting the labels of
the representations

Definition 11. A generalized recoupling coefficient Ψk
j12

is a unitary map such
that

|k〉 =
∑
j12

Ψk
j12
|j12〉

where the sum is over admissible values of j12 restricted by suitable triangular
conditions.

This map is simply the matrix of the eigenstates of K expanded in the
j12–basis and, for a direct calculation, we just have to diagonalize the matrix
(3.1.3). In fact, ∑

j′12

〈j12|K|j′12〉Ψk
j′12

= λ (k) Ψk
j12

(3.1.6)

with
Ψk
j12

= 〈j12|k〉 . (3.1.7)

The binary coupling j12 is actually equivalent to the binary coupling j23 in the
sense that:

Theorem 12. The generalized recoupling coefficient referred to the binary cou-
pling j23 is

Ψk
j23

=
∑
j12

〈k|j12〉 〈j12|j23〉 =
∑
j12

Ψk
j12
〈j12|j23〉 (3.1.8)

Proof. The proof is straightforward: we use the identity for j23 on (3.1.7),
Ψk
k12

= 〈k|j12〉 =
∑

j23
〈k|j23〉 〈j23|j12〉, then we can verify directly (3.1.8)

through the identity:

〈k|j12〉 =
∑
j23

∑
j′12

〈k|j′12〉 〈j′12|j23〉 〈j23|j12〉 (3.1.9)
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j1

j12

j3

j2

j4

j3

j23

j1

j2

j4

{
j1 j2 j12

j3 j4 j23

}

Ψk
j12 Ψk

j23

j3j1

j2

j4

k

Figure 3.1: Symmetric re-coupling scheme

In Eq. (3.1.8), 〈j12|j23〉 is the usual 6j symbol (as introduced in (2.1.5)) up
to a normalization factor:

〈j1, j2 j3, j23, j4,m | j1, j2 j12 j3, j4,m
′〉 =

= δmm′
√

(2j12 + 1) (2j23 + 1) (−1)
∑
i ji

{
j1 j2 j12

j3 j4 j23

}
and we could use either the resolution of the identity for j12–basis and j23–basis
or the orthogonality of 6j symbols. Eq. (3.1.9) reveals another interesting
aspect of the symmetric recoupling, namely∑

k

Ψk
j12

Ψk
j23

= 〈j12|j23〉 (3.1.10)

as illustrated in the diagram of Fig. 3.1.

3.1.3 The three-term recurrence relations

The eigenvalue problem for the operator K expressed in one of the binary
basis is equivalent to find a solution for the three-term recursion relation [57,
12] (i =

√
−1)

λk Ψk
` + i α `+1 Ψk

`+1 − i α ` Ψk
`−1 = 0 (3.1.11)

once the eigenvalue in (3.1.5) λ (k) =: −λk is known and the boundary condi-
tion are provided. This equivalence between the two problems is straightfor-
ward when the matrix representation of the operator in question is tridiagonal.
In this case (3.1.11) follows directly from (3.1.6) and (3.1.3).
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The correct boundary conditions are found noticing that the coefficient
(3.1.4) are bounded by the vanishing value

α`min
= α`max+1 = 0, (3.1.12)

where

`min := max(|j1 − j2|, |j3 − j4|) ≤ ` ≤ min(j1 + j2 + 1, j3 + j4 + 1). (3.1.13)

Then the following boundary conditions{
Ψ`min−1 = Ψ`max+1 = 0

Ψ`min
= Ψ0

Ψ0 ∈ C

have to hold, where Ψ0 is an arbitrary constant corresponding to the freedom
in the choice of the normalization of the eigenvectors.

Note that the second zero of α` in (3.1.12) does not fix the dimension of
the vector space where Ψk

` lives. In fact, the last two relations reduce to

Ψk
`max

=
i α `max

λk
Ψk
`max−1

Ψk
`max+1 =

i α `max+2

λk
Ψk
`max+2

so that, if the number of equations in (3.1.11) is not fixed, the equivalence
with the matrix representation (3.1.3) must be imposed through the boundary
condition Ψ`max+1 = 0.

The next step consists in introducing a very useful change of phase. The
relation (3.1.11) can be transformed into a real three-term recurrence relation
with the following changes of phases

Ψk
` = (i)`−`min ψk` .

ψk` can also be seen as the eigenfunction of an operator results of the action
of a suitable unitary (diagonal) transformation on the volume operator. Then
(3.1.11) becomes

λk ψ
k
` + α `+1 ψ

k
`+1 + α ` ψ

k
`−1 = 0. (3.1.14)

A different transformation already well known in literature [6, 7], related
to the time-reversal symmetry of the system [30, 19] is

ψk` = (−1)`−`min φ` (3.1.15)

λk (−1)`−`min φk` = −α `+1 (−1)`−`min φk`+1 − α` (−1)`−`min φk`

−λk φk` = α `+1 φ
k
`+1 + α φk` .

Then, if λk is an eigenvalue of the system, also −λk is an eigenvalue and
the corresponding eigenfunction is φ` = (−1)`−`min Ψ`. Therefore when the
dimension of the volume operator is odd a couple of eigenvalues have to coincide
and also zero is an eigenvalue of the system.

It is convenient now to fix a convention for the index k.
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3. The volume operator and symmetric coupling of SU (2) angular momenta

• If present, let fix the index k = 0 for the zero eigenvalue λ0 = 0 and let
k > 0 if λk > 0.

• Using the symmetry (3.1.15) we can impose λk = −λ−k.

• Finally, we chose to sort the monotonic increasing sequences of the pos-
itive eigenvalues so that

λ1 = min {λk}kmax

k=1 and λkmax = max {λk}kmax

k=1

where kmax isD/2 for a volume operator of even dimensionD or (D − 1) /2
for a volume operator of odd dimension D.

3.2 The semiclassical limit and geometry of

quadrilaterals

We are going to look for the geometrical features shared by volume operator
by studying the semiclassical limit of the three-term recurrence relation estab-
lished in the previous section using a suitable WKBJ method introduced by
Braun [29] for the analysis of discrete systems.

3.2.1 From three-term recurrence relations to second
order finite difference equations

Starting from a symmetric three-term recurrence relation as given in (3.1.14),
we can introduce a set of operators which turn the relation into a finite differ-
ence equation defined on an evenly-spaced lattice ` = 0, 1, ....

We can introduce the first order finite difference operators

∆ :=
(
T̂+ − I

)
:= ψ` 7→ ψ`+1 − ψ` ∇ :=

(
I− T̂−

)
:= ψ` 7→ ψ` − ψ`−1

where T̂± are the shift operators ψ` 7→ ψ`±1, and the second order finite differ-
ence operator

∇∆ :=
(
T̂+ − 2 · I + T̂−

)
:= ψ` 7→ ψ`+1 − 2ψ` + ψ`−1.

Finally, we can write the corresponding difference equation according to

(f2∇∆ + f1∆ + f0)ψk` = 0

with f2 ≡ α`−1; f1 ≡ α`+1 − α`−1; f0 ≡ −λk + α`+1 + α`−1

[α`−1∇∆ + (α`+1 − α`−1) ∆ + (α`+1 + α`−1)]ψk` = −λkψk` (3.2.1)

and thus we recover an eigenvalue problem with real (not purely imaginary as
they were originally) operator.
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3.2. The semiclassical limit and geometry of quadrilaterals

3.2.2 Schrödinger-like approach and semiclassical limit

Recalling that momentum operators in quantum mechanics are the generator of
translations, Braun [29] suggested the introduction of a momentum operator in
a discrete setting as the generator of (evenly spaced) shifts, and the associated
exponential map as the shift operator:

ϕ̂ = −i ∂

∂ `
T̂± = e±iϕ̂.

From the three-term relation (3.1.14), using the above definition, we can ex-
tract a Hamiltonian operator. In this way the study of the volume operator
becomes a stationary Schrödinger-like problem for

Ĥ =
(
α`e
−i ϕ̂ + α`+1e

i ϕ̂
)
. (3.2.2)

whose operatorial form will allow a direct inspection of the semiclassical limit.
The system described by the Hamiltonian operator (3.2.2) is one dimen-

sional and (`, ϕ) are the associated canonical coordinates. We should remember
that jis and ` are quantum numbers associated to angular momenta, namely
they would be expressed in units of ~, the Plank constant. The conditions
{ji � 1}4

i=1and ` � 1 denote the regime where macroscopic effects occur. In
particular, we can consider it a consistent semiclassical limit if the operator
acting on a well behaved function is slowly varying, and this is actually the
case:

Lemma 13. In the limit `� 1, α` is a slowly varying function, given by

α`
α`+1

= 1− 3

(
1

`

)
+ 6

(
1

`

)2

+O

((
1

`

)3
)
. (3.2.3)

Lemma 13 allows to replace α` and α`+1 with their midpoint value, so the
Eq. 3.2.2 becomes

Ĥ = α`+ 1
2

(
α`
α`+ 1

2

e−i ϕ̂ +
α`+1

α`+ 1
2

ei ϕ̂

)
≈ α`+ 1

2

(
e−i ϕ̂ + ei ϕ̂

)
. (3.2.4)

Therefore in the continuous limit when {ji � 1}4
i=1 and `� 1 the Hamiltonian

operator (3.2.2) can be associated to the classical Hamiltonian function

H ′ (`, ϕ) = 2α`+ 1
2

cosϕ =

H ′ (`, ϕ) =
cosϕ

`

√
(1 +

1

`
)

F (`+
1

2
; j2 +

1

2
; j1 +

1

2
) F (`+

1

2
; j +

1

2
; j3 +

1

2
)

(3.2.5)

where F (a, b, c) is the Heron’s formula.

27



3. The volume operator and symmetric coupling of SU (2) angular momenta

`

j1 + 1
2

j2 + 1
2

j3 + 1
2

j4 + 1
2

1

2

3

4

`

j1 + 1
2j2 + 1

2

j3 + 1
2

j4 + 1
2

1

2

3

4

Figure 3.2: Planar quadrilaterals associated with α`. Here j1 = 14, j2 = 27,
j3 = 28, j4 = 29; ` = 17

Remark. It is worth to stress that, up to the third order, the expansion (3.2.3)
does not depend on the value of the other parameters {ji}4

i=1 : Lemma 13 does
not need the condition {ji � 1}4

i=1, thus we might think that this condition
is not needed to study the semiclassical regime. Since the range of ` is not
arbitrary but given by (3.1.13), the condition ` � 1 restrict the admissible
values of the parameters {ji}4

i=1. They have to satisfy the conditions min(j1 +
j2 + 1, j3 + j4 + 1)� 1 and max(|j1 − j2|, |j3 − j4|)� 1. In case {ji � 1}4

i=1

the first condition is always satisfied while the second must be imposed. There
are still cases in which this semiclassical limit hold e.g. when j1, j3 � 1 and
j2, j4 /� 1: these cases will be treated in Chapter 5.

3.2.3 Semiclassical geometry of the volume operator

As shown in Chapter 2, the recoupling theory of SU (2) group is pervaded by
Euclidean geometry and the symmetric recoupling is not an exception. The
coefficients α` defined in (3.1.4) and considered as functions of the parameters
{ji}4

i=1 and ` (i.e. α (j1, j2, j3, j4; `)), can be associated with quadrilaterals
represented in Fig.3.2. In fact, if we restrict to values of α` real (that is the
case for the volume operator for SU (2) group), the Heron’s formulas are areas
of two triangles: one with edge lengths j1 + 1

2
, j2 + 1

2
and `; the other with

j3 + 1
2
, j4 + 1

2
and ` (see (3.2.5)). Thus, up to isometries of the plane, four

quadrilateral can be associated to α` (Fig. 3.2) which reduce to two once
conveying that the edge ji and ji+2 (i ∈ N mod 4) share no vertices (namely,
they are opposite). Zeros of α` occur when at least one of the triangle is
degenerate.

The quadrilateral introduced above determines the domain of definition of
the function in the space of parameters {ji}4

i=1: they have to satisfy quadrilat-
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3.2. The semiclassical limit and geometry of quadrilaterals

β

A

BC

D

Figure 3.3: Tetrahedron with dihedral angle β.

eral inequalities. Of course, triangular inequalities set the range of ` to be as
in Eq. (3.1.13).

The volume of a tetrahedron, being a function of six parameters, can be
expressed in several ways. For the tetrahedron in Fig. 3.3 the ’orientated’
volume is given by the well known formula

VABCD =
2

3
AABCAACD

sin (β)

`AC
(3.2.6)

where AABC and AACD are respectively the areas of the triangles ABC and
ACD, `AC is the length of the common edge and β is the dihedral angle
between these two faces. The classical Hamiltonian (3.2.5) (` � 1) is seen to
be necessarily proportional to the Euclidean volume of the tetrahedron up to a
switch of the angular variable. Actually, the two triangles form a quadrilateral
which does not lie in a plane, but rather creased along the edge ` of a dihedral
angle

(
π
2
− ϕ

)
=:β. Adding the edge opposite to `, the quadrilateral becomes

a geometric tetrahedron. Clearly, the two quadrilaterals in Fig. 3.2 would
represent two degenerate cases for the volume of the tetrahedron occurring
e.g. when ϕ = π

2
or ϕ = 3π

2
.

Note that the same geometrical analysis and semiclassical construction hold
had we chosen the binary basis j23 to expand the volume operator. The main
difference is that the two triangles form creasing the quadrilateral along the
other diagonal and thus different triangular relations have to be satisfied.

3.2.4 Equations of motion and potential functions

Now we have the geometrical picture to control and understand the volume
operator in terms of a classical dynamical system.

The classical canonical variables (`, ϕ) obey the Hamilton’s equations

d `

dt
=
∂H ′

∂ϕ
= −2α`+ 1

2
sinϕ

dϕ

dt
= −∂H

′

∂`
. (3.2.7)

During the classical motion, the diagonal ` and the dihedral angle ϕ change
their value preserving the “energy” of the system. The result is a geometric
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3. The volume operator and symmetric coupling of SU (2) angular momenta

configuration (the hall of a tetrahedron, so to speak) changing continuously its
shape but preserving its volume as a constant of motion.

Quantum mechanics extends the domain of the canonical variables to re-
gions of phase space classically not allowed. Boundaries of these regions are
the so-called potential-energy curves particularly important in applications.
They are defined as turning points, namely the points where for each value of
energy the classical “speed” changes sign. From (3.2.7) this happens when the
momentum ϕ is either 0 or π

U+ (`) = H ′ (`, 0) = −U− (`) = H ′ (`, π) = 2α`. (3.2.8)

We will see in the next section that the above conditions define closed curved
in the `-energy plane. These curves have the physical meaning of torsional-like
potential functions viewing the quadrilaterals in Fig. 3.2 as a three dimensional
mechanical systems.

At each value of `, the possible values E ′ of the Hamiltonian are bounded
by

U− ≤ E ′ ≤ U+

and the eigenvalues λk of the quantum system are bounded by

min U− ≤ λk ≤ max U+ (3.2.9)

as proven in [28].

3.2.5 Numerical studies

Through a numerical simulation developed in Python using the SciPy libraries
[58] (in particular NumPy), it is possible to directly explore the behaviour of
the quantum operator (3.2.2). In Fig. 3.4 are reported two example of spectra
of the volume operator. The horizontal lines represent the eigenvalue λk, the
curves are the caustics (the turning points of the semiclassical analysis) defined
in (3.2.8), which limit the classically allowed region (in red U+

` , in blue U−` ).
As can be seen, the eigenvalues are symmetrically distributed with respect

to the E ′ = 0 value (which is itself an eigenvalue if the dimension of the volume
operator is odd) as a consequence of the transformation (3.1.15). This trans-
formation implies also the oscillatory behaviour of the eigenvector associated
to the maximum of the eigenvalues, namely = (−1)`−`min ψ−kmax

` .
The extrema of U+

` and U−` bound the spectrum, as discussed in the pre-
vious section (3.2.9).

Regions of parameter space where the semiclassical limit described in sub-
section 3.2.2 does not apply, manifest irregular behaviour of the potential func-
tions such as the appearance of cusps as documented in Fig. 3.5. We will see
later that this behaviour correspond to particular cases of the parameter space
in which the action of the Regge symmetry is trivial.
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3.2. The semiclassical limit and geometry of quadrilaterals

Figure 3.4: Plot of the spectra of the volume operator, three of the eigenvectors
and potential-energy functions.
Upper: parameters j1, j2, j3, j4=8.5, 10.5, 13.5, 14.5 or s, u, r, v=23.5, -4.5, 1.5,
0.5. (variables s, u, r, v are defined in Chap. 4.) Lower: all four parameters
are doubled. In green the stick graph of the eigenfunctions (unnormalized). In
red U+

` , in blue U−` defined in (3.2.8).
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3. The volume operator and symmetric coupling of SU (2) angular momenta

Figure 3.5: Potential functions U+ and U− are shown for two particular cases.
In the left panel, j1, j2, j3, j4=100.0, 110.0, 130.0, 140.0, v = 0, the so called
“tangential” quadrilateral, while on the right j1 = j2 = j3 = j4 = 120.0 the
“ex-tangential” quadrilateral.
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Chapter 4
Regge Symmetries

In 1958 Regge [44] found that Clebsch-Gordan coefficients possess a discrete
symmetry group of 72 elements, much bigger than the group of 12 elements
which was already known and have a manifest physical meaning. A few months
later, Regge [32] found that also the 6j symbol has a discrete symmetry group
wider than the one we introduced in Chap 2. The new transformations he
introduced are now called Regge symmetries. Since it is possible to consider
any Clebsch-Gordan coefficients as a particular limit of the parameters of the
6j symbols, defining Regge symmetries for the latter is actually sufficient. In
the original notation [32]:{

a b c
d e f

}
=

{
a b+c+e−f

2
b+c+f−e

2

d b+c+f−e
2

b+c−f+e
2

}
=

=

{
a+c+f−d

2
b a+c+f−f

2
c+d+f−a

2
e a+d+f−e

2

}
=

{
a+b+e−d

2
a+b+d−e

2
c

b+d+e−a
2

a+d+e−b
2

f

}
=

=

{
b+e+c−f

2
a+f+c−d

2
a+d+b−e

2
b+f+e−c

2
c+d+f−a

2
a+d+e−b

2

}
=

{
b+c+f−e

2
a+c+d−f

2
a+b+e−d

2
f+e+c−b

2
a+d+f−e

2
d+e+b−a

2

}
.

(4.0.1)

Later, Ponzano and Regge in [3] introduced the asymptotic formula for the
6j symbol (2.1.8). This formula, as reviewed in subsection 2.1.1, links a 6j
with an Euclidean tetrahedron and the classical symmetries of the 6js are just
relabeling of the edges of the Euclidean tetrahedron. The Regge symmetry,
on the other hand, changes the values of the entries of a 6j so it involves
two different tetrahedra (tetrahedra are uniquely determined by them edge
lengths).

Ponzano and Regge found that the two tetrahedra corresponding to two
6js related by a Regge symmetry, have the same volume (in this way they
found a new set of equivolume tetrahedra). Moreover, they proved that the
phase of the asymptotic formula, namely the argument of the cosine in (2.1.8)
(the Regge action for the tetrahedra), is also the same for the two tetrahedra.
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4. Regge Symmetries

Roberts in 1999 [26] recognized that this two properties are sufficient to prove
that two tetrahedra related by a Regge symmetry are scissor congruent1.

To better understand this symmetry we start studying its action on the
geometry of quadrilaterals.

4.1 Definition of Regge symmetry

Let consider a real parameter space of dimension 4, namely the space of vectors
v = (a, b, c, d) .

Definition 14. The Regge symmetry, or Regge transformation, is the map

R : (a, b, c, d) 7→ (s− a, s− b, s− c, s− d) (4.1.1)

where s :=
1

2
(a+ b+ c+ d) , (4.1.2)

s is called the semi-perimeter.

A first interesting feature of this transformation is that it maps integers to
integers and half-integers to half-integers.

Moreover, being the Regge symmetry a linear transformation in the pa-
rameter space, it has a matrix representation which turn out to be very useful
in what follows, namely

R :=
1

2


−1 1 1 1
1 −1 1 1
1 1 −1 1
1 1 1 −1


so that

Rv = v′ =


s− a
s− b
s− c
s− d

 .

R is a symmetric orthogonal matrix (∈ O (4)); its determinant is −1 and it is
obviously an involution, namely

RR = I

For a 6−dimensional parameter space, the case associated with the analysis
of the 6j symbol, the Regge transformation actually keeps a subspace invari-
ant. In fact, the first two lines of the collection of equalities in (4.0.1) can be

1Two polyhedra are scissors congruent if one may be dissected into finitely-many sub-
polyhedra which may be reassembled to form the other.
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4.1. Definition of Regge symmetry

obtained applying by the transformations

R3 :=
1

2


−1 1 1 1 0 0
1 −1 1 1 0 0
1 1 −1 1 0 0
1 1 1 −1 0 0
0 0 0 0 2 0
0 0 0 0 0 2

 R2. =
1

2


−1 1 0 0 1 1
1 −1 0 0 1 1
0 0 2 0 0 0
0 0 0 2 0 0
1 1 0 0 −1 1
1 1 0 0 1 −1



R1 :=
1

2


2 0 0 0 0 0
0 2 0 0 0 0
0 0 −1 1 1 1
0 0 1 −1 1 1
0 0 1 1 −1 1
0 0 1 1 1 −1

 (4.1.3)

acting on the vector ṽ =(a, d, b, e, c, f).
In this vector space, the classical symmetries (associated with the tetrahe-

dral group, see Chapter 2) can be implemented as permutation matrices, e.g.
the exchange of the first and the second column{

a b c
d e f

}
→
{
b a c
e d f

}
reads

P col
12 =


0 0 1 0 0 0
0 0 0 1 0 0
1 0 0 0 0 0
0 1 0 0 0 0
0 0 0 0 1 0
0 0 0 0 0 1

 .

We can easily see that the Regge transformations R2 and R3 are direct conse-
quence of the classical symmetries plus the transformation R1 in (4.1.3) . In
fact it can be easily checked that

R2 = P col
12 R1

(
P col

12

)T
,

and the same holds for R3 once defined the permutation matrix P col
13 which

exchanges the first and the third column. Note that P col
23 is not independent

and can be expressed as P col
23 = P col

13 P
col
12 P

col
13 = P col

12 P
col
13 P

col
12 .

The functional equalities of the 6j written in the last line of (4.0.1) (defin-
ing the associated transformations R4 and R5) cannot be obtained through a
classical symmetry plus a Regge transformation but they would correspond to
a pair of Regge transformations. Introducing the classical symmetry transfor-
mation P row

12 which exchange the rows of two elements

P row
12 B

{
a b c
d e f

}
→
{
d e c
a b f

}
,
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4. Regge Symmetries

the transformation R4 is expressed as

R4 = P col
13 P col

12 P row
12 R1R2 = P col

13 P col
12 P row

12 R1 P
col
12 R1 P

col
12 .

It worth noting that the following commutation relations hold for the Regge
transformations on the six dimensional parameter space:[

P row
ij , Rk

]
= 0

[
P row
ij , P col

ij

]
= 0 ∀i, j, k = 1, 2, 3 (4.1.4)[

P col
lm , Rn

]
= 0 ∀ l,m, n = 1, 2, 3 ∨ l 6= m 6= n 6= l. (4.1.5)

For completeness we report that the matrix R5 is

R5 ∼ R2R1

where the symbol ∼ means: up to classical symmetries acting on the transfor-
mation from the left.

The algebra defined in formula (4.1.4) and (4.1.5) is a matrix realization in
the space of parameters of the symmetry group (with 144 elements) of the 6j
symbol. Regge [32] found that this group is isomorphic to the direct product
of the symmetric group on four and three elements, namely S4× S3 (see [32]).

Using the notation introduced in Definition 14, we can express the 6js in
the last line of (4.0.1) in terms of three semi-perimeters. This simplifies the
formula according to{

s1 − f s2 − d s3 − e
s1 − c s2 − a s3 − b

}
=

{
s1 − e s2 − f s3 − d
s1 − b s2 − c s3 − a

}
where

s1 :=
1

2
(b+ c+ e+ f) , s2 :=

1

2
(a+ c+ d+ f) s3 :=

1

2
(a+ b+ d+ e) .

4.2 The geometry of tetrahedra and associ-

ated

quadrilaterals

The geometry underlying the Regge symmetry has at present no satisfactory
geometric explanation. What follows is an analysis of some basic features
associated with Euclidean aspects of this symmetry. In Chapter 2 we have
described the relation between 6j and the geometry of a tetrahedron. A Regge
transformation as in Definition 14 acts on a subset of the parameter space of
the 6j which corresponds indeed to a quadrilateral (two opposite edges, namely
that they don’t share a vertex, are invariant under the symmetry action).
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4.2. The geometry of tetrahedra and associated
quadrilaterals

a′

b′

c′

d′
a

b

cd

Figure 4.1: On the left, a simple quadrilateral; on the right, a non simple one.

P1

P2

P3

P4

a
b

c d

˜̀
`

α

β

γ
δ

Figure 4.2: Convex quadrilateral

4.2.1 Quadrilaterals and their Regge conjugate

Planar quadrilaterals are quadrilaterals, namely sets of 4 edges and 4 vertices
where each vertex is shared by two edges, embedded in an Euclidean plane and
can be classified in two different categories [59]: simple and not simple (Fig.
4.1). Simple quadrilaterals are those without consecutive edges lying on the
same line (we call the latter degenerate or triangular case) and without two
edges intersecting (these configurations can be better understood as being part
of a degenerate, flattened tetrahedron). All other quadrilaterals in the plane
are termed not simple.

In this section we will consider only simple quadrilaterals.

We have already mentioned that, given four edge lengths, there exist an
infinite number of planar quadrilaterals. In general, they cannot be always
smoothly deformed into each other, so the space of shapes of quadrilaterals is
a very interesting mathematical object (see e.g. [60, 61, 62]).

The (squared) area of the convex planar quadrilateral represented in Fig.
4.2 is given by the Bretschneider’s Formula [63]:
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4. Regge Symmetries

(A1234)2 = (s− a) (s− b) (s− c) (s− d)− a b c d cos2

(
γ + δ

2

)
=

= (s− a) (s− b) (s− c) (s− d)− a b c d cos2

(
α + β

2

)
,

where s = 1
2

(a+ b+ c+ d) is indeed the semi-perimeter. The Regge trans-
formation acting on the edge lengths of this quadrilateral (keeping the angle
γ, δ fixed) is R : (a, b, c, d) 7→ (a′, b′, c′, d′) and we will prove that it gener-
ates another quadrilateral (Sec. 4.2.1.1). This new quadrilateral has the same
semi-perimeter of the previous one and area given by

(A′1′2′3′4′)
2

= abcd− a′b′c′d′ cos2

(
γ + δ

2

)
Therefore the two areas are equal only if (and only if)

a′b′c′d′ = abcd

(a+ b− c− d)(a− b+ c− d)(a− b− c+ d)(a+ b+ c+ d) = 0 (4.2.1)

(this expression will be used and clarified later).

Theorem 15. The action of the Regge transformation on the shape of a planar
quadrilateral with edge lengths (a, b, c, d) and diagonal `, assuming ` fixed, keeps

invariant the second diagonal ˜̀ of the quadrilateral. the semi-perimeter s is
invariant too.

The proof of the theorem is postponed to the end of this section.

An alternative formula for the squared area of quadrilaterals is the Coolidge’s
formula, written in terms of the diagonals of the quadrilateral [63], here re-
casted in a convenient way as

(A1234)2 = (s− a) (s− b) (s− c) (s− d)− 1

4
(ac+ bd)2 +

1

4

(
`˜̀)2

(4.2.2)

Theorem 16. The action of the Regge transformation on the squared area of
a quadrilateral reads

R B (A1234)2 = (A1234)2 + s u r v,

where the new variables u, r and v are defined as follows:
s := 1

2
(a+ b+ c+ d)

u := 1
2

(a+ b− c− d)
v := 1

2
(a− b− c+ d)

r := 1
2

(a− b+ c− d)

. (4.2.3)
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4.2. The geometry of tetrahedra and associated
quadrilaterals

Remark 17. In terms of the new variables (4.2.3), expression (4.2.1) can be
recasted as

a′ b′ c′ d′ − a b c d = s u r v,

and Theorem 16 and expression (4.2.1) together imply that the area of the
Regge transformed quadrilateral coincides with the area of the original one if
at least one of the new variables (4.2.3) is zero.

We will see later further algebraic and geometrical properties of these new
variables and how they are crucial to get insight into the Regge transformation.

Theorem 18. The product of the area of two triangles sharing an edge ` is
invariant under the action of the Regge transformation on its edges, namely

F (a, b, `)F (c, d, `) = F (a′, b′, `)F (c′, d′, `) (4.2.4)

Proof. The term on the right-hand side of the equation (4.2.4), making the
Heron’s formula explicit, reads

1

16
[(2s− a− b+ `) (2s− a− b− `) (−a+ b+ `) (a− b+ `)×

× (2s− c− d+ `) (2s− c− d− `) (−c+ d+ `) (c− d+ `)]1/2 =

=
1

16
[(c+ d+ `) (c+ d− `) (−a+ b+ `) (a− b+ `)×

× (a+ b+ `) (a+ b− `) (−c+ d+ `) (c− d+ `)]1/2

that coincides with the left hand side.

4.2.1.1 Quadrilateral inequalities

From here on, we generalize our analysis to not necesarily planar quadrilateras,
namely quadrilaterals embedded in Euclidean space with dimension d ≥ 3.

Given four real numbers, they cannot in general be associated to the edge
lengths of a quadrilateral because they have to satisfy the quadrilateral in-
equalities [64, 30], namely an edge length cannot be larger than the sum of
all the other edge lengths (actually, this is true for any polyhedron in Eu-
clidean spaces of any dimension). Let’s denote the real numbers {li}4

i=1: the
quadrilateral inequality reads

lj ≤
4∑
i=1
i 6=j

li ⇒ lj ≤ p− lj ⇒ lj ≤ s j = 1, ..., 4 (4.2.5)

where p is the perimeter and s the semi-perimeter. If the four real num-
bers {li}4

i=1 which satisfy (4.2.5) are changed by a Regge transformation into{
lRi
}4

i=1
= R.{li}4

i=1, these new quantities can be associated to another quadri-

lateral, in fact lRj = s− lj ≤ s, and this holds if {li}4
i=1 are positive.
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4. Regge Symmetries

4.2.1.2 A convention

It is now convenient to introduce a convention for the labels associated to
the edges of the quadrilaterals. This convention will simplify (with no loss of
generality) all calculations in the next sections.

• Assume we have four edge lengths {li}4
i=1 and the following “opposition

relation”: edge i is opposed to edge j = i + 2, mod 4. Let’s call{
lRi
}4

i=1
:= R . {li}4

i=1 with the same opposition relation. Define

a := min
(
{li}4

i=1 ,
{
lRi
}4

i=1

)
(4.2.6)

and denote the Regge transformed edge length by a′ = s − a. In this
way we choose to associate unprimed labels with edges of the quadrilat-
eral having the shorter edge . Primed letters are assigned to the Regge
transformed edges.

• The second step consists in associating the label c to the edge opposite
to a (from here on, with an abuse of language, we will use the label of
the edge also to express its edge length).

• Finally, d is chosen to be the edge with maximum length between the
two remaining edges.

So we have the following set of inequalities

a ≤ b ≤ d ≤ s,

where s = 1
2

(a+ b+ c+ d) and in particular the last inequality derives from
(4.2.5).

Theorem 19. Given a, b, d and adopting the convention above, c is con-
strained by

d− (b− a) ≤ c ≤ d+ (b− a) (4.2.7)

Proof. From (4.2.6) we have that c′ ≥ a and d′ ≥ a (constraints given by b′ ≥ a
are weaker).

a+ b− c+ d ≥ 2a⇒ c ≤ d+ b− a
a+ b+ c− d ≥ 2a⇒ c ≥ d− b+ a

The quadrilateral depicted in Fig. 4.2 is labeled following the above con-
vention.

Note that we can also write (4.2.7) in the form b′ ≤ c ≤ a′. If c is not in this
range we simply have that (4.2.6) is not true, thus we are not really applying
the convention. Another trivial consequence of the convention is that

a′ ≥ b′ ≥ d′.

We will see in the next subsection that the constraints on c, having considered
also the Regge transformed quadrilateral, are crucial in the search for further
geometric features.
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4.2. The geometry of tetrahedra and associated
quadrilaterals

4.2.1.3 Triangular inequalities

In section 3.2.3 we have been interested in quadrilaterals embedded in three
dimensional Euclidean space formed by two triangles sharing an edge. Here we
revise the analysis in [30] in terms of the convention 4.2.1.2 to study the not
planar quadrilateral and which are the constraints its edges have to satisfy. To
this end, consider the two triangles {a, b, `} and {c, d, `} glued together along
the edge ` and assume a opposite to c.

Here we require that a, b, c, d respect the convention introduced in the pre-
vious subsection and we will see later how to make it completely general,
namely true also in the cases which do not comply with the convention itself.
If we complete the tetrahedron with the edge ˜̀, the same quadrilateral can be

formed by two different triangles
{
d, a, ˜̀} and {b, c, `}, still with a opposite to

c.
Triangular inequalities constrain the edges ` and ˜̀ to be

`min ≤ ` ≤ `max˜̀
min ≤ ˜̀≤ ˜̀max

where

`min = max (|b− a|, |d− c|) ; `max = min (b+ a, c+ d)˜̀
min = max (|c− b|, |d− a|) ; ˜̀

max = min (c+ b, d+ a) .

Thus for `min we have b − a > d − c which can be read in terms of primed
lengths a′ − b′ > c′ − d′.

Theorem 20. `min = b− a and `max = b+ a

Proof. In our convention b > a so we have{
b− a > d− c if d > c

b− a > c− d if c > d

using (4.2.7) we get {
d− c < b− a
c− d < b− a

⇒ |d− c| ≤ b− a.

while b+ a < c+ d by definition.

Theorem 21. ˜̀min = d− a and ˜̀max = d+ a
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4. Regge Symmetries

Proof. In our convention d > a so we have{
c− b < d− a c > b

b− c < d− a c < b
⇒

{
c− d < b− a c > b

b+ a < d+ c c < b.

The first is line is always satisfied by (4.2.7) while the second one is granted
by definition.

As a consequence of Theorems 20 and 21 we have that both the ranges of
` and ˜̀are given by 2 a .

Appendix: proof of Theorem 15

Proof. The area of a convex planar quadrilateral in terms of its edges and
a diagonal ` is simply the sum of the areas of the two triangles F (a, b, `) +
F (c, d, `) and must be equal to (4.2.2), so that

(A1234)2 = F (a, b, `)2 + F (c, d`)2 + 2F (a, b, `)F (c, d`) =

= (s− a) (s− b) (s− c) (s− d)− 1

4

(
ac+ bd+ `˜̀) (ac+ bd− `˜̀) .

Since it is possible to write ˜̀as

˜̀2 = − 8

`2
F (a, b, `)F (c, d`) +

− 1

2`2

(
(a− b)(a+ b)(c− d)(c+ d) +

(
a2 + b2 + c2 + d2

)
`2 − `4

)
,

We get

(a+ b) (c+ d) = (a′ + b′) (c′ + d′)

a2 + b2 + c2 + d2 = a′2 + b′2 + c′2 + d′2 = v2 (4.2.8)

which implies that ˜̀ is invariant under the Regge transformation.

4.2.2 The tetrahedron and its Regge conjugate

Let’s see now how the Regge transformation acts on a tetrahedral shape. For-
mulas (4.0.1) and the association between 6j symbol and an Euclidean tetrahe-
dron tell us that any Regge transformation acts on four edges of a tetrahedron
keeping a pair of opposite edges unchanged. The Regge-transformed tetrahe-
dra is called ‘conjugate’ for the reason explained in the next section.

Theorem 22. Consider a tetrahedron with edge lengths
(
a, b, c, d; `, ˜̀). The

dihedral angle at the edge `, denoted Θ`, between two triangles {a, b, `} and
{c, d, `} is invariant under the action of the Regge transformation

R1 B
(
a, b, c, d; `, ˜̀) =

(
s− a, s− b, s− c, s− d; `, ˜̀) .
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4.3. Quaternionic parametrizations and Regge symmetries

Proof. The proof of the theorem follows from a direct calculation made with a
computer algebra system (Mathematica) and using the formula for the cosine
of the dihedral angle as function of the internal angles of the three triangles
insisting on a vertex of the tetrahedra

cos Θ` =
cosϕa` cosϕd` − cosϕad

sinϕa` sinϕd`
,

where the angle ϕij is the angle between edge i and edge j and its cosine
can be expressed as a function of the squared edge lengths using the law of
cosines.

Theorem 23. The volume of a tetrahedron is invariant under the Regge trans-
formation of four consecutive edges.

Proof. Four consecutive edges belonging to a tetrahedron have to form a poly-
gon. Indeed it is a quadrilateral composed of two triangles hinged at the edge `
which is invariant under the Regge transformation. For Theorem 22, we know
that its dihedral angle is kept invariant by the Regge transformation and for
Theorem 18, it is also true for the product of the areas of the two triangles.
Finally, using the formula for the volume introduced in the previous chapter
(3.2.6) we have proved the invariance.

4.3 Quaternionic parametrizations and Regge

symmetries

4.3.1 New variables

In (4.2.3) we have introduced a new set of variables playing the role of param-
eters for the quadrilateral. Here we study their behavior under the action of
the Regge transformation. Recall that

s = (a+ b+ c+ d)/2

u = (a+ b− c− d)/2

v = (a− b− c+ d)/2

r = (a− b+ c− d)/2 , (4.3.1)

where the semi–perimeter s of the quadrilateral has been already explicitly
introduced. This transformation, in the four dimensional parameter space
v = (a, b, c, d), is associated with the matrix

W =
1

2


1 1 1 1
1 1 −1 −1
1 −1 −1 1
1 −1 1 −1

 (4.3.2)
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4. Regge Symmetries

namely,
W v = u := (s, u, v, r) .

W is a symmetric and orthogonal matrix; its determinant is 1 and it is an
involution, thus belonging to the real orthogonal group SO(4).

The action of the Regge transformation on the new variables can be eval-
uated acting adjointly on the matrix R

W RW T =: Q = diag (1,−1,−1,−1) (4.3.3)

thus getting R B u = u′ := (s,−u,−v,−r) .

Remark. The area of a quadrilateral expressed in formula (4.2.2) parametrized

by the new variables (s, u, v, r) and having diagonals ` and ˜̀ simplifies to

(A1234)2 =
1

4

(
`˜̀)2

− 1

4
(r s+ u v)2.

Adopting the convention of Subsection 4.2.1.2 on the parameter space, it
is possible to study the allowed ranges of the new variables. It is possible to
use the constraint on c to simplify the system of inequalities to get

umin =
1

2
(amin + bmin − cmax − dmax) =

1

2
(2amin − 2dmax) = −dmax

umax =
1

2
(amax + bmax − cmin − dmin) =

1

2
(2bmax − 2dmin) = 0

vmin =
1

2
(amin − bmax − cmax + dmin) =

1

2
(2amin − 2bmax) = −dmax

vmax =
1

2
(amax − bmin − cmin + dmax) =

1

2
(amax − amax) = 0

rmin =
1

2
(amin − bmax + cmin − dmax) =

1

2
(2amin − 2bmax) = −dmax

rmax =
1

2
(amax − bmin + cmax − dmin) =

1

2
(amax − amax) = 0.

Therefore the new variables for a quadrilateral having the shorter edge are
bounded by zero from above and −d below. For the Regge conjugate one, the
quantities are positive definite .

4.3.2 Conjugate quaternions

The diagonal action of Regge transformation Q in (4.3.3) suggests a straight-
forward interpretation in terms of ’conjugation’ of quaternions. Recall that
the algebra of quaternions H is built by endowing R4 with the orthonormal
Hamilton basis (e, i, j, k) defined by the properties i2 = j2 = k2 = −ijk = −e,
where e is a unit element. If Q is a quaternion with Q = q0e+ q1i+ q2j+ q0k,
then the conjugate of Q is

Q̄ = q0e− q1i− q2j− q3k (4.3.4)
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4.4. Regge symmetry for the volume operator

and

Q̄Q = QQ̄ = (q2
0 + q2

1 + q2
2 + q2

3)e ≡ |Q|2e, (4.3.5)

where |Q| = +(q2
0 + q2

1 + q2
2 + q2

3)1/2 is the modulus of Q. Thus every non–zero
quaternion has an inverse given by Q−1 = Q̄· |Q|−2.

It is possible to establish an isomorphism between the space of the parame-
ters of quadrilaterals and a suitable subspace of the quaternion space. In fact,
we should remember that the parameters have to satisfy quadrilateral inequal-
ities, restricting thus the space of possible quaternions. In terms of the new
variables (4.3.1) a quadrilateral quaternion is defined as

Q = s e + u i + v j + r k

and the Regge transformed quadrilateral will be nothing but the conjugated
quaternion Q̄.

Note that both the semi-perimeters and the modulus

|Q|2 = s2 + u2 + v2 + r2 = a2 + b2 + c2 + d2

are Regge invariant because in the parameter space the norm is preserved
according to (4.2.8).

The adjective “conjugate” used for the geometric entities and quantities
(quadrilaterals areas,...) associated with primed parameters, is now fully jus-
tified.

4.4 Regge symmetry for the volume operator

In the previous chapter, we have defined the volume operator and we have
seen its asymptotic relation with the volume of a tetrahedron embedded in
Euclidean 3-space. In Theorem 23 we have proven the invariance the volume
of a tetrahedron under Regge transformation, so the semiclassical limit of the
volume operator will be invariant under Regge transformation too. Here we
will see that this asymptotic symmetry extend also at the quantum level.

To complete the proof of the existence of a full Regge invariance on the
original eigenvalue problem (3.1.5) for the volume operator K, the following
theorem holds true.

Theorem 24. Regge symmetry is a symmetry of the volume operator, namely

K

∣∣∣∣ j1 j2

j3 j4
; k

〉
= K

∣∣∣∣ s− j1 s− j2

s− j3 s− j4
; k

〉
= λ (k)

∣∣∣∣ j1 j2

j3 j4
; k

〉
where s =

1

2

4∑
i=1

(
ji +

1

2

)
. (4.4.1)
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4. Regge Symmetries

Proof. Se need to prove that the matrix representation (3.1.3) of the volume
operatorMJ12J12 (K) ≡ 〈j′12 |K| j12〉 is invariant. The basic request is that the
matrix dimensions coincides, and this is true because the dimension D×D of
the matrixMJ12J12 (K) is fixed by the inequalities (3.1.13). More precisely, we
have already mentioned in Sec. 4.2.1.1 the strict analogy between the volume
operator and the quadrilateral geometry. Thus inequalities (3.1.13) can be
understood as constraints on the length ` of a diagonal of the quadrilateral with

edge lengths
{
ji + 1

2

}4

i=1
, so that the problem is equivalent to the discussion

in subsection 4.2.1.3 and we get

D = 2 min

({
ji +

1

2

}4

i=1

,

{
j′i +

1

2

}4

i=1

)
,

obviously invariant under Regge transformation.
The second step is to prove that the coefficients of the matrix (3.1.4) are

the Regge symmetric, namely

α (j1...j4; `) = α (j′1...j
′
4; `) .

This is straightforward on the basis of Theorem 18 because α (j1...j4) is propor-
tional to the product of the areas of two triangles sharing the given edge.

As a corollary of the previous theorem we have that the three-term recur-
rence relation (3.1.14) namely

λk Ψk
` + i α `+1 Ψk

`+1 − i α ` Ψk
`−1 = 0 (4.4.2)

and its boundary conditions are both invariant under Regge transformation.
So we have finally proved that Regge symmetry is also a symmetry of the

volume operator and consequently also of its eigenvalues. This generates an
equivalence between two physically different systems which are indistinguish-
able from them spectrum. This analysis led us to find also a new relation
between quadrilaterals and quaternions where Regge symmetry plays the cen-
tral role of quaternionic conjugation.

In the next two figures [65] pictorial representations of the quadrilateral
configurations are given, together with a concise review of the content of the
current chapter.

46



4.4. Regge symmetry for the volume operator

`

J1J2

J3

J4

J ′4
J ′3

J ′2

J ′1

u1

2

3

4
2′

4′

Figure 4.3: A quadrilateral and its Regge-conjugate illustrating the elementary
spin network representation of the symmetric coupling scheme: each quadri-
lateral is dissected into two triangles sharing, as a common side, the diagonal
`. The other sides are of length Ji = ji + 1/2 (and J ′i = j′i + 1/2); `, which
is the discrete variable in Eq. (4.4.2), is shown as the distance between foci
1 and 3 of the confocal ellipses where the vertices of the quadrilaterals lie.
The two sets of four side lengths of the Regge conjugate quadrilaterals are ob-
tained by reflection with respect to the common semiperimeter s (Eq. (4.4.1)).
This relationship can be interpreted either as concerted stretchings and short-
enings by the parameter r = (j1 − j2 + j3 − j4)/2 introduced in [66], or by
v = (j1 − j2 − j3 + j4)/2 occurring in the projective interpretation of Robin-
son [67]. Shown is also the difference between the semimajor axes of the two
ellipses, u = (j1 + j2 − j3 − j4)/2. Signs are decided according to the choice
of primed and unprimed quadrilaterals. Also, u and v would exchange their
roles had we chosen the other diagonal ˜̀as the variable ` . In Eq. (4.3.3) the
orthogonal nature of this set of transformations is exhibited explicitly by the
matrix W . The passage to the Regge conjugate configuration (s,−u,−r.− v)
is revealed as a quaternionic conjugation, motivating our nomenclature.

47



4. Regge Symmetries

π

2
+ ϕ

π

2
+ ϕ

`
J1

J2

J3

J4

J ′4

J ′3

J ′2
J ′1

u
1

2

3

4

2′

4′

Figure 4.4: The two quadrilaterals of Fig. 4.3, looked at as a mechanical
system, evolve creasing the pairs of triangles in which are dissected along `,
according to a torsion mode corresponding to the same dihedral angle π

2
+ ϕ

in both cases. Adding the edges 24 and 2′4′ two tetrahedra having the same
volume can be visualized. In fact, their volume is proportional to H of Eq.
(3.2.7) which is the product of the areas of two triangles divided by the length
of the hinging edge times the sine of the dihedral angle. Thus classically the
volume is an energy function which is a constant of motion along the classical
trajectories which are solutions of the Hamilton equations d`

dt
= ∂H

∂ϕ
; dϕ
dt

= −∂H
∂`

.

Indeed, edges 24 and 2′4′ would have the same length ˜̀= j23 had we chosen
to expand the volume operator in the basis of J23 = J2 + J3 : two different
confocal ellipses would describe the system and the vertices 2, 4 would coincide
with 2′, 4′ as the foci of the new ellipses. On the other hand, vertices 1 and 3
would split to give 1′ and 3′, say, lying on the new ellipses and belonging either
to a quadrilateral or to its conjugate.
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Chapter 5
Discrete polynomials families
from generalized coupling

In Chapter 3 we have seen that eigenstates of the volume operator, conveniently
expanded in the j12 basis, satisfy a three terms recurrence relation of the form

λk ψ
k
` + α `+1 ψ

k
`+1 + α ` ψ

k
`−1 = 0. (5.0.1)

In this chapter we will see that we can associate with the volume operator a set
of orthogonal polynomials. These polynomials have a behaviour which mimics
that of classical polynomials of hypergeometric type. The Askey scheme orga-
nizes [42] the classical polynomials of hypergeometric type into a hierarchical,
graph-like structure where each node is a particular polynomial while links
are limiting process. In other words, one can reach each node of the scheme
starting from the Racah polynomial and descending the hierarchy by suitable
limits of their variables.

We have seen in Chapter 3, Equation (3.1.10), that eigenfunctions of vol-
ume operator can be seen as suitable factorizations of 6j symbols. Since Racah
polynomials are 6j symbols (up to a phase), we expect that also polynomials
associated with the volume operator belongs to some (possible enlarged) hy-
pergeometric type.

5.1 Definition of the polynomials

According to Favard’s theorem [57], any three-terms recurrence relation of the
form (5.0.1) defines polynomials which are necessarily orthogonal on (suitable
subsets of) the real axis.

Instead of using Eq. (5.0.1), we find it much more insightful to eliminate
the square roots in order to get an unsymmetrical three-term recursion with
polynomial coefficients. In other words we are looking for a three-term recur-
rence relation of the form

X`−1c`−1 + Y`c` + Z`+1c`+1 = 0 (5.1.1)
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5. Discrete polynomials families from generalized coupling

Figure 5.1: The Askey-scheme represented as the graph. Each arrow is a limit
in the space of parameters. Here only the part of the scheme involving the
recoupling theory of angular momenta is reported.[68]

where X, Y and Z are polynomials and do not contain square roots anymore.
We rewrite c` as Q`g` := c` which gives(

X`−1
Q`−1

Q`

)
g`−1 + Y`g` +

(
Z`+1

Q`+1

Q`

)
g`+1 = 0.

If we require a symmetric structure like the one in (5.0.1) we would have1

G` g`−1 + Y` g` +G`+1 g`+1 = 0 ⇒ X`−1
Q`−1

Q`

= Z`
Q`

Q`−1

,

where the last equality represent a two-terms recurrence relation that can be
solved analytically and reads √

X`−1

Z`
=

Q`

Q`−1

(5.1.2)√
Z`X`−1 g`−1 + Y`g` +

√
Z`+1X` g`+1 = 0. (5.1.3)

We see that the symmetrization process generates coefficients with square

1this is the same philosophy behind the symmetrization algorithm proposed in [69, 68]and
[70].
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5.1. Definition of the polynomials

roots and we can recognize that in (5.1.3) the coefficients are

G` = α` =
√
Z`X`−1 =

√
F 2
(
`, a+ 1

2
, b+ 1

2

)
F 2
(
`, c+ 1

2
, d+ 1

2

)
(2`+ 1) (2`− 1)

(5.1.4)

G`+1 = α`+1 =
√
Z`+1X` =

√
F 2
(
`+ 1, a+ 1

2
, b+ 1

2

)
F 2
(
`+ 1, c+ 1

2
, d+ 1

2

)
(2`+ 3) (2`+ 1)

and
g` = ψk`; Y` = k,

so that (5.0.1) can be rewritten according to the updated convention.
On the other hand, if we are interested in writing a polynomial recurrence

relation, we can undo the symmetrization and arbitrarily choose Z` and X`

(a factorization of the original coefficients α`). However, the final asymmetric
three terms recurrence relation will not be unique.

5.1.1 Regge invariance

Among all the possible factorizations
√
Z`X`−1 in (5.1.4) of the coefficient α`

defined in (3.1.4), we choose one which preserves the Regge-invariance of the
three-terms recurrence relation. Namely, we ask that the new coefficients X`

and Z` are invariant under the action of the Regge transformation. In this way
the new three-term recurrence relation will be automatically Regge invariant
and so will be its solutions. The numerator of α`

F 2

(
`, a+

1

2
, b+

1

2

)
F 2

(
`, c+

1

2
, d+

1

2

)
admits a Regge invariant factorization:[

(A+B)2 − `2
] [

(C +D)2 − `2
] [

(B − A)2 − `2
] [

(D − C)2 − `2
]

where A, ..., D = a+ 1
2
, ..., d+ 1

2
.

This factorization can be interpreted geometrically once recognized that a
combination of the parameters can be seen as the squared Heron formula[
(A+B)2 − `2

] [
(C +D)2 − `2

]
= F 2 (α, β, `) =

[
(α + β)2 − `2

] [
(α− β)2 − `2

][
(B − A)2 − `2

] [
(D − C)2 − `2

]
== F 2 (γ, δ, `) =

[
(γ + δ)2 − `2

] [
(γ − δ)2 − `2

]{
(A+B) = (α + β)⇒ α = 1

2
(A+B + C +D) =: s

(C +D) = (α− β)⇒ β = 1
2

(A+B − C −D) =: u

The parameters s, u, together with r, v below, are those found in connection
with quaternionic representation given in section 4.3.{

(B − A) = (γ + δ)⇒ γ = 1
2

(−A+B − C +D) =: −r
(D − C) = (δ − γ)⇒ δ = 1

2
(−A+B + C −D) =: −v
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5. Discrete polynomials families from generalized coupling

Finally we can choose

X̃` =
F 2 (s, u, `)

(2`− 1)
Z̃` =

F 2 (r, v, `)

(2`+ 1)
Y` = −k (5.1.5)

√
X̃`−1

Z̃`
=

Ñ`

Ñ`−1

=

√
F 2 (s, u, `− 1) (2`+ 1)

F 2 (r, v, `) (2`− 3)

F 2 (s, u, `− 1)

(2`+ 1)
pk`−1 +

F 2 (r, v, `+ 1)

(2`− 1)
pk`+1 = kpk` ,

obtaining thus a new non-symmetric three-terms recurrence relation for the
volume operator:

F 2 (s, u, `− 1) (2`− 1) pk`−1 + F 2 (r, v, `+ 1) pk`+1 (2`+ 1) = k
(
4`2 − 1

)
pk` .

(5.1.6)
The latter is a three-terms recurrence relation built to be polynomial in ` and
in the quaternionic parameters, and its solutions are related with the solutions
of the eigenvalue equation by

pk` = N`ψ
k
`

where N` is the solution two-terms recurrence relation

N` =

√
F 2 (s, u, `− 1) (2`+ 1)

F 2 (r, v, `) (2`− 3)
N`−1.

5.2 Algebraic approach to the Askey-scheme

5.2.1 Quadratic symmetry algebras

Following [71, 72], the quantum version of a classical dynamical algebra asso-
ciated with a pair of ‘mutually integrable’ dynamical variables calls into play
a triple K1, K2, K3 of linear operators acting on a (suitably defined) Hilbert
space with K1,2 Hermitian and algebraically independent and K3 := [K1, K2]
anti–Hermitian. The request that these generators do fulfill the Jacobi identity
constrains the fundamental commutation relations to be of the form ({ , } is
the anticommutator)

[K1, K2] = K3

= 2RK2K1K2 + A1 {K1, K2}+ A2K
2
2 + C1K1 +DK2 +G1 (5.2.1)

= 2RK1K2K1 + A1K
2
1 + A2 {K1, K2}+ C2K2 +DK1 +G2 ,

where R,A1,2, C1,2, D,G1,2 are real parameters (the structure constants) and
the right–hand sides of the last two relations contain only Hermitian terms.
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5.2. Algebraic approach to the Askey-scheme

Such a kind of algebraic structures was actually introduced by Sklyanin [73]
and they are called ‘quadratic’ algebras for the obvious reason that the commu-
tators (Poisson brackets in the classical cases) are combinations of quadratic
(and linear) terms in each of the generators. Mutual integrability is a sharper
requirement with respect to the original formulation, and amounts to look at
the symmetry algebra as a dynamical one –where K1 is a constant of the mo-
tion for K2 taken as the Hamiltonian operator, as well as the other way around.
Further improvements in the the study of classical, quantum and q-deformed
symmetries along these lines have been provided over the past few decades by
a number of authors. Often the admissible structures associated with (5.2.1)
and listed in the table below [71] are referred to as ‘Zhedanov’s algebras’ in
the literature. Note that for completeness the last line includes the two ‘stan-
dard’ Lie algebras on three generators (whose commutation relations are by
definition linear).

Classification of quadratic algebras

R A1 A2 C &D

AW(3) (Askey–Wilson) * * * *
R(3) (Racah) 0 * * *
H(3) (Hahn) 0 0 * *
J(3) (Jacobi) 0 0 * 0
Lie algebras: 0 0 0 *
su(2), su(1, 1)

The denominations of the algebras, Askey–Wilson, Racah, ..., are strongly
reminiscent of the Askey–Wilson scheme of hypergeometric orthogonal poly-
nomials of one (continuous or discrete) variable [42]. This is not accidental:
rather, this remark turns out to be crucial in order to recognize the deep con-
nection between algebraic symmetries of (quantum) systems and special func-
tion theory in a quite straightforward way. Indeed the ‘overlap functions’ stem-
ming from the analysis of the eigenvalue problems for the operators K1, K2, K3

which generate the quadratic algebras are, under mild conditions, orthogonal
families of Wilson, Racah, Hanh, Jacobi, ..., Hermite polynomials. In what
follows an account of a few technical details is given for the case of the Racah
algebra R(3) which corresponds to set R = 0 in (5.2.1).

Suppose that the Hermitian operators K1 and K2 –defined on a separable
Hilbert space and possibly depending on a same (finite) set of real parameters–
are both ladder operators, namely possess discrete, evenly–spaced spectra, and
start considering the eigenvalue problem for K1

K1 ψp = χp ψp , p = 0, 1, 2, . . . with χp+1 = χp + 1 . (5.2.2)
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5. Discrete polynomials families from generalized coupling

Then it can be easily shown that the operator K2 is tridiagonal in this basis

K2 ψp = ap+1 ψp+1 + ap ψp−1 + bp ψp (5.2.3)

and, similarly, by exchanging the role of K1 and K2, one would get

K2 φs = µs φs, s = 0, 1, 2, . . . with µs+1 = µs + 1 (5.2.4)

and

K1 φs = cs+1 φs+1 + cs φs−1 + ds φs . (5.2.5)

The (real) matrix coefficients a, b, c, d can be evaluated explicitly in terms
of the commutation relations (5.2.1) and contain also the parameters which
the operators may depend on (such parameters are dropped in the present
simplified treatment aimed to point out the overall structural properties). Once
chosen suitable normalizations for the two sets of eigenbases (5.2.2) and (5.2.4),
it is possible to introduce two families of overlap functions by resorting to
the Dirac braket convention (in which for instance < x|ψ > stands for the
eigenfunction |ψ > of a system in the position representation)

< φs |ψp >≡< s |ψp >≡< s |p > and < ψp |φs >≡< p |φs >≡< p |s >
(5.2.6)

which are both hypergeometric orthogonal polynomials of one discrete variable
(the spectral parameter µs and χp respectively) to be identified, up to suitable
rearrangements of the hidden parameters, with the Racah polynomial on the
top of the Askey scheme [42].

In the K1–eigenbasis the operator K3 satisfies

K3 ψp = (χp+1 − χp) ap+1 ψp+1 − (χp − χp−1) ap ψp−1 , (5.2.7)

where eigenvalues χ and matrix elements a are iteratively evaluated from
(5.2.2) and (5.2.3). K3 has a discrete, in general not evenly–spaced spectrum
found as a solution of

K3 ϕn = νn ϕn, n = 0, 1, 2, . . . . (5.2.8)

It is worth noting that in general the diagonalization of K3 cannot be carried
out analytically, except in a few cases in which at least the lowest eigenvalues
turn out to be representable in closed algebraic forms. The associated families
of (normalized) overlap functions are denoted

< ϕn |ψp >≡< n|p > and < ψp |ϕn >≡< p|n > (n = 0, 1, 2, . . . ; p = 0, 1, 2, . . . )
(5.2.9)

and can be shown to be orthogonal (on different suitably defined lattices), each
depending on one discrete variable, but in principle they might not be included
into the Askey scheme.
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5.2. Algebraic approach to the Askey-scheme

Similarly, other two families of (normalized) overlap functions associated with
the pair K2, K3 can be defined by notation consistency as

< ϕn |φs >≡< n|s > and < φs |ϕn >≡< s|n > (n = 0, 1, 2, . . . ; s = 0, 1, 2, . . . ).
(5.2.10)

A crucial feature of the Racah algebra R(3) and associated overlap func-
tions is the duality property. It relies on the following transformation of the
generators

K1 � K2 ; K3 → −K3 (5.2.11)

which can be easily shown to represent an automorphism of the Racah algebra
R(3). The notion of duality is extended to (all of) the sets of overlap functions
introduced above. More precisely

• i) Under the automorphism (5.2.11) the discrete, evenly–spaced variables
of the two hypergeometric families of overlap functions associated with
K1, K2 given in (5.2.6) and their degrees as polynomials are interchanged.
Since in the present case the operator K3 is not called into play, the
stronger property of ‘self–duality’ of these families holds true: both of
them are recognized as Racah polynomials, as already mentioned above.

• ii) Referring to the families in (5.2.9), under the automorphism (5.2.11)
the discrete, not evenly–spaced spectral variable νn of the first family,
which is orthogonal on the evenly–spaced lattice p = 0, 1, 2, . . . , is turned
into the second family, where the variable is p and the polynomial degree
is given in terms of the labels n = 0, 1, 2, . . . of the eigenvalues of K3.
A similar property is shared by the families associated with the pair
K2, K3 given in (5.2.10).

More details on the nature of the automorphism group and on the statements
about the overlap functions will be reported in the next section when dealing
with a specific ‘realization’ of the Racah algebra.

5.2.2 Generalized recoupling theory, Regge symmetry
and duality

The realization of the Racah algebra R(3) within the setting of generalized
SU(2) recoupling theory was actually the issue addressed originally in [72]
which has inspired further work on quadratic algebras. Combining the defini-
tions and notation of section 5.2.1 with those of Chapter 3 it is straightforward
to recognize the following correspondence

K1 = J2
12 ; K2 = J2

23 ;

K3 = [J2
12,J

2
23] = −4iJ1 · (J2 × J3) ≡ −4iK (5.2.12)

between the abstract ordered set of operators K1, K2, K3 and its realization as
J2

12, J2
23 , K.
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5. Discrete polynomials families from generalized coupling

The next step would consist in associating eigenvalue equations and three–
term recursion relations of the abstract approach with their realizations in
generalized quantum (re)coupling theory. Here we do not enter into much
details about this matter since the translation of (5.2.3) based on the pair
K1, K2 represents the three–term recursion relation for the 6j coefficient in
disguise (see e.g. [40]). The analysis for the pair K1, K3 which gives the
abstract three–term relation as written in (5.2.7) is examined in details in [12]
(and references therein) while its symmetrized counterpart is nothing but the
discretized Schrödinger–like equation displayed already in (3.2.2) [65].

Focusing on the specific issue regarding the families of solutions of such
relationships, one would directly be lead to establish the correspondence

overlap functions −→ binary and symmetric recoupling coefficients ,
(5.2.13)

where the arrow stands for the specific realization (5.2.12) of R(3). To achieve
this goal in a transparent and consistent way a few more steps are needed,
the first one of which consists in establishing suitable notations for all of the
recoupling coefficients. The 6j symbol in (2.1.5) and the functions Ψ

(k)
` in

(3.1.6) are thus denoted and defined respectively as

< j23 | j12 >≡< ˜̀| ` > and Ψ
(k)
` :=< ` | k > . (5.2.14)

Actually this is not a mere question of notation, since in this way the objects
< •|◦ > may reveal their ‘double’ meaning as i) quantum mechanical transition
amplitudes, namely the square modulus | < •|◦ > |2 is the probability that
a system, prepared in the state |◦ >, be measured to be in the state |• > ;
ii) eigenfunctions of the operator whose quantum number is in |◦ > in the
representation labeled by the eigenvalue of the other operator, namely through
the projection onto < •| . The latter interpretation will be under focus in what
follows and more details about the correspondence (5.2.13) can be worked
out by introducing explicitly the (so far ignored) parameters of the problem.
Upon replacement of the original (ordered) set of labeling of the four angular
momenta forming a quadrilateral according to

( j1, j2, j3, j4 ) 7→ ( a, b, c, d ) , (5.2.15)

the functionals are rewritten as

< ˜̀| ` > (a, b, c, d) ∝
{
a b `

c d ˜̀} and Ψ
(k)
` (a, b, c, d) =< ` | k > (a, b, c, d) .

(5.2.16)
Recall that geometrically the first functional is associated with a tetrahedron
(` and ˜̀ being a pair of opposite edges) and the second one to a quadrilat-

eral (actually two triangles hinged by one of its diagonal, ` or ˜̀) bounding,
so to speak, a portion of volume of amount λk, the eigenvalue of the volume
operator given in (3.1.11). In order to select in a convenient way the Hilbert
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5.2. Algebraic approach to the Askey-scheme

space on which the volume operator acts and all the functionals above can be
defined consistently, the role of Regge symmetries, originally introduced for
the 6j [32], is crucial. Such symmetries in their original formulation are recog-
nized as functional relations on the arguments (namely they cannot be derived
by interchanging the 6j arguments as happens for the so–called ‘classical’ or
tetrahedral symmetries) and read{

a b `

c d ˜̀} =

{
s− a s− b `

s− c s− d ˜̀} :=

{
a′ b′ `

c′ d′ ˜̀
}
, (5.2.17)

where s = (a+b+c+d)/2 is the semi–perimeter of the parameter quadrilateral
and in the last equality the new set (a′, b′, c′, d′) is defined. It can be checked
that the total number of classical and Regge symmetries is 144, which equals
the order of the product permutation group S4 × S3 .

Denoting by a the smallest value among the eight parameters (a, b, c, d, a′, b′, c′, d′),
it can be shown that a consistent ordering of the other parameters compat-
ible with all the due inequalities is given by { a ≤ b ≤ d ; d − (b − a) ≤
c ≤ d + (b − a) } . This sort of gauge fixing implies that the whole problem
becomes finite–dimensional and workable out for each fixed set of the param-
eters (a, b, c, d) ∈ R4. Moreover: i) the tetrahedron < ˜̀| ` > (a, b, c, d) can be

chosen as the reference one, calling < ˜̀| ` > (a′, b′, c′, d′) its Regge–conjugate;
ii) the same thing holds for the quadrilateral denoted < ` | k > (a, b, c, d) and
its conjugate < ` | k > (a′, b′, c′, d′). More technical details about this specific
parametrization and the denomination Regge–‘conjugate’ (as well as the proof
that the volume operators and all quantities in its three–term recursion relation
(3.1.11) are Regge–invariant) can be found in [30] and [65] respectively.

Coming back to the statement regarding the correspondence (5.2.13), the
remarks above should have made clear that Regge symmetry is strictly related
to the duality property of the Racah algebra discussed at the end of section
5.2.1. Note that in [72] it had been already recognized that (classical + Regge)
symmetries do have the group structure given by S4×S3, to be identified with
the automorphism group of the Racah algebra.

5.2.3 Classification of discrete polynomial families

In this section the focus will be on interconnections among the families of dis-
crete orthogonal polynomials in view of the formalization presented in section
5.2.1 and summarized there in items i) and ii). The various cases, together
with the most significant properties of each family, are summarized in table
5.1.

Comparing the notations adopted here –the bar stands for complex conju-
gation or simply transposition in the real cases– with those of section 5.2.1, it
is straightforward to recognized that the classes I, II and III are in correspon-
dence with the overlap functions in (5.2.6), (5.2.9) and (5.2.10) (restricted to
finite sets by suitable choices of the omitted parameters), respectively.
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5. Discrete polynomials families from generalized coupling

Finite families of discrete orthogonal polynomials [ (a, b, c, d) fixed ]
# family orthogonality on lattice eigenvalue degree

(related to the variable) related to

I.A < ˜̀| ` > ∑˜̀ < ˜̀| `′ > < ˜̀| ` >= δ`′` `(`+ 1) ˜̀
I.B < ` | ˜̀ > ∑

` < ` | ˜̀′ > < ` | ˜̀ >= δ˜̀′ ˜̀ ˜̀(˜̀+ 1) `

II.A < ` | k >
∑

` < ` | k′ > < ` |k >= δk′k λk `

II.B < k |` >
∑

k < k | `′ > < k |` >= δ`′` `(`+ 1) k

III.A < ˜̀| k >
∑˜̀ < ˜̀| k′ > < ˜̀|k >= δk′k λk ˜̀

III.B < k |˜̀ > ∑
k < k | ˜̀′ > < k |˜̀ >= δ˜̀′ ˜̀ ˜̀(˜̀+ 1) k

Table 5.1: Summary of the families
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5.2. Algebraic approach to the Askey-scheme

Looking at the family IA, observe that < ˜̀| `′ > := < `′ | ˜̀ > = < ˜̀| `′ >
by the convention chosen for 6j symbols in (2.1.5) (and similarly for IB). Thus
‘self–duality’ relations for class I read either way∑

˜̀ < `′ |˜̀ >< ˜̀| ` >= δ`′ ` and
∑
`

< ˜̀′ | ` >< ` | ˜̀ >= δ˜̀′ ˜̀ (5.2.18)

once fulfilled the completeness relations Σ | ˜̀ >< ˜̀| = I and Σ | ` >< ` | = I
for the binary coupled eigenbases. Note that the operators associated with
class I (J2

12 and J2
23) represent a ‘Leonard pair’ so that the associated overlap

functions (recoupling coefficients) are necessarily hypergeometric of Racah type
[74]. More generally, in connection with the analysis of the other classes, a
stringent result holds true: any finite system of orthogonal polynomials whose
dual is a finite system of orthogonal polynomials must be (possibly q–deformed)
Racah or one of its limiting cases which constitute finite systems (refer to
[75] for a modern monograph on hypergeometric polynomials in the Askey–
Wilson scheme). Indeed here all the families are consistently defined, for fixed
parameters (a, b, c, d), as finite sets (recall the choice on the ordering discussed
in connection with Regge symmetry) but the recognition of classes II and
III as belonging to the Askey scheme is certainly not straightforward. (More
precisely, the reduction process to specific hypergeometric functions of type

4F3 would require to find out a closed algebraic form for the sets of eigenvalues
of the volume operator for given parameters, a task not yet accomplished.)

For what concerns duality within class II, a first remark is about the bar
operation: < ` | k > is < k |` >, but the latter, unlike what happens for the 6j,
is not necessarily equal to < ` | k > because this property actually depends on
the volume operator K being Hermitian (imaginary antisymmetric) [12] or real
symmetric (see [65] also for plots of the family of eigenfunctions < ` | k >).
Anyway, both options can be included through a suitable notation into the
duality relations∑

`

< k′ |` >< ` | k >= δk′ k and
∑
k

< `′ | k >< k | ` >= ±δ`′ `

(5.2.19)
according to the choice of the representation of K. Duality relations in class
III are similar to (5.2.19), with ˜̀ taking the role of `.

To conclude this general overview on duality relationships, a further re-
markable property –transversal with respect to the classes– has to be men-
tioned, namely ∑

k

< ˜̀| k >< k | ` >= = ± < ˜̀| ` > . (5.2.20)

Such a ‘triangular relation’ (and the other ones that can be derived by using
the properties of the single classes given above) closely resembles the Racah
identity satisfied by three 6j symbols and might be used also to explore a for-
malization of the whole subject within the general scheme of tensor categories.
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5.2.4 Limiting cases

The issue of asymptotic (semiclassical) limits of angular momentum functions
is of continuous interest in many fields, ranging from special function theory
[75] to applied quantum mechanics [76]. Here just a few remarks concerning
two limiting cases of families I.A and I.B are sketched.

The reference model of asymptotics is the well–know limit of the 6j symbol
for three large entries (see [3, 40]), 6j → 3j, where the latter is the Wigner
symbol, the symmetrized version of a Clebsch–Gordan coefficient. The coun-
terpart of this operation in the Askey scheme is achieved by moving one step
downwards from top, namely from 4F3 (Racah) to 3F2 (Hahn and dual Hahn)
hypergeometric families.

A new change of notation is needed which consists in restoring the string
(j1, j2, j3, j4) for the parameters (see (5.2.15)) and in writing down as an array
the functions in (5.2.16) (equivalently, in family II.A) according to

Ψ
(k)
` (j1, j2, j3, j4) →

{
j1 j2 | `
j3 j4 | λk

}
, (5.2.21)

where the vertical bars in front of the last column of this symbol indicate that
not all of the entries are constrained by standard triangular inequalities, as
happens for the 6j. To address any limit in which (some of) the arguments of
the symbols become large –a fact that implies that all of the arguments can be
‘running’– a convenient notation is to substitute capital to small letters. Thus
the formal limiting process for the symbol in (5.2.21) when the arguments of the
lower row become large can be displayed as a generalized 3j coefficient, denoted
3j, related in turn to a generalized dual Hahn polynomial; schematically{
j1 j2 | `
J3 J4 | Λk

}
�

(
j1 j2 | `

J4 − Λk Λk − J3 | J3 − J4

)
↔ 3j (dual Hahn family) .

(5.2.22)

On applying a similar procedure to family II.B and denoting L̃ the previous
generic argument ˜̀(playing the role of j23), the resulting correspondence would
read{
j1 j2 | λk
J3 J4 | L̃

}
�

(
j1 j2 | λk

J4 − L̃ L̃− J3 | J3 − J4

)
↔ 3j (Hahn family) .

(5.2.23)
A few comments on these results are in order. As already noticed, the symbols
in round brackets on the right–hand sides of (5.2.22) and (5.2.23) are gener-
alized counterparts of 3j coefficients, the arguments in the lower row being
interpreted as magnetic quantum numbers. They actually share with stan-
dard 3js a suitable formulation of Regge symmetry [44] and their properties as
orthogonal families are inferred from three–term recursion relationships. The
latter can in turn be derived as limits of the three–term recursions at the upper
level (in particular, the relation for (5.2.22) can be quite easily worked out).
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The motivation for associating dual Hahn and Hahn families respectively is re-
lated with the specific lattices these three–term recursion relations are defined
on. Thus it is found that the relation for (5.2.22) mimics the behavior of the
relation of a 3j on a quadratic lattice (`(`+ 1)), so that it is functionally sim-
ilar to the standard dual Hahn polynomial family. Conversely, the relation for
(5.2.23) mimics the behavior of the relation of a 3j on a linear lattice (given by
scaling the quantum number m ≡ J3 − J4) and thus these functions represent
counterparts of the Hahn polynomial family.
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Chapter 6
Lorentzian Regge Calculus

In this chapter we address “collective” dynamics of PL (piecewise-linear) four-
dimensional space-times. We are going to study how a collection of discrete
simplices can be glued to build a 4-dimensional Lorentzian manifold.

This is motivated by recent work on the spinfoam model for quantum grav-
ity [77, 78], a sophisticated quantization of Regge Calculus, where most of the
analysis is done on space-like tetrahedra.

Here the overall topology of the simplicial dissections is taken to be S3 ×
I. Actually, this is the topology of any Freedman-Robertson-Walker closed
universe, solution of the Einstein equations. Interest in this topology reside in
the fact that it can be described with a finite number of simplices making the
study easily computable.

Two different triangulations are described: the first simplicial manifold is
found following an algorithm, the tent-like triangulation, proposed in [34]. The
second triangulation is found combinatorially.

Both the triangulations fill up the portion of space-time between two 3-
dimensional compact foliations (topologically S3) in a sort of“sandwich”. Once
fixed the arrow of time, namely choosing a future direction, and normalizing
the interval I := [0, 1], we can call one hypersurface “future” the one with t = 1
and “past” with t = 0.

This topology allows to compose “wider” space-times (longer evolutions)
piling several copies of these triangulations, identifying the past 3-dimensional
foliation of one with the future of another one and constructing thus a trian-
gulation for a potentially infinitely long cylinder.

6.1 Peculiarities of the Lorentzian 4-simplex

In Chapter 2 we have introduced an “Euclidean” PL-manifold. This concept
can be easily generalized to the Lorentzian case assuming that the vector space
where the simplices are defined is a Minkowski space (here with mostly positive
signature).
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6. Lorentzian Regge Calculus

A tetrahedron with vertices (abcd) in Euclidean 3-space, with coordinates
for ex. aα = (0, 0, 0), bα = (1, 0, 0), cα = (0, 1, 0), dα = (0, 0, 1), is bordered by
the triangles
(abd), (bac), (cad), (dbc), which have outward pointing normal vectors (α, β, γ =
1, 2, 3)

nabdα = εαβγ(b
β − aβ)(dγ − aγ) = εαβγ(a

βbγ + bβdγ + dβaγ), ... (6.1.1)

where εαβγ is the Levi-Civita symbol in three dimensions. These four 3-vectors
satisfy a closure relation

nabd + nbac + ncad + ndbc = 0 . (6.1.2)

From Heron’s formula, the squared areas of the triangles are A2
abd = 1

4
n2
abd, ...;

from Tartaglia’s formula the volume of the tetrahedron is Vabcd = 1
6
εαβγ(b

α −
aα)(cβ − aβ)(dγ − aγ).

We shall extend this elementary geometry to Minkowskian 4-space. To the
triangles bordering (abcd) we associate antisymmetric tensors, defined as

Sµνabd := (b− a)[µ(d− a)ν] = a[µbν] + b[µdν] + d[µaν], .... (6.1.3)

where [· · · ] represents the antysimmetrization of the correspondig indexes.
These tensors are ‘simple’, i.e. each can be written as the antisymmetrized
product of two 4-vectors. One can show that if Sµν is simple, so is its Hodge
dual ∗Sµν := 1

2
εµνρσSρσ. Simplicity implies that each tetrahedron has a normal

4-vector:

Vabcd,µ : = εµνρσ(b− a)ν(c− a)ρ(d− a)σ =

= εµνρσ(bνcρdσ + cνaρdσ + aνbρdσ + bνaρcσ) : (6.1.4)

Vabcd,µS
µν
bcd = Vabcd,µS

µν
cad = Vabcd,µS

µν
abd = Vabcd,µS

µν
bac = 0.

Given V µ
abcd, from the identity:

∗SµνabdV
λ
abcd + ∗SνλabdV

µ
abcd + ∗SλµabdV

ν
abcd = −εµνλτSabd τρV ρ

abcd (6.1.5)

since Sabd τρV
ρ
abcd = 0, assuming V λ

abcdVabcdλ 6= 0, we find (omitting the abcd
subscript):

∗Sµνabd = V µ
[Vλ∗Sλνabd
V ρVρ

]
−
[Vλ∗Sλµabd
V ρVρ

]
V ν = V µN ν

abd −N
µ
abdV

ν := (V ∧Nabd)
µν

(6.1.6)
In this way we have defined the 4-vector Nµ

abd for the triangle (abd) of the
tetrahedron (abcd); this 4-vector is orthogonal to the triangle (abd) because

Sµν = −1

2
εµνρσ ∗Sρσ = −εµνρσVρNσ (6.1.7)
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. and to Vµ:

Nµ
abdVµ = Nµ

abdSabd µλ = 0 .

With the 4-vectors defined for the other triangles Nµ
abd satisfies a closure rela-

tion like (6.1.2):

Nµ
abd +Nµ

bac +Nµ
cad +Nµ

dbc = 0. (6.1.8)

In the two typical cases,

• V µ = (1,0): we would have Nµ = (0, 1
2
n), n defined in (6.1.1), and

∗S0α = Nα;

• if V µ = (0, 0, 0, 1), ∗S3µ = Nµ = (N0, N1, N2, 0).

This construction does not work in the case V 2 := V µ
µ =0, which needs a sepa-

rate treatment; excluding this case, it proves that the existence of a normal V µ

implies simplicity of all the ∗Sµν , and therefore of all the Sµν of a tetrahedron.

Let us next consider a 4-simplex (abcde). From the definition (6.1.4) follows
that the normals to its five tetrahedra satisfy the closure relation:

V µ
abcd + V µ

abec + V µ
abde + V µ

aced + V µ
bcde = 0. (6.1.9)

Any triangle will be shared by two tetrahedra with opposite orientation,
e.g. (abd) by (abcd) and (abde); dropping suffixes, V µ = V µ

abcd and Nµ = Nµ
abd,

or V ′µ = V µ
abde and N ′µ =

Vabdeν
∗Sνµabd

V 2
abde

. One also finds, from the definitions

(6.1.4)(6.1.6) and (6.1.3), the following scalar identities:

∗Sµνabd
∗Sabd µν = −SµνabdSabd µν = 2V 2N2 = 2V ′2N ′2, (6.1.10)

Vλ
∗SλσV ′σ = V 2(N · V ′) = −V ′2(N ′ · V ) (6.1.11)

From (6.1.10) follows in particular that if V 2 has a different sign from V ′2, the
same must happen to N2, N ′2.
V µ and Nµ, and V ′µ and N ′µ, are orthogonal, and each pair forms a complete
set of 4-vectors in the space orthogonal to Sµνabd. Their relationship can be
expressed as:

V ′µ =
V · V ′

V 2
V µ +

V ′ ·N
N2

Nµ, N ′µ =
V ·N ′

V 2
V µ +

N ′ ·N
N2

Nµ (6.1.12)

As a consequence, there are several equivalent ways of writing ∗Sµν :

∗Sµν = (V ∧N)µν = (V ′ ∧N ′)µν =

=
Vρ
∗SρσV ′σ

V 2V ′2 − (V · V ′)2

(
V ∧ V ′

)µν
=

V ′2V 2

Vρ ∗S
ρσV ′σ

(N ′ ∧N)µν .

65



6. Lorentzian Regge Calculus

To prove these relations, one derives from (6.1.12),(6.1.11) and from V ′2 =
(V ·V ′)2
V 2 + (V ′·N)2

N2 the following expressions:

(N ′ ∧N)µν =
V ·N ′

V 2
(V ∧N)µν =

Vλ
∗SλσV ′σ
V 2V ′2

(V ∧N)µν

(V ∧ V ′)µν =
V ′ ·N
N2

(V ∧N)µν =
V 2V ′2 − (V · V ′)2

Vλ∗S
λσV ′σ

(V ∧N)µν .

Representing with an hat (̂) the vectors V µ, Nµ, V ′µ, N ′µ normalized to +1
those space-like and to −1 those time-like, the expressions in (6.1.12) become

V̂ ′µ = ε(V 2)(V̂ · V̂ ′)V̂ µ + ε(N2)(V̂ ′ · N̂)N̂µ

N̂ ′µ = ε(V 2)(V̂ · N̂ ′)V̂ µ + ε(N2)(N̂ ′ · N̂)N̂µ.

where the function ε gives the sign of the scalar in its argument. Multiplying
these relations on the left by V̂ ′µ, . . ., and using (6.1.10),(6.1.11), we derive the
relationships between the scalar products. The latter are needed to calculate
the hyper-dihedral angle associated with to the triangular face (the “bone”):

V̂ ′2 = ε(V 2)(V̂ · V̂ ′)2 + ε(N2)(V̂ ′ · N̂)2;

N̂ ′2 = ε(V 2)(V̂ · N̂ ′)2 + ε(N2)(N̂ · N̂ ′)2;

0 = ε(V 2)(V̂ · V̂ ′)(V̂ · N̂ ′) + ε(N2)(V̂ ′ · N̂)(N̂ · N̂ ′);
0 = ε(V 2)V̂ · N̂ ′ + ε(V ′2)V̂ ′ · N̂ (6.1.13)

Up to this point, no assumption was made on the signs of V 2, V ′2, V · V ′ etc..
But now we can see that the cases that can actually arise, excluding light-like
cases (namely those involving V 2 = 0 or N2 = 0), are:

• V̂ 2 = V̂ ′2 = 1, N̂2 = N̂ ′2 = 1.
This is the case of a time-like bone between two time-like tetrahedra:
(V̂ · N̂ ′) = −(V̂ ′ · N̂); (N̂ · N̂ ′) = (V̂ · V̂ ′); (V̂ · V̂ ′)2 + (V̂ ′ · N̂)2 = 1,
and
we can set: (V̂ · V̂ ′) = (N̂ · N̂ ′) = cosφ, (V̂ · N̂ ′) = −(V̂ ′ · N̂) = sinφ.

• V̂ 2 = V̂ ′2 = 1, N̂2 = N̂ ′2 = −1
This will have to be a space-like bone1 between two time-like tetrahedra:
(V̂ · N̂ ′) = −(V̂ ′ · N̂); (N̂ · N̂ ′) = −(V̂ · V̂ ′); (V̂ · V̂ ′)2 = 1 + (V̂ · N̂ ′)2

(V̂ · V̂ ′) = ± cosh η, (V̂ · N̂ ′) = sinh η

• V̂ 2 = V̂ ′2 = −1, N̂2 = N̂ ′2 = 1.
This is the case of a space-like bone between two space-like tetrahedra:
(V̂ · N̂ ′) = −(V̂ ′ · N̂); (N̂ · N̂ ′) = −(V̂ · V̂ ′); (V̂ · V̂ ′)2 = 1 + (V̂ ′ · N̂)2,
and
we can set: (V̂ · V̂ ′) = −(N̂ · N̂ ′) = ± cosh η, (V̂ · N̂ ′) = −(V̂ ′ · N̂) =

1time-like bones can only have space-like normal 4-vectors.
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∓ sinh η. The upper signs apply when V̂ and V̂ ′ point both to the future
or to the past, the lower signs when they point in opposite directions 2.

• V̂ 2 = −1, V̂ ′2 = 1, N̂2 = 1, N̂ ′2 = −1
Again a space-like bone, but between a space-like and a time-like tetra-
hedron:
(V̂ · N̂ ′) = (V̂ ′ · N̂); (N̂ · N̂ ′) = (V̂ · V̂ ′); (V̂ · N̂ ′)2 = 1 + (V̂ · V̂ ′)2, and
we can set: (V̂ ·N̂ ′) = (V̂ ′·N̂) = ± cosh η, (V̂ ·V̂ ′) = (N̂ ·N̂ ′) = ∓ sinh η.

6.2 Construction of foliated simplicial mani-

folds

In the previous section we have defined the “hyper-diedral angles”, and now we
can proceed to generalize the notion of defects angles, introduced in Chapter
2 for the Euclidean case, to the Lorentzian case following the prescription of
[79]:

• time-like bone:

θf = 2π −
∑
σ4(f)

(φf )σ4 , cosφf = N̂ · N̂ ′ (6.2.1)

• space-like bone:

θf = −
∑
σ4(f)

(φf )σ4 , sinhφf = ε(N̂2)ε(V̂ · N̂ ′)N̂ · N̂ ′ if |N̂ · N̂ ′| < |V̂ · N̂ ′|

sinhφf = ε(N̂2)ε(N̂ · N̂ ′)V̂ · N̂ ′ otherwise|
(6.2.2)

the first case will occur if V̂ 2 = −V̂ ′2, the second if V̂ 2 = V̂ ′2 = −1.

Notice that the sign ambiguity in the first case disappears.

The simplicial complex associated to the simplicial space-time is composed
by the set of simplices:

∆M = {vj}Nvj=1 ∪ {ej}
Ne
j=1 ∪ {tj}

Nt
j=1 ∪ {τj}

Nτ
j=1 ∪ {σj}

Nσ
j=1 .

where

d− simplex

0 vertex v

1 edge e
2 triangle t
3 tetrahedron τ
4 4-simplex σ

2in [barrettfoxon ],[barrettetal ] these two cases are referred to as ‘thick wedge’ and
‘thin wedge’ respectively. Notice that because of the closure relations, the V µ cannot be all
future or all past pointing in a given 4-simplex.
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The combinatorial structure of the four dimensional simplicial manifold
∆M is encoded into the so called by the Dehn-Sommerville relations, which in
the present case read

Nv (∆M )−Nv (∂∆M ) =

4∑
i=0

(−1)
i+4

(
i+ 1

1

)
Ni (∆M ) = Nv − 2Ne + 3Nt − 4Nτ + 5Nσ

Ne (∆M )−Ne (∂∆M ) =

4∑
i=1

(−1)
i+4

(
i+ 1

2

)
Ni (∆M ) = −Ne + 3Nt − 6Nτ + 10Nσ

(6.2.3)

Nt (∆M )−Nt (∂∆M ) =

4∑
i=2

(−1)
i+4

(
i+ 1

3

)
Ni (∆M ) = Nt − 4Nτ + 10Nσ

Nτ (∆M )−Nτ (∂∆M ) =

4∑
i=3

(−1)
i+4

(
i+ 1

4

)
Ni (∆M ) = −Nτ + 5Nσ

Nσ (∆M )−Nσ (∂∆M ) =

4∑
i=4

(−1)
i+4

(
i+ 1

5

)
Ni (∆M ) = Nσ.

Here Ni (∆M ) denote the number of i−simplices in the simplicial manifold and
∂∆M denotes its boundary. The Euler characteristic of the simplicial complex
reads

χ := Nv −Ne +Nt −Nτ +Nσ. (6.2.4)

Such relations must be satisfied by any self-consistent gluing process of 4-
simplices and the Euler characteristic of the simplicial manifold is defined in
(6.2.4).

In this case we focus on the topology S3 × I. We want to construct a
4-dimensional simplicial complex starting from a 3-dimensional one (the com-
binatorial counterpart of the space-like foliation). The boundary of a four
dimensional polyhedron with tetrahedral faces is homeomorphic actually, PL-
homeomorphic to the 3-sphere and will be our “triangulation” at time 0. In
particular we are going to choose the simplest one: the boundary of a 4-
simplex, namely a set of 5 tetrahedra glued together avoiding the formation of
2 dimensional boundaries.

6.2.1 Tent-like evolution for S3 × I
This algorithm was proposed by Sorkin several years ago [52] and consists
in building a tent-like structure of 4-simplices around a vertex lying on a 3-
dimensional boundary region.

6.2.1.1 A warm-up example S1 × I

In this triangulation we choose S1 to be replaced by the boundary of a triangle,
the simplest 1-dimensional closed simplicial complex. Notice however that this
case can be more subtle then using other 1-simplicial complexes (such as the
boundary of a squre or of a pentagon etc. ), in fact in the combinatorial
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Figure 6.1: An illustration of the tent-like evolution algorithm for the (2 + 1)
dimensional case

analysis of the simplicial complex, it is possible to incur in a closed set of
1−simplices which can be confused with a 2-simplicial complex (a triangle)
but it actually represent a different foliation of the simplicial complex. Even
thought this problem is trivial in 2 dimensions, when it occurs in 4-dimensional
triangulations it is not, and this issue motivated this 2-dimensional example.

Figure 6.2: Base 1-simplex {0, 1, 2}
(Note: only the boundary of the tri-
angle is considered).

Figure 6.3: Vertex 0 “raised” to 0′

and two triangles are glued to form
the “tent”

• Start with the boundary of a triangle with vertices {0, 1, 2} as represented
in Fig. 6.2, glue two triangles sharing the edge {0, 0′} (central “pole”);
the two triangles are {0′01, 0′02} as in Fig. 6.3. Notice here we have
the case described above: a triangle {1, 2, 1′} appears but it has not to
be considered a 2-simplex because it is just a different foliation of the
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6. Lorentzian Regge Calculus

2-dimensional simplicial complex and its topology is S1 rather then D2

(the two dimensional disk).

• Now “raise” 1 → 1′ gluing two triangles (Fig. 6.4). One {121′} insists
upon the base edge {12}. The other has to lie upon the diagonal edge
{10′}.

• Finally raise 2 → 2′ gluing the last two triangles, a reversed “tent” is
formed and it insists upon two diagonal edges.

Figure 6.4: Vertex 1 “raised” to 1′ Figure 6.5: Final step: 2 “raised” 2′

Figure 6.6: The 2-dimensional simplicial complex homeomorphic to the cylin-
der with finite height topologically S1 × I

It is thus possible to build a 2-simplex starting from a 1-complex. If we fix
the orientation of the simplicial complex, we can choose the primed vertices to
be inside the future light-cone of the respective unprimed vertices. The edges
{e, e′}will be time-like edges (with negative squared length). The edges with
both primed and unprimed vertices are called diagonal and they can be either
time-like or space-like.
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v2 v2

v′0

v0 v1

v

v′1l′ v′2v′2

d

l

v2 v2

v′0

v0 v1

v

v′1l′ v′2v′2

d

l

Figure 6.7: 2-d triangulation S1×I. Above, {00′} time-like; below, {00′}space-
like

One can choose to “squash” and “twist” the future triangle enough to get
the situation where 1′ is not in the future of 1. Although this is an admissible
triangulation, we will never consider it in this thesis.

6.2.1.2 The 4-dimensional case

The four dimensional case will have as base t = 0 boundary a 3-dimensional
simplicial complex. In this case we choose the boundary of the 4-simplex (also
known as 5-cell) with vertices {01234}. We are going to“evolve” it into another
5-cell in the “future” with vertices {0′1′2′3′4′}.

The five tetrahedra belonging to the base 5-cell are

Tb = {0123, 0124, 0134, 0234, 1234} (6.2.5)

and the gluing algorithm is listed below:

• Raise the first vertex 0→ 0′ and around this “pole” build a “tent” adding
the edges 0′ → {1, 2, 3, 4}, namely gluing four 4-simplices with common
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edge e00′ or, equivalently, placing the four 4-simplices upon the base
tetrahedra which share the vertex 0. These new four 4-simplices, namely

Σ00′ = {0′0123, 0′0124, 0′0134, 0′0234} (0′1234) (6.2.6)

generate the new tetrahedra

T0 = 0′



012
013
023
014
024
034

T ′0 = 0′


123
124
134

T ′′0 = 0′ 234. (6.2.7)

Each tetrahedron in T0 is shared by two 4-simplices in Σ00′ and we can say
that they are “internal” to the tent-like structure. Tetrahedra in T ′0 and
T ′′0 at the moment belong to just one 4-simplex, thus we can expect that
they will be part of new 4-simplices not yet introduced. From a combi-
natorial analysis 3 a “false” 4-simplex (in parenthesis in (6.2.6)) appears.
We have already encountered a similar case for the 1 + 1-dimensional
simplicial complex: 0′1234 corresponds to the triangle {1, 2, 1′} in the
previous subsection, namely they corresponds to an alternative foliation
of the simplicial complex, in this case with topology S3 and only its
boundary elements belong to our simplicial complex. Hence all tetrahe-
dra are correct and we can combinatorially count them on the basic of
the possible combinations of the vertices {0′01234}

(
6
4

)
=

6!

4! (6− 4)!
=

5 · 6
2

= 15;

thus we get the 10 tetrahedra in 6.2.7 and 5 base tetrahedra Tb.

• Raise 1 → 1′, add edges 1′ →{2, 3, 4; 0′} which means gluing four 4-
simplices sharing the edge 11′. Only 11′234 rests upon one of the base
tetrahedra Tb in (6.2.5). In fact, in the previous step all the base tetrahe-
dra but 1234 have been covered by 4-simplices. We left four tetrahedra
uncovered but only three share the vertex 1 (those in T ′0). Three 4-
simplices can lay on tetrahedra in T ′0 getting thus

Σ11′ = {1′1234, 0′1′1 23, 0′1′1 34, 0′1′1 24} .

3e.g. take the graph with links associated to the edges of the simplicial complex and
nodes to the vertices; a 4-simplex corresponds combinatorially to a complete sub-graphs
with 5 nodes
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These 4-simplices carry 10 new tetrahedra:

T1 = 1′1



23
24
34
0′2
0′3
0′4

T ′1 = 1′2


0′3
0′4
34

T ′′1 = 0′1′34.

Tetrahedra in T1 are internal and each one is shared by two 4-simplices
of Σ11 while T ′1 and T ′′1 are still uncovered tetrahedra (namely, they still
belong to just one 4-simplex). In this step the first “future” 1-simplex
0′1′ is introduced.

• Raise 2 → 2′ , add edges 2′ → {3, 4, 0′, 1′} and glue four 4-simplices
sharing the edge e22′ . All base tetrahedra are already covered by 4-
simplices in the previous steps. The 4-simplices lie on the remaining
uncovered tetrahedra of the first step T ′′0 and on the tetrahedra T ′1 and
are

Σ2 = 2′2


340′

341′

31′0′

41′0′

(340′1′2′).

The ten new tetrahedra are

T2 = 2′2



34
30′

31′

40′

41′

1′0′

T ′2 = 2′3


40′

41′

0′1′
T ′′2 = 2′1′0′4

and a first “future” triangle is formed, 0′1′2′.

• Raise 3 → 3′, add edges 3′ → {4, 0′, 1′, 2′} and glue four 4-simplices
sharing the edge e33′ As before, they lie on T ′2 and T ′′1 and are

Σ3 = 3′3


40′1′

40′2′

41′2′

0′1′2′

and the ten new tetrahedra are

T3 = 3′3



0′1′

0′2′

1′2′

1′4
2′4
0′4

T ′3 = 3′4


0′2′

1′2′

0′1′
T′′f = 0′1′2′3′.
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The first future tetrahedron appears T ′′f = 3′0′1′2′.

• Raise 4 → 4′, add edges 4′ →{0′, 1′, 2′, 3′} and glue four 4-simplices
sharing the edge e44′ Again, they lie on T ′3 and T ′′2 and are

Σ4 = 4′4


0′1′2′

0′1′3′

0′2′3′

1′2′3′

.

The ten new tetrahedra added in this last step are

T4 = 4′4



1′2′

1′3′

2′3′

0′2′

0′3′

0′1′

T′f = 4′


0′1′2′

0′1′3′

0′2′3′

1′2′3′

.

All the tetrahedra in T ′f above are part of the future slice. It is possible to
recognize the reversed “tent”-like structure: in fact, the four 4-simplices
share the pole e44′ , and, moreover, each 4-simplex owns a tetrahedron in
the future slice (future 5-cell). This step would exactly coincide with the
first one had we switched the future 5-cell with the past one.

With the algorithm described so far, we have built the simplicial dissection
∆tent made of 20 4-simplices (in Table 6.1) having as boundary two 5-cell
polytopes.

Σ0 0′0123 0′0124 0′0134 0′0234
Σ1 0′1′1 23 0′1′1 34 0′1′1 24 1′1234
Σ2 22′340′ 22′341′ 22′31′0′ 22′41′0′

Σ3 33′40′1′ 33′40′2′ 33′41′2′ 33′0′1′2′

Σ4 44′0′1′2′ 44′0′1′3′ 44′0′2′3′ 44′1′2′3′

Table 6.1: 4-simplices introduced at each step

.

Each step introduces 5 new edges and 6 internal and 4 external tetrahedra.
The number of triangles can be evaluated combinatorially or counting the
number of shortest cycles in the graph in Fig. 6.8. Recall that a 5-cell has 5
vertices, 10 edges, 10 triangles and 5 tetrahedra, we can count all the simplices
in the triangulation:

Nv (∆tent) = 10, Ne (∆tent) = 35, Nt (∆tent) = 60,

Nτ (∆tent) = 55, Nσ (∆tent) = 20.
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Among these, the following ones belong to the boundaries:

Nv (∂∆tent) = 10, Ne (∂∆tent) = 20, Nt (∂∆tent) = 20, Nτ (∂∆tent) = 10.

One can easily verify that the Euler characteristic (6.2.4) is

χ (∆tent) = 10− 35 + 60− 55 + 20 = 0

and all the Dehn-Sommerville relations in (6.2.3) are satisfied.

This algorithm can be easily generalized to other base triangulations and it
is useful to build 4-dimensional manifolds with difficult topologies. However,
this algorithm does not treat all the base tetrahedra on the same footing. For
the case in consideration (the 5-cell base) another triangulation can be built
which is homogeneous respect to all the base tetrahedra. This combinatorial
triangulation applies only to the 5-cell case.

6.2.2 Symmetric triangulation of S3 × I
The algorithm to build this triangulation is easier if we focus on the edges. We
label again the vertices 0, 1, 2, 3, 4 at time 0, 0′, 1′, 2′, 3′, 4′ at time 1; having a
5-cell as base triangulation, vertices at equal times are all connected to each
other by 10 space-like ‘horizontal’ links 01, 02, ..., 34, and then 0′1′, 0′2′, ....3′4′ ;
vertices at time 0 are all connected by links to all the vertices at time 1 except
that corresponding vertices 0, 0′, ...., 4, 4′ are not connected.

In the slice between time 0 and time 1 there will be 5 4-simplices with four
vertices at time 0 and one at time1, we shall call them ‘type [4,1]’, 5 of type
[1,4], 10 of type [3,2], 10 of type [2,3]; overall:

v e t τ σ
5 10 10 5 #
# 20 60 70 30
5 10 10 5 #

This is consistent with the the Dehn-Sommerville relations, that in 4-d, if M
is a 4-manifold bounded by ∂M, are

Nk(M)−Nk(∂M) =
4∑
i=0

(−1)i+4

(
i+ 1
k + 1

)
Ni(M), k = 0, ..., 4

10− 10 = 10 −2 · 40 +3 · 80 −4 · 80 +5 · 30
40− 20 = −40 +3 · 80 −6 · 80 +10 · 30
80− 20 = +80 −4 · 80 +10 · 30
80− 10 = −80 +5 · 30

30 = +30

If we consider two slice, there are no σ, no τ and no t with vertices at
time +1 and time -1, because there are no edges linking vertices at these
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6. Lorentzian Regge Calculus

two times. The same applies to the cylinder one obtains with two slices,
which has Nk(∂·sym) = Nk(∂·sym), Nk(·sym) = 2Nk(·sym) − 1

2
Nk(∂·sym),

i.e. Nk(·sym) = 15, 70, 150, 155, 60.

A different way of looking at this triangulation is through its dual graph
in Fig. 6.9, namely through a gluing process of 4-simplices similarly to what
described in the previous subsection. In this case, we have to treat all the
tetrahedra on the same footing:

1. we introduce five independent 4-simplices, each one upon a base tetra-
hedron; we don’t want to introduce new vertices, so the 4-simpices have
four unprimed base vertices and one primed future vertex.

2. Each tetrahedron have to be shared by two 4-simplices, apart for those
belonging to the boundary (namely, those in the base 5-cell or in the
future 5-cell); the 5-simplices introduced in 1 have 4 not shared tetra-
hedra each. If we glued 20 new independent 4-simplices we would have
introduced a total of 25 future vertices, so the 4-simplices cannot be inde-
pendent. Actually all the future vertices have been already introduced in
the previous step. 4-simplice thus have to share edges and shared trian-
gles. Differently to what happens in the tent-like algorithm, there cannot
be tetrahedra shared between 4-simplices introduced in the same step.
That’s because we want to treat all the 5 base and 5 future tetrahedra on
the same footing, each 4-simplex can have at most four tetrahedra avail-
able at each step, so it would not fulfill this homogeneity requirement.
4-simplices to be introduced in this step can have only two future ver-

tices, thus

(
5
2

)
= 5!

3!2!
= 5·4

2
= 10 4-simplices are glued. Having two

future vertices, they have also 2 tetrahedra with 3 base vertices and 1
future vertex that have to belong also to the 4-simplices of the first step.

3. Each 4-simplex in the previous step has 5 − 2 = 3 available tetrahedra.
They can have one more future vertex (we can only add one vertex at
each step, otherwise it would mean that we are gluing a 4-simplex upon

a triangle and not upon a tetrahedron), so the 4-simplices are

(
5
3

)
=

5!
5!3!

= 10. Each 4-simplex has 3 tetrahedra shared with simplices of the
previous step.

4. Finally,

(
5
4

)
= 5 4-simplices are glued. Each of them have to share

four tetrahedra with 4-simplices of the previous step and one is left.
Those remaining tetrahedra are the blocks forming the future 5-cell.
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6.3 Some remarks on the dynamics

At this point, following Section 2.2, we could introduce the edge lengths to the
triangulations, namely the dynamical variables of the classical system.

A very useful trick can be used to treat Lorentzian and Euclidean signature
on the same footing and it permits to calculate the quantities described in
section 6.1 in few passages. Edge lengths of the simplices are scalar quantities
so they are invariant under coordinate changes

(l2ij) = ηµν(vi − vj)µ(vi − vj)ν = gµ′ν′(v
′
i − v′j)µ

′
(v′i − v′j)ν

′
(6.3.1)

where vµi are the coordinates of the ith vertex of a simplex in the usual orthogo-
nal coordinates where the metric is η =diag(−1,+1,+1,+1) or diag(+1,+1,+1,+1).
It is possible [80] to associate with each 4-simplex a coordinate system such
that a vertex v0 lies in the origin of the Minkowski space while vectors pointing
to the other vertices build an orthonormal base, namely vµi = δµi−1. Inverting
(6.3.1) the metric reads

gµν = −1

2
(l2ij − l2i0 − l2j0). (6.3.2)

Using this coordinate system, 4-vectors N, V introduced in section 6.1 are
simply linear combination of Kronecker deltas and the scalar products in (6.2.1)
and (6.2.2) are just functions of the metric (6.3.2) and its inverse [79]. With
this method, the signature of the system is only encoded the edge lengths 6.3.2.

If a matter part (e.g. pure dust) is considered, this dynamical system
correspond to the 33th Problem listed by Wheeler in 1964 [4]. Varying the
edge lengths we would be able to write down the Regge equations of the system
and solve them numerically like in [34, 81, 82].

The two PL-manifolds presented in the previous section are not the best
choice if one is interested in Numerical Relativity. They are both a coarse-
grained approximation of a cylindrical space-time, which in Einstein General
Relativity, for the homogeneous and isotropic case, can be solved even analyti-
cally. But, the interest in this particular triangulations resides on the fact that
they are composed by a very small number of simplices (20 and 30 4-simplices).
The “tent-like triangulation”, can be easily generalized to initial surfaces with
different topologies and initial triangulations with different number of sim-
plices, making the evolution local and even parallelizable [34] and providing
thus an example of a practical framework for Numerical Regge Calculus.

The PL-manifold described by the graph in Fig.6.9, instead, is not easily
generalizable to different initial simplicial surfaces (combinatorial constrains
apply), on the other hand it provides a triangulation which is homogeneous,
namely all the 4-simplices are treated on the same footing with respect to the
initial foliation. Moreover, due to its homogeneity, it has only four different
kind of simplices (only two if we considered the time reversal symmetry ). This
features make this triangulation an ideal candidate to be promoted as a base
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6. Lorentzian Regge Calculus

triangulation for a Spinfoam model (the path integral approach to quantum
gravity) as proposed in [83].

Dynamical evolution, in Einstein General Relativity, is driven by equations
of motion of hyperbolic type, namely we are dealing with a causal evolution. In
Regge Calculus, on the other hand, the role of causality is not well understood
with consequences also in those quantum gravity models based on a discrete
space–time. Looking at Regge Calculus as a finite element approximation of
space-time, causality have to be connected to the Courant–Friedrichs–Lewy
condition [84] and the models we presented can be a useful tool to study this
issue.
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Conclusions

In this thesis we have analyzed aspects of the theory of discretized geometries,
ranging from the quantum dynamics of a single three dimensional simplex to
the classical dynamics of a collection of 4-simplices. Such a journey have lead
us to highlight the importance of the Regge symmetry since

• it constrains the shape dynamics of a single tetrahedron;

• it relates different tetrahedra equating their quantum representations;

• it gives insight into the geometry of quadrilaterals. Each quadrilateral
has a conjugate twin which, in particular configurations, can coincide
with itself and that unveils a deep relation with the quaternionic algebra;

• Regge symmetry is the key tool to understand the classical motion of
a four-bar linkage mechanical systems and its link to the the quantum
dynamics of tetrahedra;

• finally, it permits to introduce families of orthogonal polynomials. These
polynomials have a very promising feature: they are symmetric with
respect to the coupling of four angular momenta, so we think they can
find applications as suitable basis for calculations in quantum chemistry
and quantum molecular dynamics.

In the final part of the thesis, we have moved to study the collective behaviour
of collection of simplices. We have limited the study to those collections which
can represent a space-time manifold. We have found two triangulations which
might play an important role in the analysis of the issue of causality in the
spinfoam models of quantum gravity. In fact, they are built as 3+1 space-times
and thus naturally encode the arrow of time; furthermore, they are “small”,
namely they are made of a small number of simplices and offer the possibility
of an analytic approach to the system rather than a numeric one.

We can summarize further developments in three different directions: the
Askey-like scheme, the q−analog and the quantum collective dynamics.
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Askey-like scheme

With the help of the formalization through quadratic algebras described in
Section 5.2, it can be possible to develop a hierarchy for polynomial families
of the volume operator based on suitable limits like those described in Figure
5.1. This achievement would support the use of these orthogonal polynomials
in applications. This task would be simplified by the use of the new variables
of quaternionic nature defined in Chapter 3.

The q-analog

The set of orthogonal polynomials of hypergeometric type allows an interesting
generalization through the introduction of a continuous parameter q. This
parameter distinguishes the family called “classical” (q = 1) to those called
“quantum”, q 6= 1. The Askey-scheme is actually a subset of a wider scheme
called Askey-Wilson scheme which include the first as the limit q → 1.

This kind of generalization has no reasons not to hold for the orthogonal
polynomials associated with the volume operator studied in Chapters 2 and
5. The approach to this generalization can be twofold: we can find a new
three-terms recurrence relation defining this generalized polynomials following
the use of the 6j-symbol in Levy-Leblond [7] but replacing it with the one
defined by Kirillov and Reshetikhin in 1989 [85]. Another approach could
exploit the power of the quadratic algebras described in Section 5.2 to write
down a three-terms recurrence relation for the volume operator introducing
the q−deformation keeping the coefficient R 6= 0 in (5.2.1).

There is also an important physical reason that justifies this possible re-
search line: as already mentioned, the volume operator plays a fundamental
role in Loop Quantum Gravity and spin foam models: in these discrete ap-
proaches to quantum gravity when a cosmological constant is present the gauge
group is deformed to be a quantum-group (see e.g. [86, 87]) and the quan-
tum orthogonal polynomials of hypergeometric type are bases for the harmonic
analysis of the quantum-groups.

Finally, the q−analog can be interesting for a deeper understanding of the
Regge symmetry. Roberts [26] proved that two tetrahedra related by a Regge
symmetry are scissor-congruent, namely one tetrahedron can be cut into a finite
number of pieces which glued together form the Regge-conjugate tetrahedron.
A constructive proof, however, has not yet been found for the Euclidean tetra-
hedron. On the other hand, Moanthy [88] found a constructive proof for the
scissor-congruence of two hyperbolic tetrahedra. Taylor and Woodward [89]
conjectured that the q−analog of the 6j symbol is semiclassically related to
non-Euclidean tetrahedra and in particular, when q ∈ R, are related to hyper-
bolic tetrahedra. It would be very interesting to study at the quantum level
the interplay between the Moanthy cuts and the parameter q. We think that
a possible constructive proof for the Euclidean case can be reached.
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6.3. Some remarks on the dynamics

Quantum collective dynamics

A quantum generalization of the collective dynamics in four dimensions can
be developed continuing the spinfoam program for the quantization of space-
times. In particular it would be interesting to build the partition functions
for the triangulations introduced in Chapter 6. A promising development in
this direction is the work by Immirzi [83] which clarifies many points in the
Lorentzian spinfoam models using actually one of the triangulations developed
in Chapter 6.

On the other hand, in three-dimensions we can directly exploit what we
have studied for the volume operator, a schematic list of ongoing works follows:

• convolution rules for overlap functions (specifically, symmetric recoupling
coefficients) of Racah algebra;

• composition rules of collections of quadrilaterals able to provide new
classes of integrable quantum systems to be associated with extended
quantum geometries.
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