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Università degli Studi di Pavia

Dottorato di Ricerca in Fisica - XXVI Ciclo

Entanglement in Quantum Algorithms
and Quantum Channel Detection

Matteo Rossi

Adviser:
Prof. Chiara Macchiavello

Referees:
Prof. Vittorio Giovannetti

Prof. Dr. Otfried Gühne

Submitted to the Graduate School in Physics

in Partial Fulfillment of the Requirements
for the Degree of

DOTTORE DI RICERCA IN FISICA
DOCTOR OF PHILOSOPHY IN PHYSICS

at the

University of Pavia



COVER: Depiction of hypergraphs associated to the four-qubit initial Grover
states with two solutions for several values of the Hamming distance. Each
empty vertex represents a qubit. Full dark dots, dark lines and grey faces
represent hyperedges of order 1, 2 and 3, respectively.

Entanglement in Quantum Algorithms
and Quantum Channel Detection
Matteo Rossi

PhD thesis — University of Pavia
Printed in Pavia (Italy)
October, 2013

ISBN 978-88-95767-65-9



Acknowledgements

A special thanks goes to Chiara that supervised my work and continuously
supported me along my PhD. Another special thanks goes to Dagmar and her
group in Düsseldorf, as I really enjoyed my experience there. Huge thanks to
the Quit group, especially to the youngest part, with which I shared more food
and drinks than physics. I am really in debt with Marcus Huber that gave me
the change to visit many places while doing exciting physics. At last, I am
grateful to Otfried Gühne and Vittorio Giovannetti for refereeing my thesis
and giving me several fruitful feedbacks.





Contents

Introduction 1

1 Quantum Hypergraph States 5
1.1 Real equally weighted states . . . . . . . . . . . . . . . . . . . . 5
1.2 Standard graph states . . . . . . . . . . . . . . . . . . . . . . . 7
1.3 k-uniform hypergraph states . . . . . . . . . . . . . . . . . . . . 9
1.4 Hypergraph states . . . . . . . . . . . . . . . . . . . . . . . . . 12
1.5 Equivalence between hypergraph and REW states . . . . . . . . 14
1.6 Comments and future work . . . . . . . . . . . . . . . . . . . . 16

2 Entanglement in Grover’s Algorithm 17
2.1 Some remarks about Grover’s algorithm . . . . . . . . . . . . . 17
2.2 Entanglement content of initial states in Grover’s algorithm . . 18

2.2.1 Single solution . . . . . . . . . . . . . . . . . . . . . . . . 19
2.2.2 Two solutions . . . . . . . . . . . . . . . . . . . . . . . . 20
2.2.3 Connection to hypergraph states . . . . . . . . . . . . . 22

2.3 Entanglement dynamics in Grover’s algorithm . . . . . . . . . . 23
2.3.1 Single solution . . . . . . . . . . . . . . . . . . . . . . . . 24
2.3.2 Two solutions . . . . . . . . . . . . . . . . . . . . . . . . 26

2.4 Entanglement dynamics in the fixed-point π/3 quantum search
algorithm . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28

2.5 Classical simulatability of Grover’s algorithm . . . . . . . . . . . 29
2.6 Conclusions and comments . . . . . . . . . . . . . . . . . . . . . 31

3 Quantum Channel Detection 33
3.1 Main idea and mathematical tools . . . . . . . . . . . . . . . . . 33

3.1.1 Entanglement detection . . . . . . . . . . . . . . . . . . 34
3.1.2 Quantum channels and the Choi-Jamio lkowski isomor-

phism . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35
3.2 Entanglement breaking channels . . . . . . . . . . . . . . . . . . 36
3.3 Separable random unitaries . . . . . . . . . . . . . . . . . . . . 38
3.4 Separable maps . . . . . . . . . . . . . . . . . . . . . . . . . . . 42

v



CONTENTS

3.5 PPT channels . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45

3.6 Completely co-positive channels . . . . . . . . . . . . . . . . . . 47

3.7 Bi-entangling operations . . . . . . . . . . . . . . . . . . . . . . 49

3.8 Summary and further developments . . . . . . . . . . . . . . . . 51

4 Map Detection: Noise Robustness and Experimental Realiza-
tion 53

4.1 Detecting the CNOT and CZ gates . . . . . . . . . . . . . . . . 53

4.2 Noise robustness . . . . . . . . . . . . . . . . . . . . . . . . . . 55

4.2.1 Depolarising noise . . . . . . . . . . . . . . . . . . . . . . 56

4.2.2 Dephasing noise . . . . . . . . . . . . . . . . . . . . . . . 58

4.2.3 Bit flip noise . . . . . . . . . . . . . . . . . . . . . . . . . 60

4.2.4 Amplitude damping noise . . . . . . . . . . . . . . . . . 62

4.3 Experimental detection of quantum channels . . . . . . . . . . . 64

4.3.1 Single-qubit EB channels . . . . . . . . . . . . . . . . . . 64

4.3.2 Two-qubit separable maps . . . . . . . . . . . . . . . . . 67

4.4 Conclusions and further perspectives . . . . . . . . . . . . . . . 70

5 Quantum Cloning by Cellular Automata 73

5.1 Two fundamental preliminaries . . . . . . . . . . . . . . . . . . 73

5.1.1 Phase-covariant cloning . . . . . . . . . . . . . . . . . . . 74

5.1.2 Quantum cellular automata . . . . . . . . . . . . . . . . 74

5.2 Phase-covariant cloning by QCAs . . . . . . . . . . . . . . . . . 76

5.2.1 Performances in the rest frame . . . . . . . . . . . . . . 78

5.2.2 Performances exploiting different foliations . . . . . . . . 79

5.3 Summary of results . . . . . . . . . . . . . . . . . . . . . . . . . 81

Conclusions 83

A Appendix 85

A.1 Group structure of the generalized stabilizer operators . . . . . 85

A.2 Equivalence of the circuital definition and the stabilizers de-
scription . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 86

A.3 Inequivalence of k-uniform hypergraphs under the local Pauli
group . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 87

B Appendix 91

B.1 Asymptotic limit of the GME En . . . . . . . . . . . . . . . . . 91

B.2 Calculation of the GME E2 . . . . . . . . . . . . . . . . . . . . 92

C Appendix 95

C.1 Purity of the Choi state CM . . . . . . . . . . . . . . . . . . . . 95

C.2 Schmidt decomposition of Z3 and calculation of αSRU . . . . . . 96

vi



CONTENTS

D Appendix 99
D.1 QCD experimental set-up . . . . . . . . . . . . . . . . . . . . . 99
D.2 Two-qubit CNOT gate: noise model . . . . . . . . . . . . . . . . 100

Bibliography 103

List of Publications 109

vii



viii



Introduction

The arguments discussed in this work can be roughly divided in two main
topics: on the one hand we study the entanglement contents of the states em-
ployed in well-known quantum algorithms, while on the other hand we adapt
some techniques suitable for entanglement witnessing in order to detect con-
vex sets of quantum channels. Eventually a side result concerning quantum
cloning via cellular automata is presented.

Quantum computing and entanglement: Quantum computation is one
of the most prominent branch of quantum information science [1]. Despite
there exist several examples of quantum algorithms that outperform classical
computers, such as Shor’s [2], Grover’s [3], Deutsch-Jozsa’s [4, 5] and Simon’s
[6] algorithms, the reason for such a quantum speed-up is not fully understood
yet. One of the major candidates as fundamental resource is surely quantum
entanglement. However, even though entanglement has been shown to be
sometimes necessary in order to achieve an exponential speed-up [7, 8, 9],
other results point in a completely opposite direction [10, 11, 12, 13]. Hence,
the role entanglement plays with regards to quantum computing is nowadays
still a heavily debated open question [14, 15].

The first part of this work is intended to shed new light on the role of en-
tanglement in quantum computation by both developing mathematical tools
in order to study specific states that appear in well-known quantum algorithms
[16], and systematically studying the entanglement content of states employed
in Grover’s algorithm [17, 18]. On the one hand, the mathematical tools we
develop are essentially related to graph theory, and are suitable to link real
equally weighted pure states (i.e. superposition of all basis states with real
amplitudes and equal probabilities) with hypergraph states. This ideal bridge
allows us to study more easily states that very often appear in significant
quantum protocols, giving a pictorial view of these in terms of mathemati-
cal hypergraphs. The entanglement properties of either a single state or an
interesting class of quantum states are then pointed out and simplified drasti-
cally. On the other hand, a deep study of the entanglement content of states
employed by Grover’s algorithm provides us the entire dynamics of both bi-
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Introduction

partite and multipartite entanglement along the whole procedure. In addition,
besides multipartite entanglement is shown to be always present along the
Grover computation, a very peculiar and unexpected scale invariance property
of entanglement emerges. Such a scale invariance property makes the study
of Grover’s algorithm closer to many-body systems and phase transitions, as
they often show scale invariance properties too.

Quantum channel detection: Quantum channels represent the most gen-
eral process a quantum system can undergo [1]. They are in addition a very
convenient method to study several quantum information tasks that require
a discrete-time evolution [1, 19], as e.g. quantum computation. From an ex-
perimental point of view, the characterization of a quantum channel is known
to be highly resource-demanding, as it usually requires a very large number of
measurement settings. It is then of great interest to develop techniques able
to point out properties of interest of the channel, by avoiding full quantum
process tomography. Furthermore, in many realistic situations one is mainly
interested in a specific property of the channel, as e.g. whether it has some
entangling power, rather than the full form of it.

Inspired by the recent field of entanglement witnessing [20, 21], in the sec-
ond part of this work we develop a quantum channel detection method that
works when some a priori information about the form of the channel is available
[22, 23]. As the entanglement detection is an efficient way to prove that the
state of interest is eventually entangled, the quantum channel detection method
turns out to be a suitable technique to rule out meaningful subsets of quantum
channels such as, e.g., entanglement breaking [24], separable [25] and posi-
tive partial transpose [26, 27] channels. The robustness of the method against
noise is then extensively studied for several noise models such as depolarizing,
dephasing, bit flip and amplitude damping [28]. Eventually an experimental
implementation of the channel detection method is proposed and achieved for
either entanglement breaking channels of the depolarizing form and the CNOT
gate [29], a fundamental resource needed for universal quantum computing.

Quantum cloning via cellular automata: As a side result, we present also
an application of the growing field of quantum cellular automata in order to
perform one of the most important quantum information protocols, i.e. quan-
tum cloning [30]. Even though the achieved result is not directly related to
the two main arguments from which this work takes roots, it has to be re-
garded with particular interest. Indeed it fuses together the well-established
task of quantum cloning [31] with the raising field of quantum cellular au-
tomata [32, 33], showing how an old-fashion concept still provides new insights
if studied under a different perspective.

This work is organized in five chapters. The first two are devoted to studying
the relationship that elapses between entanglement and quantum computa-
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Introduction

tional speed-up, by studying the class of states employed in many quantum
algorithms, and in particular in Grover’s. In the second two, the method of
quantum channel detection is introduced and discussed in details both theo-
retically and experimentally. Quantum cloning via quantum cellular automata
is presented in the last chapter, which constitutes a result on its own. Every
chapter starts with a brief introduction, intended to recall the reader the con-
text in which the argument is developed, and concludes with a few paragraphs
summarizing the achieved results and discussing further possible developments.
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Chapter 1
Quantum Hypergraph States

Quantum algorithms constitute one of the main applications of modern quan-
tum information theory, and offer computational speed-up, that provably no
classical system could ever exhibit [1]. Many quantum protocols, as e.g. quan-
tum algorithms that admit an oracle description, such as Deutsch-Jozsa’s and
Grover’s algorithms, usually employ real equally weighted (REW) pure states.
Thus, this family of states plays a central role in several quantum tasks and
might be the key to a deeper understanding of the role of entanglement in
quantum speed-up.

We present here a way to fruitfully study such states. The method is based
on a correspondence with mathematical objects called hypergraphs [16]. Quan-
tum hypergraph states are then a straightforward generalization of very well-
known graph states. However, besides being very close in spirit to these latter
states, hypergraph states show a much richer entanglement structure. This
feature basically allows us to exploit them to better understand and quantify
the entanglement content of states employed in quantum algorithms.

The sketch of the chapter is roughly the following. We firstly show that
hypergraph states indeed cover all possible REW states, and that they have an
illustrative graph representation. Then we find that they are stabilized by gen-
eralizations of the stabilizers of graph states, and that they constitute a set of
different entanglement classes under local Pauli operations. We finally discuss
possible ways to extend our work, especially with regard to measurement-based
quantum computing and entanglement witnessing.

1.1 Real equally weighted states

The n-qubit register employed in the Deutsch-Jozsa [4] and Grover [3] algo-
rithms is initially prepared in the pure fully separable state

|ψ0〉 ≡ |+〉⊗n =
1√
2n

2n−1∑
x=0

|x〉 , (1.1)

5



1. Quantum Hypergraph States

which corresponds to the equally weighted superposition of all possible 2n

states |x〉 of the computational basis. The next step in both algorithms consists
in applying a unitary transformation Uf that leads to the following state of
the n-qubit register

|f〉 =
1√
2n

2n−1∑
x=0

(−1)f(x) |x〉 , (1.2)

where f(x) is the {0, 1}n → {0, 1} Boolean function that need to be evaluated
in the considered algorithm. Notice that, since (−1)f(x) = ±1, the state |f〉
is uniquely defined by the function f via the signs (either plus or minus)
in front of each component of the computational basis. For this reason the
above states are named REW states, and the set is denoted by G±. A more
general class of equally weighted states, with generic phase factors in front of
each computational basis state, and an explicit method to generate them was
analysed in [34].

Due to their simple expression, we can count the number of REW states.
If we fix the first state |00...0〉 to have always a positive phase (this essentially
corresponds to disregarding a meaningless global minus sign), it turns out that
they are 22n−1. Given a function f , we are essentially interested in finding
out some properties of the corresponding state |f〉, such as the entanglement
content. It is clear that these properties only depend on where the signs are
placed. The same analysis can obviously be applied to families of states |f〉,
where for instance the function f is taken to have a given property, as e.g. f
constant or balanced as in the Deutsch-Jozsa algorithm.

In order to study this class of states, we can think to relate them to graph
states. In the following we will nevertheless become soon aware that the class
of graph states is not rich enough to account for all REW states. Due to
that, we then focus on a wider class of states, i.e. hypergraph states, which
can be seen as a generalization of graph states. We eventually find out that
hypergraph states provide us a nice and useful tool to study and classify all
REW states.

Regarding the notation, we very often use controlled Z gates acting on an
arbitrary number of qubits. Given a system composed of n qubits, we denote
by CkZi1i2...ik the general controlled Z gate acting on the k qubits labelled
by i1i2...ik. Notice that k is an integer in the interval 1 ≤ k ≤ n, and by
definition we have C1Zi1 ≡ Zi1 . The operation CkZi1i2...ik is easy to express
in the computational basis since it produces a minus sign whenever the state
|11...1〉i1i2...ik is taken as input, i.e. CkZi1i2...ik |11...1〉i1i2...ik = − |11...1〉i1i2...ik ,
and leaves all the other states of the computational basis unchanged. Thus,
every two operators of the CkZ form always commute. Furthermore, as the
action of the controlled Z gate is symmetric, it follows that the target qubit
is not uniquely defined, but any of the k qubits on which CkZi1i2...ik acts can
be thought of as the target one. We will exploit this property several times
in the following, decomposing the gate in the most suitable way according to
the context. It is also convenient to take C0Z ≡ −1, namely an overall minus
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1.2. Standard graph states

sign.

1.2 Standard graph states

In this section we introduce some basic concepts related to graph states, follow-
ing Ref. [35]. This will be useful for both fixing the notation and introducing
concepts that will be fundamental later.

Given a mathematical graph g2 = {V,E}, i.e. a collection of n vertices V
and some edges E, we can find the corresponding quantum state, the so-called
graph state |g2〉 associated to the graph g2, as follows:

1. Assign a qubit to each vertex.

2. Initialize each qubit to the state |+〉 = 1√
2
(|0〉+ |1〉). The initial state of

the n qubits is then given by |+〉⊗n, which belongs to the set of REW
states with f(x) = 0 for every x (recall that, since the sign of |00...0〉
is chosen to be always positive, the constant function f(x) = 1 is never
considered here).

3. Wherever there is an edge, perform a controlled Z operation between the
two connected qubits. Formally, if the qubits i1 and i2 are connected,
then perform the operation C2Zi1i2 = diag(1, 1, 1,−1) (expressed in the
computational basis, as always considered in the following), where the
superscript 2 stands for the number of qubits the operation acts on, while
the subscripts i1i2 represent the qubits involved. In the end, we get

|g2〉 =
∏

{i1,i2}∈E

C2Zi1i2 |+〉
⊗n , (1.3)

where {i1, i2} ∈ E means that the two vertices are connected by an edge.

This procedure can be explicitly sketched pictorially in Fig. 1.1, which clearly
points out the correspondence.

We call the class of graph states as G2, and a general state belonging to this
set is denoted by |g2〉. The subscript 2 is meant to recall that only two-body
interactions of a given kind, represented by C2Z, are considered in this case.
The number of all possible graph states is given by 2B(n,2), where B(n, 2) is the
binomial coefficient of n over 2. This number can be found as follows: given
n vertices, the number of all possible edges is B(n, 2), therefore the number of
all possible graphs, considering that each edge can be present or not, is 2B(n,2).

We recall the reader that there exists a different, but equivalent, definition
of graph states by exploiting the stabilizer formalism. The main idea is to
define a set of operators, according to the graph, such that they uniquely
define the graph state as the only state which is at the same time eigenstate

7



1. Quantum Hypergraph States

Figure 1.1: Correspondence between a mathematical graph and the quantum
state associated to it. Since controlled-Z gates are symmetric, C2Z gates are
here depicted as two dots connected by a vertical line. This notation will also
be used for general controlled-Z gates in the next figures.

of all of them with eigenvalue one. In a more formal way, for every vertex i we
define the correlation operation K

(2)
i as follows

K
(2)
i = Xi ⊗ ZN(i) = Xi

⊗
j∈N(i)

Zj, (1.4)

where N(i) = {j|{i, j} ∈ E} is the neighbourhood of the vertex i, namely the
vertices j which are connected to i by an edge, and X and Z are the Pauli
matrices σx and σz, respectively. The subscripts label the qubits on which the
operators act. The set of n operators K

(2)
i , {K(2)

i }i=1,2,...,n, uniquely defines
the graph state |g2〉 associated to the graph, i.e.

K
(2)
i |g2〉 = |g2〉 for every i = 1, 2, ..., n. (1.5)

It can be shown that the set {K(2)
i } generates a commutative subgroup of the

Pauli group on n qubits called stabilizer (as each element of the group stabilizes
the state |g2〉, see Eq. (1.5)) [35]. Recall that the Pauli group on a single qubit
is defined as {±1,±i1,±X,±iX,±Y,±iY,±Z,±iZ}, which is generated by
the three Pauli matrices alone 〈X, Y, Z〉. Notice that the Pauli group is trivially
non commutative. The Pauli group on n qubits is then defined as the tensor
product of operators belonging to the Pauli group of single qubits, for instance
in the two-qubit case it is generated by 〈X1, Y1, Z1, X2, Y2, Z2〉, thus by all Pauli
matrices acting on either the first and the second qubit.

The definitions of graph states based on the explicit procedure involving
C2Z gates and on the stabilizer formalism can be shown to be equivalent [35].

With this in mind, we can now address the problem whether all REW
states can be regarded as graph states and vice versa. A first hint that this is
the case comes from the number of REW states versus graph states, i.e. 22n−1

versus 2B(n,2). Hence, disregarding local unitary equivalence, REW states are
exponentially more many than graph states. Clearly, every graph state is also a
REW state, since the action of C2Z only produces some minus signs. However

8



1.3. k-uniform hypergraph states

the reverse does not hold. In order to prove this, we provide a counterexample
given by the state

|fG〉 =
1

2
√

2
(|000〉+ |001〉+ |010〉+ |011〉+ |100〉+ |101〉+ |110〉−|111〉), (1.6)

which typically appears in Grover’s algorithm. It is easy to show that the
geometric measure of genuine multipartite entanglement [36] (defined in Eq.
(2.3)) of the state above is E2(|fG〉) = 1/4 [18], however every connected graph
state of three qubits has a multipartite geometric measure E2 = 1/2 [37]. In
conclusion graph states do not have such a rich structure as REW states, and
thus they cannot provide a satisfactory description of the latter. Notice that,
by construction, graph states only involve particular two-body interactions,
which in this case turn out to be not sufficient to achieve all REW states. In
order to overcome this problem, we introduce a wider class of states, namely
hypergraph states. Let us start from k-uniform hypergraph states (a subset of
the set of all hypergraph states), their definition will be given in a moment.

1.3 k-uniform hypergraph states

In this section we generalize the notion of graph states allowing interactions
which involve more than two parties. The mathematical tools needed to achieve
this task are k-uniform hypergraphs. A k-uniform hypergraph gk = {V,E} is
a set of n vertices V with a set of edges E, where each edge connects exactly
k vertices, and is called k-hyperedge (thus, a connected graph in the common
sense is a 2-uniform hypergraph). An Example of a k-uniform hypergraph can
be found on the LHS of Fig. 1.2.

Given a k-uniform hypergraph, by following an almost identical procedure
as before, we can find the corresponding k-uniform hypergraph state as follows:

1. Assign a qubit to each vertex.

2. Initialise each qubit to the state |+〉. Notice that the preparing procedure
is exactly the same as for graph states.

3. Wherever there is a k-hyperedge, perform a controlled Z operation be-
tween the k connected qubits. Formally, if the qubits i1, i2, ..., ik are
connected, then perform the operation CkZi1i2...ik , where the superscript
k stands for the number of qubits on which the operation acts, while the
subscripts i1i2...ik label the qubits involved. In the end, we get

|gk〉 =
∏

{i1,i2,...,ik}∈E

CkZi1i2...ik |+〉
⊗n , (1.7)

where {i1, i2, ...., ik} ∈ E means that the k vertices are connected by a
k-hyperedge.

9



1. Quantum Hypergraph States

Figure 1.2: Correspondence between a mathematical 3-uniform hypergraph
and the quantum state associated to it.

Once again, we refer the reader to Fig. 1.2, where the correspondence is
explicitly restated in terms of the circuital implementation of the corresponding
quantum state.

Fixed k, we call the class of k-uniform hypergraph states as Gk and the
general state out of it as |gk〉. Notice that k is an integer ranging from 1 to
n, namely 1 ≤ k ≤ n. Let us have a look at the two extreme cases. The
case k = 1 can be recast as Z gates acting locally on single qubits, while the
case k = n is the only one involving interaction among all n qubits, namely
CnZi1i2...in . Obviously, by setting k = 2 we recover the class of standard graph
states. The number of possible k-uniform hypergraph states is given by 2B(n,k),
therefore the most crowded classes are the ones where k is close to n/2.

At last, notice that the operations we perform, i.e. CkZi1i2...ik , are sym-
metric with respect to the computational basis, so that we do not need to care
about which qubits represent the control and which the target. This is actually
in accordance with our formalism with k-hyperedges.

As for standard graph states, a description in terms of the stabilizer for-
malism can be constructed as well. Just for the sake of simplicity, let us focus
on 3-uniform hypergraph states, namely when three-body interactions C3Z are
considered. For each vertex i we find the correlation operator defined as

K
(3)
i = Xi ⊗ C2ZN(i) = Xi

⊗
(i1,i2)∈N(i)

C2Zi1i2 , (1.8)

where the neighbourhood of the vertex i is defined asN(i) = {(i1, i2)|{i, i1, i2} ∈
E}, which is a simple generalization of the concept of neighbourhood already
introduced for graph states. Notice that now the neighbouring vertices are
given by couples, instead of single vertices, as the interaction involves three
different parties. As before, the set {K(3)

i }i=1,2,...,n defines the 3-uniform hy-
pergraph state as the only one fulfilling the n constraints

K
(3)
i |g3〉 = |g3〉 for every i = 1, 2, ..., n. (1.9)

10



1.3. k-uniform hypergraph states

Concerning the mathematical structure of the set {K(3)
i }, we can still work

out the group structure if we regard these n operators as generators of a group
(see appendix A.1). The group then play the same role as before for standard
graph states, stabilizing the state |g3〉. However, in contrast with the stabilizer
group of standard graph states, the group obtained in this case can no longer
be regarded as a subgroup of the Pauli group, as it includes the C2Z gate.
Nevertheless the group is still Abelian, namely any two K

(3)
i and K

(3)
j defined

according to Eq. (1.8) commute. The proof will be given for the larger set of
hypergraph states (see appendix A.1), thus the commutativity of the stabilizers
for 3-uniform hypergraphs will then follow as a special case.

In the general case where a k-uniform hypergraph is concerned, for each
vertex i = 1, 2, ..., n we can define a correlation operator given by

K
(k)
i = Xi ⊗ Ck−1ZN(i) = Xi

⊗
(i1,i2,...,ik−1)∈N(i)

Ck−1Zi1i2...ik−1
, (1.10)

where the neighbourhoodN(i) of the vertex i is given byN(i) = {(i1, i2, ..., ik−1)
|{i, i1, i2, ..., ik−1} ∈ E}, namely the set of k − 1-tuples (i1, i2, ..., ik−1) of ver-
tices connected to i via k-hyperedges. The set of operators generated by
{K(k)

i }i=1,2,...,n still form an Abelian group (see appendix A.1) which uniquely
stabilizes a k-uniform hypergraph state. The unique k-uniform hypergraph
state corresponding to the set {K(k)

i } is then defined as the eigenvector with

eigenvalue one of the n operators {K(k)
i }, in formulae we have

K
(k)
i |gk〉 = |gk〉 for every i = 1, 2, ..., n. (1.11)

Notice that in the special case of local interactions k = 1 the definition (1.10)
still works. Since we set C0Z = −1 and the fact that X |−〉 = − |−〉, the
n operators given by Eq. (1.10) still stabilize the corresponding 1-uniform
hypergraph state.

As for standard graph states, the definition following the stabilizer group
is completely equivalent to the constructive procedure involving controlled Z
operations on k qubits. The equivalence is explicitly derived in the most gen-
eral case of non-uniform hypergraphs (see appendix A.2), whose k-uniform
hypergraphs are a strict subset.

Before moving to the notion of general hypergraph states, let us conclude
this section with the following note. The classification induced by k-uniformity
allows us to prove that two sets Gk and Gk′ cannot be connected by local
Pauli operators for k 6= k′ (apart from the trivial separable state |+〉⊗n which
corresponds to the empty graph and thus is already contained in every class).
Therefore, each set Gk gives rise to an inequivalent class under the action of
the local Pauli group of n qubits (see appendix A.3). It is, however, an open
question whether two sets Gk and Gk′ with k 6= k′ are inequivalent under the
action of general local unitaries. An affirmative answer to this question would
imply a corresponding multipartite entanglement classification.

11



1. Quantum Hypergraph States

1.4 Hypergraph states

In this section we conclude our ideal path by finding out what is a general
hypergraph state, and eventually showing the one-to-one correspondence with
REW states. Recall that this was our starting point.

Since we have already introduced the definition of k-uniform hypergraphs,
the definition of a general hypergraph state follows trivially. A hypergraph is
a collection of n vertices where hyperedges of any order k (thus k is no longer
fixed but ranges from 1 to n) are considered. The best way to understand this
scenario is to have a look at Fig. 1.3, where the correspondence between the
underlying mathematical hypergraph and the circuital implementation of the
corresponding quantum state is explicitly pointed out. Notice that the starting
state remains the same, i.e. |+〉⊗n, but now to each hyperedge corresponds a
controlled CkZi1i2...ik where 1 ≤ k ≤ n. For instance, in Fig. 1.3 hyperedges
connecting 1, 2, 4 and 7 vertices appear, and thus controlled Z operations act-
ing on 1, 2, 4 and 7 qubits must be considered. We recall the reader that the
idea is essentially the same as for k-uniform hypergraph states, nevertheless
hyperedges of different order can be present in the same graph now. We name
the set of states produced in this way as G≤n, stressing that hyperedges con-
necting up to n vertices are present, and the general state belonging to this
set as |g≤n〉. Given a mathematical hypergraph, the quantum state associated
to it can be found by following three simple steps:

1. Assign a qubit to each vertex.

2. Initialise each qubit as |+〉, the total initial state is then |+〉⊗n.

3. Wherever there is a hyperedge, perform a controlled Z operation between
the connected qubits. Formally, if the qubits i1, i2, ..., ik are connected
by a k-hyperedge, then perform the operation CkZi1i2...ik . We eventually
get the quantum state

|g≤n〉 =
n∏
k=1

∏
{i1,i2,...,ik}∈E

CkZi1i2...ik |+〉
⊗n , (1.12)

where {i1, i2, ...., ik} ∈ E means that the k vertices are connected by
a k-hyperedge. Notice that the product on k = 1, 2, ..., n accounts for
different kinds of hyperedges that we can find in a general hypergraph.

It is worth of mention that this definition allows us to count the number of
hypergraph states as any possible combination of k-uniform hypergraphs. As
the number of the latter ones, fixed k, is given by 2B(n,k), the total number of
hypergraph states turns out to be

n∏
k=1

2B(n,k) = 2
∑n
k=1B(n,k) = 22n−1. (1.13)
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1.4. Hypergraph states

Figure 1.3: Correspondence between a mathematical hypergraph and the quan-
tum hypergraph state. The circle around vertex 6 stands for a local Z gate,
corresponding to a hyperedge of order k = 1, while the big circle around all
vertices corresponds to a full-body interaction.

Surprisingly (or not) this is exactly the number of states belonging to the REW
set, hence the counting hints that we are going in the right direction. However,
despite this noticeable coincidence, we still need to check whether any REW
state can be interpreted as a hypergraph state and vice versa. Before proving
our main result we would like to spend a few words on the stabilizer formalism
in this general scenario.

Given a completely general hypergraph, for any vertex i we define the
following correlation operator

Ki = Xi ⊗
n∏
k=1

Ck−1ZN(i) = Xi

n∏
k=1

⊗
(i1,i2,...,ik−1)∈N(i)

Ck−1Zi1i2...ik−1
, (1.14)

where the product over k still takes into account that hyperedges of different
orders are considered. For any value of k, the neighbourhood N(i) of the
vertex i is defined as N(i) = {(i1, i2, ..., ik−1)|{i, i1, i2, ..., ik−1} ∈ E}. Different
kinds of neighbourhoods can obviously appear in this scenario (single vertices,
couples and in general k−1-tuples), depending on the order k of the hyperedges
that the vertex i shows. For instance, in Fig. 1.3 the neighbourhoods N(4) of
vertex 4 are the sets 1, (2, 3, 5) and (1, 2, 3, 5, 6, 7), since the vertex is connected
via 2-, 4- and 7-hyperedges. We would like to stress that, even though the n
correlation operators defined above seem more complicated than the ones found
for k-uniform hypergraphs, they are meant exactly in the same spirit. It is just
a matter of notation which inevitably becomes slightly heavier.

The question is now whether the operators {Ki}i=1,2,...,n defined in Eq.
(1.14) show some nice mathematical properties. It can be shown (see ap-
pendix A.1) that the set {Ki} still generates an Abelian group which uniquely
stabilizes the hypergraph state. The hypergraph state corresponding to the
set {Ki} is then defined as the unique eigenvector with eigenvalue one of every
generator Ki, in formulae

Ki |g≤n〉 = |g≤n〉 for every i = 1, 2, ..., n. (1.15)

13



1. Quantum Hypergraph States

Furthermore, it turns out (see appendix A.2) that the definition according
to the stabilizer formalism is equivalent to the one in terms of controlled Z
gates. Therefore, having proved that this holds in the most general scenario
of hypergraph states, namely where k-hyperedges of any order 1 ≤ k ≤ n
are present, we have automatically proved it for k-uniform hypergraph states
(notice that also standard graph states, i.e. k = 2, are included).

1.5 Equivalence between hypergraph and REW

states

We are now ready to state our main result: the set G± of REW states and
the set G≤n of hypergraph states coincide. The direction G≤n ⊆ G± follows
trivially, since any |g≤n〉 is obtained from |+〉⊗n by applying controlled Z gates
whose action is just to create some minus signs in front of the states of the
computational basis. The other direction G± ⊆ G≤n is not so trivial but can be
proved by the following constructive approach. Suppose we are given a REW
state |f〉, then the following procedure leads to the underlying hypergraph:

1. Every time |f〉 has a minus sign in front of the components of the com-
putational basis with one excitation, i.e. of the form |0...01k0...0〉, apply
local Z operations. Doing so, we erase the right minus signs in front of
the components with one excitation, but nevertheless we create many
other unnecessary minuses in front of components with more than one
excitations.

2. Apply now C2Z gates in order to erase the negative signs in front of the
components with two excitations. Notice that these minuses are either
from the original state |f〉 or as by products of the previous step. The
key point is that the minus signs previously erased (i.e. the ones in
front of the single-excitation states) remain untouched, since C2Z acts
non-trivially on states with at least two excitations.

3. As a general rule, apply CkZ, from k = 1 till k = n, erasing subsequently
the minus signs in front of the components of the computational basis.
In general, at the step k we will be able to erase the minus signs in front
of the states with up to k excitations.

4. Consider the collection of gates that you need to bring |f〉 back to |+〉⊗n,
this provides the hypergraph associated to the regarded REW state.

Notice that, even though the final collection of controlled Z gates is composed
of commuting operators, the proof is actually based on an ordered procedure,
namely at each step we consider gates acting on one more qubit than in the pre-
vious step. This is an essential ingredient, otherwise we could change the signs
already fixed. Furthermore, since the procedure is uniquely defined according
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1.5. Equivalence between hypergraph and REW states

Figure 1.4: Hypergraph corresponding to the REW state given by Eq. (1.16).

to the REW state from which we start, the underlying hypergraph is unique.
Therefore, the correspondence between the sets G± and G≤n is one-to-one.

Just to fix the ideas, let us consider the explicit example of the three-qubit
REW state given by

1

2
√

2
(|000〉+ |001〉+ |010〉 − |011〉 − |100〉 − |101〉 − |110〉 − |111〉). (1.16)

The task is to find out the underlying hypergraph state by following the explicit
procedure explained above. It is straightforward to see that the following chain
of states leads to the initial state |+〉⊗3:

1
2
√

2
(|000〉+ |001〉+ |010〉 − |011〉 − |100〉 − |101〉 − |110〉 − |111〉),

↓ Z1

1
2
√

2
(|000〉+ |001〉+ |010〉 − |011〉+ |100〉+ |101〉+ |110〉+ |111〉),

↓ C2Z23

1
2
√

2
(|000〉+ |001〉+ |010〉+ |011〉+ |100〉+ |101〉+ |110〉 − |111〉),

↓ C3Z123

1
2
√

2
(|000〉+ |001〉+ |010〉+ |011〉+ |100〉+ |101〉+ |110〉+ |111〉).

Therefore the hypergraph corresponding to the REW state of Eq. (1.16) is the
one drawn in Fig. 1.4.

Other interesting examples are REW states employed in quantum algo-
rithms. In Grover’s algorithm for instance, REW states with only one minus
sign appear, such as the state (1.6) for three qubits (the minus sign marks
the single solution of the search problem). It is easy to see that, when the
number of minus signs is odd, the REW state always involves a controlled Z
gate acting on all the qubits, therefore involving n-body interactions. On the
contrary, for REW states employed in Deutsch-Jozsa’s algorithm, such a gate
is never needed, since the function f is either constant or balanced (balanced
means that the number of minus signs equals the number of plus signs), while
the application of a controlled Z gate acting on all qubits would change just
one sign in the n-qubit state, therefore necessarily leading to an unbalanced
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1. Quantum Hypergraph States

function. An explicit example of a balanced state is given by modifying the
state in Eq. (1.16) such that a plus sign is placed in front of the component
|111〉. Such a state would be generated by a sequence of the Z1 and the C2Z23

gates, without the application of C3Z123.

1.6 Comments and future work

In conclusion, we have introduced the class of quantum hypergraph states,
which are associated to corresponding mathematical hypergraphs and are sta-
bilized by non local observables. We have shown that there is a one-to-one
correspondence between the set of hypergraph states and the set of real equally
weighted states, which are essential for quantum algorithms. A constructive
method was introduced which allows us to generate the hypergraph underlying
a given real equally weighted state, i.e. a quantum state encoding a Boolean
function f . We have discussed the types of many-body interactions needed to
generate general hypergraph states in a Hamiltonian description, going beyond
the two-body interaction that characterises graph states.

For future studies, since the class of hypergraph states naturally generalizes
the class of graph states, it is of great interest to ask whether some of the many
results about the latter, such as for instance measurement-based quantum
computing [38], entanglement witnessing [37], and quantum error correcting
techniques [39, 40], can be extended to the former. Some achievement in this
sense already exists, mainly related to purification protocols [41]. Furthermore,
this larger class of states may enable even more applications and quantum
protocols, especially in connection to already existing algorithms employing
hypergraphs, as e.g. the 3-SAT problem [42].
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Chapter 2
Entanglement in Grover’s
Algorithm

Even though entanglement is considered as a major resource in quantum in-
formation processing, the role it plays in achieving the quantum computa-
tional speed-up in the currently known quantum algorithms is not yet fully
understood. In Ref. [7] it was shown that in Shor’s algorithm multipartite
entanglement is needed to achieve exponential computational speed-up with
quantum resources. More recently, it was shown that multipartite entangled
states are employed in the Deutsch-Jozsa algorithm and in the first step of
the Grover algorithm [8, 17]. Moreover, multipartite entanglement was shown
to be present at each computational step in Grover’s algorithm and a scale
invariance property of entanglement dynamics was proved [18].

In this chapter we review in a unified way the results presented in Refs.
[17, 18] for Grover’s algorithm. We firstly analyse in detail the entanglement
content of the initial states of the Grover algorithm, and show how they can be
expressed in terms of hypergraphs. Then, we calculate the amount of entan-
glement of the multiqubit quantum states employed in the whole algorithm,
by following its dynamics at each step of the computation. Genuine multipar-
tite entanglement is shown to be always present. Remarkably, the dynamics
of any type of entanglement as well as of genuine multipartite entanglement
is independent of the number n of qubits for large n, thus exhibiting a scale
invariance property. We compare this result with the entanglement dynam-
ics induced by a fixed-point quantum search algorithm, and finally investigate
criteria for efficient simulatability in the context of the standard Grover search.

2.1 Some remarks about Grover’s algorithm

Let us remind the reader that the Grover search algorithm [3] employs pure
states of n qubits which are initially prepared in |ψ0〉 of Eq. (1.1), namely an
equally weighted superposition of all computational basis states. The initial
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2. Entanglement in Grover’s Algorithm

state |ψ0〉 can be more conveniently written as

|ψ0〉 =

√
N −M
N

|X0〉+

√
M

N
|X1〉 , (2.1)

where N = 2n and M is the number of searched items (in the following also re-
ferred to as “solutions” of the search problem). Here, |X1〉 = 1√

M

∑
xs
|xs〉 rep-

resents the superposition of all the states |xs〉 that are solutions (i.e. searched
items), and |X0〉 = 1√

N−M

∑
xn
|xn〉 denotes the superposition of all the states

|xn〉 that are not searched for. The global state after k iterations of the Grover
operation G has the form [1, 43]

|ψk〉 ≡ Gk |ψ0〉 = cos θk |X0〉+ sin θk |X1〉 , (2.2)

with θk = (k + 1/2)θ and θ = 2
√
M/N in the limit M � N . The unitary

operation G is usually decomposed into two basic blocks, G = I ◦ Uf , where
Uf represents the oracle call, i.e. Uf = 1−2 |X1〉 〈X1|, and I is the inversion
about the mean operation, namely I = −(1−2 |ψ0〉 〈ψ0|). The operation G is
repeated until the state |ψk〉 overlaps as much as possible with |X1〉, namely
for kopt = CI[(π/θ−1)/2], where CI[x] denotes the closest integer to x. In the

limit M � N , the optimal number of iterations is kopt = CI[π
4

√
N/M − 1

2
],

i.e. it is proportional to the square root of N . In the following we will consider
the condition M � N to be always fulfilled.

2.2 Entanglement content of initial states in

Grover’s algorithm

We now study the entanglement properties of the initial states |fG〉 = Uf |ψ0〉,
i.e. the states created at the beginning of the Grover algorithm just after the
action of the oracle Uf , in terms of the number of qubits n for a fixed small
number of solutions, M = 1, 2. Remember that the state |fG〉 is given by
Eq. (1.2), where the Boolean function is now defined such that fG(x) = 1 if
x is a solution of the search problem, and fG(x) = 0 otherwise. The search
problem then reduces to find the strings that, input to fG, give the value one
as output. Notice that, since we consider a small number of solutions, then the
state |fG〉 is apparently very similar to |ψ0〉, as only some minus signs appear.
However, the presence of these few minus signs will make a big difference in
the entanglement content of the Grover initial state |fG〉 with respect to |ψ0〉.

We quantify the amount of entanglement by the geometric measure of en-
tanglement (GME) [36], which for a pure n-partite state |ψ〉 reads

Eq(|ψ〉) = 1− max
|φ〉∈Sq

| 〈ψ|φ〉|2 , (2.3)

where Sq is the set of q-separable states, namely states that are separable for
q partitions of the n-qubit system. The GME represents a suitable entangle-
ment measure when multipartite systems are taken into account. Notice that
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2.2. Entanglement content of initial states in Grover’s algorithm

En quantifies the amount of entanglement of any kind contained in the global
system, i.e. it is non-vanishing even for states showing entanglement just be-
tween two subsystems, while E2 quantifies genuine multipartite entanglement
[44]. In the section we restrict ourselves to the evaluation of En only.

2.2.1 Single solution

Let us first consider the case of a single solution to the search problem (M =
1). Without loss of generality, as will be proved later, we consider the state
representing the solution to be invariant under any permutation of the n qubits
(e.g. |111...1〉). Therefore, the state |fM=1〉 after the oracle call is given by

|fM=1〉 =
1√
2n

( 2n−1∑
x=0

|x〉 − 2 |1...11〉
)
, (2.4)

and it is also permutation invariant. Let us first compute En for the above state
for varying n. Due to the symmetry property, the search for the maximum in
Eq. (2.3) can be restricted to symmetric separable states |φ〉⊗n [45], so that
the maximization involves only the two parameters α ∈ [0, π] and β ∈ [0, 2π]
that define the single-qubit state |φ〉 = cos α

2
|0〉+ eiβ sin α

2
|1〉.

The GME En for a single solution then takes the form

En(|fM=1〉) = 1−max
α,β

1

2n

∣∣∣( cos
α

2
+ eiβ sin

α

2

)n − 2eiβ sin
α

2

∣∣∣2. (2.5)

The optimal value of β can be shown to be zero by induction over the number n
of qubits, while the optimal α can be found by setting t = tan α

2
and calculating

the derivative of the overlap explicitly, which reduces to finding the root of a
polynomial in t.

In Fig. 2.1 we report the behaviour of En(|fM=1〉). As we can see, the
amount of entanglement decreases exponentially for increasing number of qu-
bits. This fact has a very intuitive explanation. As n increases, the number
of states composing the computational basis increases exponentially, while the
number of solution is fixed as constant M , thus the ratio M/2n becomes ex-
ponentially smaller. So, in the limit of infinitely many qubits, the state shows
a vanishing amount of entanglement, cause it becomes indistinguishable from
the fully separable state |ψ0〉. Notice nevertheless that, as the state |fM=1〉
has an odd number of minus signs, even though the state shows an infinitely
small amount of entanglement En, the results in Ref. [8] guarantee that the
involved entanglement is actually genuine multipartite.

We point out that all the results explicitly derived for permutation invari-
ant states hold also for any Grover search with one searched item. Actually,
all these states can be achieved from the symmetric one by applying ten-
sor products of σx Pauli operators and identity operators 1 (e.g. |001...1〉 =
σx ⊗ σx ⊗ 1 ... |111...1〉). Since these operations are local, they obviously do
not change the entanglement content of the resulting state.
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Figure 2.1: The GME En(|fM=1〉) as a function of the number of qubits n
composing the register, for a single searched item.

2.2.2 Two solutions

Let us now focus on the states employed in the case of two solutions of the
search problem |fM=2〉, i.e. states of the form (1.2) with two minus signs. We
introduce a sort of classification of these states based on the Hamming dis-
tance d between the two computational basis states representing the solutions.
We will show that the entanglement properties of the regarded states depend
crucially on the number of digits in which the two solutions differ, i.e. on their
Hamming distance d.

Without loss of generality, as will be proved below, we consider first the
case in which the two n-qubit states representing the solutions differ in the
first d digits and are invariant under permutations of the first d and last n− d
qubits, respectively (e.g. | 0...0︸︷︷︸

d

1...1〉 and | 1...1︸︷︷︸
d

1...1〉), i.e.

|fM=2〉 =
1√
2n

( 2n−1∑
x=0

|x〉 − 2(| 0...0︸︷︷︸
d

1...1〉+ | 1...1︸︷︷︸
d

1...1〉)
)
. (2.6)

We first compute En for this set of states for varying n. Due to the permutation
invariance property, the search for the GME En can still be restricted to separa-
ble states that show the same symmetry [45], i.e. |φ〉⊗d |ϕ〉⊗n−d. Therefore the
maximization involves only the four parameters α, γ ∈ [0, π] and β, δ ∈ [0, 2π]
that define the two single-qubit states |φ〉 and |ϕ〉.

The GME En for two solutions with Hamming distance d then takes the
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Figure 2.2: The GME En(|fM=2〉) as a function of the number of qubits n
composing the register, for two searched items. Several Hamming distances d
are plotted for a comparison: d = 1 blue dots, d = 2 purple squares, d = 3
yellow diamonds, d = 4 green triangles. Notice that the state of two qubits
is always separable for both d = 1, 2 and that En(|fM=2〉) for three qubits
collapses to the single value 1/2.

form

En(|fM=2〉) = 1− max
α,β,γ,δ

1

2n

∣∣∣( cos
α

2
+ eiβ sin

α

2

)d(
cos

γ

2
+ eiδ sin

γ

2

)n−d
(2.7)

−2ei(n−d)δ sinn−d
γ

2

(
cosd

α

2
+ eidβ sind

α

2

)∣∣∣2.
Notice that when d = n the maximization procedure involves only two param-
eters. This can be easily explained by noticing that in this case the state turns
out to be completely invariant under any permutation of the qubits, and thus
only two parameters are needed.

As before, the optimal parameters α, β, γ and δ can be computed by
maximizing the squared overlap numerically. The obtained results are shown
in Fig. 2.2 where the GME is plotted versus the number of qubits composing
the register. As in the case M = 1, we can see that En approaches zero
exponentially fast for increasing n. It is worth mentioning that this behaviour
holds for any value of the Hamming distance d, so in the limit of large n, the
GME depends only slightly on d. This is however not the case if one considers
a finite number n of qubits, as can be clearly seen in Fig. 2.2. The higher the
Hamming distance is, the more entangled the state is. Therefore, in this case
the Hamming distance plays a crucial role for the amount of entanglement,
since states with two solutions with higher distance d exhibit a higher amount
of entanglement.
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2. Entanglement in Grover’s Algorithm

At last, notice that all the results presented so far, even if they were ex-
plicitly derived for partially permutation invariant states, hold for any Grover
search with two searched items, i.e. M = 2. Actually, analogously to the case
of a single solution previously discussed, also for M = 2 all of these states with
fixed Hamming distance d can be reached from a partially symmetric one by
applying tensor products of σx Pauli operators and identity operators 1 and/or
permutations of the n qubits. Again, since these operations are local, they do
not change the entanglement content of the resulting state.

2.2.3 Connection to hypergraph states

Quantum hypergraph states introduced in the previous chapter allow us to de-
scribe the initial states employed in the Grover algorithm in a very convenient
way. Indeed the kind of entanglement and the gates (of the CZ type) that we
need in order to create them experimentally will emerge very easily from their
hypergraph structure.

Consider firstly the initial symmetric state |fM=1〉 given by Eq. (2.4). It
is then straightforward to see that it corresponds to the hypergraph where
the single hyperedge involving all vertices is drawn. Therefore, it has a very
simple structure in the light of hypergraphs, but a very different entanglement
content from standard graph states.

In order to discuss the case with two minus signs, let us first notice that
the total hyperedge of order n never appears now, since we are dealing with
an even number of minus signs. Hence, even though states |fM=2〉 of Eq. (2.6)
might have a much more complicated graph structure than |fM=1〉, the gate
CnZ is never involved to create them. Just for the sake of simplicity, let us
focus on the specific case of four qubits, the general result for n qubits will be
stated later.

The hypergraphs corresponding to the four-qubit symmetric states |fM=2〉
with Hamming distance d = 1, 2, 3 and 4 are shown in Fig. 2.3. When d = 1
the underlying hypergraph is the one where only the vertices 2, 3 and 4 are
connected by a 3-hyperedge. Thus, the biseparability of the state with respect
to the bipartition 1|234 follows immediately. On the other hand, when d = 3
the hypergraph is given by connecting the vertex 4 to the other three vertices
in any possible way, i.e. exploiting any possible hyperedge. Notice instead
that the case d = 4 must be recast to the case with a plus sign in front of the
computational basis state |0...00〉 by multiplying all amplitudes by a factor −1.
As a result it is now not so difficult to show that the corresponding hypergraph
is the one with all possible hyperedges, apart from the total one C4Z. Thanks
to the above discussion we can state the general rule for the initial multiqubit
states |fM=2〉 with general Hamming distance d.

Let (| 0...0︸︷︷︸
d

〉+ | 1...1︸︷︷︸
d

〉)| 1...1︸︷︷︸
n−d

〉 be the only two states with a negative phase in

the superposition |fM=2〉, then the hypergraph related to |fM=2〉 can be found
as follows:
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2.3. Entanglement dynamics in Grover’s algorithm

Figure 2.3: Hypergraphs associated to the four-qubit initial Grover states with
two solutions for several values of the Hamming distance. Top-left corner:
d = 1, top-right corner: d = 2, bottom-left corner: d = 3, and bottom-right
corner: d = 4. Each empty vertex represents a qubit. Full dark dots, dark lines
and grey faces represent hyperedges of order 1, 2 and 3, respectively. Notice
that in the hypergraph with d = 4 also the hidden face connecting the vertices
1, 2 and 3 is present.

1. Group the last n− d vertices with a hyperedge of order n− d.

2. Connect the whole group to the remaining d vertices in any possible
way, namely by exploiting hyperedges of any order greater than n − d.
Remember not to use the hyperedge of order n.

Notice that both the extreme cases d = 1 and d = n fit into this scheme.
Regarding the former, since we are not allowed to draw the hyperedge of order
n, we are left with a biseparable hypergraph. Instead, for the latter we do not
apply the first step of the procedure above, but we nevertheless connect all
possible vertices according to the second step.

2.3 Entanglement dynamics in Grover’s algo-

rithm

In this section we study the entanglement properties of the states (2.2) in
terms of the number of iterations k and the number of qubits n for a fixed
number of solutions. We still quantify the amount of entanglement by the
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2. Entanglement in Grover’s Algorithm

GME defined in Eq. (2.3), calculating both En and E2 at every step k of the
Grover algorithm. As before, we focus on the two simple cases of a single and
two solutions, namely M = 1, 2.

2.3.1 Single solution

Let us first consider the case of a single solution to the search problem (M = 1).
As done in the previous section, we consider the state |X1〉 representing the
solution to be invariant under any permutation of the n qubits (e.g. |11...1〉).
Therefore, the state |ψk,M=1〉 at the step k of the algorithm is also permutation
invariant for all k’s. Let us first compute En for this set of states for varying
k. Due to this symmetry property, the search for the maximum in Eq. (2.3)
can still be restricted to symmetric separable states |φ〉⊗n [45], so that the
maximization involves only the two parameters α ∈ [0, π] and β ∈ [0, 2π] that
define the state |φ〉. Furthermore, since θk ∈ [0, π/2] the coefficients of |ψk〉,
defined in Eq. (2.2), are all positive and the optimal value of the phase factor
can be fixed to β = 0. The GME En for a single solution then takes the form

En(|ψk,M=1〉) = 1−max
α

∣∣∣ cos θk√
2n − 1

[(
cos

α

2
+ sin

α

2

)n
− sinn

α

2

]
+ sin θk sinn

α

2

∣∣∣2 (2.8)

The optimal value of α can then be found by setting t = tan α
2

and calculating
the derivative of the overlap explicitly, which reduces to finding the root of a
polynomial in t.

In Fig. 2.4 we report the behaviour of En(|ψk,M=1〉) for n = 12: the
entanglement increases in the first half of iterations, achieves the maximal
value of about 1/2, and then decreases to zero as soon as the optimal number
of iterations is reached. This behaviour is qualitatively similar to the ones
shown in [46, 47], where the dynamics of both the two-qubit concurrence and
the Von Neumann entropy of the half-qubit reduced state was studied.

In order to quantify only genuine multipartite entanglement we now calcu-
late E2. The expression of E2(|ψ〉) can be rewritten as [48]

E2(|ψ〉) = 1−max
P

max
µ

µ2, (2.9)

where the µ’s are the Schmidt coefficients of |ψ〉 with respect to a fixed bipar-
tition P |Q, and maxP denotes the maximization over all possible bipartitions.
Notice that, since the regarded state |ψk,M=1〉 is permutation invariant, we
need to check only bn/2c bipartitions, where bxc is the largest integer smaller
or equal to x. In order to find the maximal Schmidt coefficient of |ψk,M=1〉
among all possible bipartitions we fix a generic bipartite splitting P |Q, where
P is composed of m qubits and Q of the remaining n −m, and compute the
eigenvalues of the reduced density operator ρP = TrQ[|ψk,M=1〉 〈ψk,M=1|], given
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Figure 2.4: Evolution of entanglement as a function of the number of steps k,
for a single searched item, with n = 12 qubits and kopt = 49. En(|ψk,M=1〉) is
depicted by blue dots, while E2(|ψk,M=1〉) by purple squares. The yellow dots
represent the success probability.

by the following 2m × 2m matrix

ρP =


a . . . a b
...

. . .
...

...
a . . . a b
b . . . b c

 , (2.10)

where a = 2n−mA2, b = a − A(A − B), and c = a − A2 + B2, with A =
cos θk/

√
2n − 1 and B = sin θk. The maximal eigenvalue of the above matrix

can be explicitly calculated (see Appendix B.1), and it is given by

λmax =
1

2
+

1

2

[
1− 4(2m − 1)(2n−m − 1)A2(A−B)2

] 1
2 . (2.11)

By deriving the above expression with respect to m, it is easy to shows that
the bipartition that leads to the maximum eigenvalue corresponds to m = 1
for all values of k. According to Eq. (2.9), then the multipartite GME E2

takes the explicit form

E2(|ψk,M=1〉) = (2.12)

1

2
− 1

2

[
1− 4

2n−1 − 1

2n − 1
cos2 θk

( cos θk√
2n − 1

− sin θk
)2
] 1

2
.

This result shows that genuine multipartite entanglement has a qualitative
similar behaviour as En(|ψk,M=1〉) (see Fig. 2.4), even if it achieves a maxi-
mum of about 0.14 and the curve is derivable in that point. Notice also that
E2(|ψk,M=1〉) is symmetric with respect to kopt/2.
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2. Entanglement in Grover’s Algorithm

We now show that the entanglement dynamics in the Grover algorithm,
namely the behaviour of En and E2 during the operation of the algorithm,
does not depend on the number of qubits n, thus exhibiting the property of
scale invariance. For 2n � 1 the two entanglement measures take the simple
forms (see Appendix B.2 for the detailed calculation)

En(|ψk,M=1〉) '

{
sin2 θk for θk ≤ π/4,

cos2 θk for θk > π/4,

E2(|ψk,M=1〉) ' 1
2

[
1−

(
1− 1

2
sin2 2θk

) 1
2

]
. (2.13)

Both expressions depend only on θk ' π
2
k/kopt, namely on k/kopt, and not

on k and n separately. Therefore, the entanglement dynamics of the Grover
algorithm is scale invariant in the sense that it only depends on the number of
steps taken, relative to the total number, but not on the length of the list.

We want to point out that all the results presented so far, even if they were
explicitly derived for permutation invariant states, hold for any instance of the
Grover algorithm with one searched item, i.e. M = 1. Indeed, the general
single searched item |X1〉 in the Grover algorithm can be achieved by local
unitaries from the symmetric state |11...1〉, without changing its entanglement
content.

2.3.2 Two solutions

Let us now consider the case of two searched items (i.e. M = 2). As an illus-
trative example we consider the case in which both |00 . . . 0〉 and |11 . . . 1〉 are
solutions of the search problem, thus the state |X1〉 is a GHZ state composed
of n qubits, and the state at each step of the computation is still permutation
invariant. Thanks to permutation symmetry, the measure of any entanglement
En is given by

En(|ψk,M=2〉) = 1−max
α

∣∣∣ cos θk√
2n − 2

[(
cos

α

2
+ sin

α

2

)n
(2.14)

−
(

cosn
α

2
+ sinn

α

2

)]
+

sin θk√
2

(
cosn

α

2
+ sinn

α

2

)∣∣∣2.
We maximized this quantity numerically; in Fig. 2.5 we show the behaviour
for n = 13. Notice that after kopt iterations, the measure En(|ψk,M=2〉) is no
longer zero but equal to 1/2. That is because the final state is no longer fully
separable but instead it is close to the GHZ state. In this case the maximal
value that the entanglement reaches during the computation is about 2/3,
i.e. higher than the case M = 1. Furthermore, this maximum is no longer
reached at half of the optimal number of steps kopt, but in a later step, i.e.
k/kopt ' 0.61.

Regarding genuine multipartite entanglement, E2 with two symmetric so-
lutions can be computed by following an analogous procedure as for a single

26



2.3. Entanglement dynamics in Grover’s algorithm
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Figure 2.5: The GME as a function of the number of steps k, for two symmetric
solutions of the search problem. The number of qubits is n = 13, and kopt = 49.
En(|ψk,M=2〉) is given by blue dots, E2(|ψk,M=2〉) by purple squares. The yellow
dots represent the success probability.

solution. The reduced density matrix for the general bipartite splitting P |Q,
where m qubits are in P and n−m in Q, is now given by

ρP =


c b . . . b d
b a . . . a b
...

...
. . .

...
...

b a . . . a b
d b . . . b c

 , (2.15)

where a, b, c are given below Eq. (2.10), d = a − 2A(A − B), with now A =
cos θk/

√
2n − 2 and B = sin θk/

√
2. It turns out (see appendix B.1) that again

the maximum eigenvalue corresponds to the bipartite splitting with m = 1,
and E2(|ψk,M=2〉) can be expressed analytically as

E2(|ψk,M=2〉) = 1− 2n − 4

2n − 2
cos2 θk −

( cos θk√
2n − 2

+
sin θk√

2

)2

. (2.16)

This result is shown in Fig. 2.5. Notice that multipartite entanglement has a
different behaviour from En(|ψk,M=2〉). It is a monotonically increasing func-
tion that approaches the maximum value of 1/2 when the computation stops.

In the asymptotic limit 2n � 1 the GME can be expressed (see appendix
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2. Entanglement in Grover’s Algorithm

B.2) as

En(|ψk,M=2〉) '

{
sin2 θk for θk ≤ arccos 1/

√
3,

1+cos2 θk
2

for θk > arccos 1/
√

3 ,

E2(|ψk,M=2〉) '
1

2
sin2 θk . (2.17)

As a consequence, both quantities exhibit the same scale invariance behaviour
as discussed above for the case with one searched item.

Notice that the above results can be generalized to those search problems
in which the two solutions are different in all digits, namely whenever the
two solutions have maximal Hamming distance d = n, but not to all search
problems with M = 2.

2.4 Entanglement dynamics in the fixed-point

π/3 quantum search algorithm

In the previous section we have shown that the amount of entanglement is
non-vanishing during the Grover algorithm and that its behaviour is scale
invariant for a single solution to the search problem and in some instances of
two solutions. We now show that a similar entanglement dynamics can be
found in the fixed-point π/3 quantum search. This kind of quantum search
algorithm was first introduced in [49] to overcome the fact that the Grover
algorithm might lead to a high error probability if the number of solutions M
is unknown, since it requires to stop at a precise iteration kopt, which depends
on M . In contrast, the π/3 quantum search always converges to the solutions,
and thus it can be regarded as a fixed-point algorithm, even if it is never as
fast as the standard Grover algorithm.

A possible way to realize such a fixed-point search is to slightly modify the
operations Uf and I, introduced in Sec. 2.1, in order to produce a π/3 shift
instead of a π shift [49], i.e.

Uf −→ Uπ
3

= 1−(1− ei
π
3 ) |X1〉 〈X1| , (2.18)

I −→ Iπ
3

= −(1−(1− ei
π
3 ) |ψ0〉 〈ψ0|).

Then, the sequence of gates to be applied is defined by the following recursive
formula

Am+1 = AmIπ
3
A†mUπ

3
Am, (2.19)

A0 = 1 .

We now compute both En and E2 for the employed states at each recursive
step m of the evolution. The results were obtained numerically and are shown
in Figs. 2.6 and 2.7 for both one and two solutions. Notice that the entangle-
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Figure 2.6: Evolution of entanglement in the π/3 search as a function of the
recursive step m, for a single searched item, with n = 12 qubits. Here and in
the following Fig. 2.7 blue dots, purple squares and yellow dots denote En, E2

and the success probability, respectively.

ment behaviour of both En and E2 is similar to the dynamics of the standard
Grover algorithm. These results indicate that entanglement plays the same
crucial role in both algorithms, even if a scale invariance property cannot be
proved in the fixed-point algorithm case.

2.5 Classical simulatability of Grover’s algo-

rithm

As a final comment, we may wonder whether the presence of true multipartite
entanglement means that Grover’s algorithm cannot be simulated efficiently
by classical means. By efficient classical simulation of Grover’s algorithm we
mean that, given a database of n qubits, i.e. 2n items, it is possible to classi-
cally simulate Grover’s algorithm with a total cost that scales as

√
2npoly(n).

In this section we show that well-known criteria which guarantee efficient sim-
ulatability do not apply for Grover’s algorithm.

According to the Gottesman-Knill theorem [1, 11], if a quantum compu-
tation starts in a computational basis state and involves only stabilizer gates
(i.e. Hadamard, CNOT, phase gates and measurement of operators in the Pauli
group), then it can be efficiently simulated on a classical computer. However,
it is easy to shown that

I(σz ⊗ 1(n−1))I† = −σz ⊗ I(n−1). (2.20)

Namely, I defined in Sec. 2.1 turns an element belonging to the Pauli group,
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Figure 2.7: Evolution of entanglement in the π/3 search as a function of the
recursive step m, for two symmetric solutions of the search problem, with
n = 13 qubits.

i.e. σz ⊗ 1(n−1), into an operator that no longer belongs to the Pauli group
(here I(n−1) represents the inversion about the mean operator acting on n− 1
qubits, instead of n). Therefore, I cannot be implemented by stabilizer gates,
and so the Grover iteration does not fit into the hypotheses of Gottesman-Knill
theorem.

Let us also consider the simulatability criterion involving matrix product
states (MPS) [50], and based on the maximal Schmidt rank χ of |ψ〉 over
all possible bipartitions. According to [50], if χ does not exceed poly(n) in
a computation that consists of poly(n) elementary gates (i.e. one- and two-
qubit gates) acting on pure states, then the computation can be classically
simulated efficiently. We notice that for states of the form (2.2), χ is upper
bounded by M + 1. However, although there exists a decomposition of the
Grover operation G into poly(n) elementary gates [1, 51], the state after the
action of each two-qubit gate does not have a simple symmetric form and we
no longer can keep track of the maximal Schmidt rank. Therefore, we cannot
conclude efficient simulatability.

The last approach that we show in order to study classical simulatability is
to investigate how much tangled the quantum circuit involved in Grover’s algo-
rithm is. Indeed it turns out [52] that there exists a clear connection between
the explicit realization of the circuit and the applicability of two well-known
simulatability criteria, namely simulation by using either MPS explained above
or contracting tensor networks (CTN) [53]. In more details the result in found
in Ref. [52] states as follows. Given a quantum circuit of n qubits and with
only one- and two-qubit gates, for each qubit wire i let Di be the number of
two-qubit gates that touch or cross the wire i. Let D = maxiDi, i.e. the max-
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imum number of two-qubit gates which touch or cross each wire in the circuit.
If D scales logarithmically in n, i.e. D = O(log n), then the quantum com-
putation can be efficiently simulated by applying either MPS or CTN. Let us
move to the Grover algorithm and check whether this criterion can be applied
in this particular case. Just for the sake of simplicity, let us focus on a single
step of the Grover procedure. It is then easy to see that both the oracle Uf and
the inversion about mean operation I can be seen as n − 1-controlled phase
gate. Therefore, we can implement them by adding an extra register of n− 2
qubits and using 2(n − 2) Toffoli gates [1, 51]. As a result, since each Toffoli
gate involves a fixed number of CNOT gates, during each step of the Grover
procedure the maximum number of gates touching or crossing each wire scales
linearly in n, D = O(n), and thus also the Jozsa’s argument turns out to be
vane.

The above results show that, although the Grover operation cannot be im-
plemented by stabilizer gates and therefore the Knill-Gottesman theorem can-
not be applied, the employed states at each Grover iteration are only slightly
entangled according to the criterion suggested in [50]. However, the circuital
structure needed to implement the Grover algorithm in terms of two-qubit
gates turns out to be enough complicated not to apply the criterion stated
in [52]. We would like to stress that, even though these insights point in
the direction of a negative answer to the question of efficient simulatability of
the present algorithm, they are nevertheless not sufficient to draw any certain
conclusion about classical simulatability of Grover’s algorithm.

2.6 Conclusions and comments

In this chapter we have exhaustively studied and quantified via the GME
the amount of entanglement, both bipartite and multipartite, that the states
employed in the Grover search algorithm typically show.

Firstly we have explicitly calculated the entanglement content that the
Grover states show in the initial step, namely after the first oracle call. The
entanglement content of these states turns out to vanish exponentially fast
as the number of qubits composing the register increases. Furthermore, in
the search for two items, the Hamming distance is found to play a role with
respect to the entanglement content. Actually, for fixed number of qubits in
the register, the state turns out to be more entangled for increasing Hamming
distance.

Then, we have studied the evolution of entanglement in the whole Grover’s
algorithm. In particular, we have given an explicit formula for the amount
of genuine multipartite entanglement, which is proved to be always non-zero
throughout the computation. Interestingly, the dynamics of entanglement
shows the behaviour of scale invariance, i.e. counter-intuitively the amount
of entanglement employed in the algorithm does not depend on the length of
the searched list, but only on the number of steps taken, relative to the optimal
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number of steps. This feature allows us to identify a unique entanglement dy-
namics, fixed a small number of solutions M = 1, 2, independently of the size
of the register on which the search is performed. The entanglement evolution
can thus be regarded as a property of the search problem under considera-
tion, rather than of the quantum states employed in the computation. Since
scale invariance is an important phenomenon in several areas of physics and
mathematics, our results may open new avenues in the understanding of scale
invariance properties of entanglement in other contexts, such as for example
in many-body systems and phase transitions.

We have also compared the dynamics of entanglement in the standard
Grover algorithm with the dynamics of entanglement shown by a different
kind of search algorithm, i.e. the π/3 quantum search, and we have proved
that the entanglement content exhibits a similar behaviour.

At last we have tried to answer the question concerning whether the pres-
ence of true multipartite entanglement means that Grover’s algorithm cannot
be simulated efficiently by classical means. We have found that well-known
criteria which guarantee efficient simulatability do not apply for Grover’s algo-
rithm, thus the question of simulatability of the Grover algorithm still remains
open.
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Chapter 3
Quantum Channel Detection

The possibility of determining properties of quantum communication channels
or quantum devices is of great importance in order to be able to design and
operate the channel at the best of its performances. In many realistic imple-
mentations some a priori information on the form of a quantum channel, or
a quantum noise process, is available and it is of great interest to determine
experimentally whether the channel has a certain property, by avoiding full
quantum process tomography, which allows a complete reconstruction of the
channel but it requires a large number of measurement settings [1].

In this chapter we present an efficient method to detect properties of quan-
tum channels, assuming that some a priori information about the form of the
channel is available [22, 23, 28]. The method relies on a correspondence with
entanglement detection methods for multipartite density matrices based on
witness operators. We first illustrate the method in the case of entanglement
breaking channels and non separable random unitary channels, and show how
it can be implemented experimentally by means of local measurements. We
then study the detection of non separable maps and show that for pairs of sys-
tems of dimension higher than two the detection operators are not the same
as in the random unitary case, highlighting a richer separability structure of
quantum channels with respect to quantum states. Finally we consider the
important sets of either PPT channel, completely co-positive channels, and
bi-entangling operations, developing some techniques to reveal maps outside
each of these sets.

3.1 Main idea and mathematical tools

By quantum channel detection (QCD) we mean the detection of a particular
property of a quantum channel without performing the full quantum tomog-
raphy of the process. Roughly speaking, the idea of QCD comes from the
application of the entanglement witness (EW) formalism for revealing entan-
gled states to quantum channels. The key ingredient is then the convexity of
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Separable States

Ρ M

RU Maps

Figure 3.1: Comparison between the sets of quantum states and quantum
maps. The set of random unitary channels is denoted by RU, and it is defined
in Eq. (3.17).

the set we want to detect (as e.g. random unitary (RU) maps), as will be clear
later.

For instance, just to clarify things, an EW acting on two qubits separates
the convex subset of separable states from the set of entangled states we want
to detect. In the same fashion, we can imagine a sort of map (we will give a
more precise definition and a coherent interpretation later) which cuts the set
of all quantum channels dividing the set of RU maps from the to-be-detected
map. Figure 3.1 explains quite well this idea: to separate the non-RU map M
(in the EW formalism this would correspond to the entangled state ρ) from the
set of RUs (corresponding to the set of separable states). This straightforward
comparison allows us to think about many similarities between EW and QCD,
however we have to be careful not to push this reasoning too further, since
there are many crucial differences between QCD and EW (as e.g. the subset
of separable states still spans the whole set of states while the subset of RUs
no longer does it).

The QCD method is mainly based on two ingredients: the concept of wit-
ness operators for entangled states [20] and the Choi-Jamio lkowski isomor-
phism [54, 55], which will be developed in the following.

3.1.1 Entanglement detection

An hermitian operator W is called an EW for the entangled state ρent if and
only if the following inequalities hold

Tr[Wρsep] ≥ 0 for all separable states ρsep,
Tr[Wρent] < 0 for at least the entangled state ρent.

(3.1)

Thus, by definition, W is always a positive-semidefinite operator if restricted
to the set of separable states. As a consequence, the states with negative
expectation value, i.e. Tr[Wρent] < 0, must be entangled. We say that these
states are detected by the witness W . The essential ingredient that allows
us to construct such an operator is actually the convexity of the subset of
separable states. Indeed, due to the linearity of the trace, the states ρ fulfilling
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3.1. Main idea and mathematical tools

Tr[Wρ] = 0 lie on a hyperplane which cuts the set of all states in two parts.
The convexity is thus needed to guarantee that all separable states ρsep lie in
the part with Tr[Wρsep] ≥ 0, while the entangled states detected by W lie
in the part where Tr[Wρent] < 0 holds. There are several ways to construct
the operator W , however we will mainly focus on witness operators based on
the geometric measure of entanglement (GME) [48, 56]. This choice is made
essentially in the light of the further generalization to QCD.

Assume we are given an entangled pure state |ψ〉 of a bipartite system.
Therefore, a witness W detecting entanglement “around” this state can be
constructed as

W = α2 1− |ψ〉 〈ψ| , (3.2)

where the coefficient α2 is the squared overlap between the closest separable
state |φ〉 ∈ S2 and the entangled state |ψ〉, in formulae

α2 = max
|φ〉∈S2

| 〈ψ|φ〉|2. (3.3)

This construction deeply relies on the GME E2 defined in Eq. (2.3), as it is
clear from the fact that Tr[W |ψ〉〈ψ|] = α2 − 1 = −E2(|ψ〉). Notice that, since
the maximum of a linear function over a convex set is always achieved on the
extremal points, the maximum above can be always calculated by maximizing
over pure separable states. Furthermore, it is easy to prove that the α above
is the smallest coefficient leading to either the largest negativity of W for |ψ〉
and a positive expectation value over all separable states. Thus, W is clearly
optimal among the witnesses of this form.

3.1.2 Quantum channels and the Choi-Jamio lkowski iso-
morphism

We firstly recall the reader that quantum channels, and in general quantum
noise processes, are described by completely positive (CP) and trace preserving
(TP) maps M , which can be expressed in the Kraus form [19] as

M [ρ] =
∑
k

AkρA
†
k, (3.4)

where ρ is the density operator of the quantum system on which the channel
acts and the Kraus operators {Ak} fulfil the TP constraint

∑
k A
†
kAk = 1.

The detection method proposed is based on the Choi-Jamio lkowski isomor-
phism [54, 55], which gives a one-to-one correspondence between CP-TP maps
acting on D(H) (the set of density operators on H, with arbitrary finite di-
mension d) and bipartite density operators CM on H⊗H with TrA[CM ] = 1B.
This isomorphism can be described as:

M ⇐⇒ CM = (M ⊗I )[|α〉 〈α|], (3.5)
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M M [ρ] ⇐⇒ |α〉
M

Figure 3.2: Scheme showing the Choi-Jamio lkowski isomorphism: on the left
the map M , on the right the corresponding Choi state CM .

where I is the identity map, and |α〉 is the maximally entangled state with
respect to the bipartite space H⊗H, i.e. |α〉 = 1√

d

∑d
k=1 |k〉 |k〉. This is

schematically depicted in Fig. 3.2. Notice that in the Kraus description the
Choi state CM corresponding to the map M takes the form

CM =
∑
k

(Ak ⊗ 1) |α〉 〈α| (A†k ⊗ 1) . (3.6)

A fruitful approach is then to think of a specific subset of quantum channels
in terms of the corresponding bipartite states. We thus reduce the problem
of detecting the map M to the already known problem of detecting the Choi
state CM . This obviously comes at a cost, the dimension of the state to be
revealed increases, since it now belongs to H⊗H, instead of H. Notice that
in general we can find a connection between the set of maps we want to rule
out and the entanglement class of the corresponding Choi states. This concept
will be developed and clarified in the following sections.

3.2 Entanglement breaking channels

In this section we clarify the main idea of the proposed quantum channel
detection method by considering as a first simple case the class of entanglement
breaking (EB) channels [24]. A possible definition for an EB channel is based
on the separability of its Choi state: a quantum channel is EB if and only if
its Choi state is separable. This allows us to formulate a method to detect
whether a quantum channel is not EB by exploiting entanglement detection
methods designed for bipartite systems [57].

As a simple example of quantum channel detection consider the case of
qubits and the single-qubit depolarising channel, defined as

Γp[ρ] =
3∑
i=0

piσiρσi, (3.7)

where σ0 is the identity operator, {σi} (i = 1, 2, 3) are the three Pauli operators
σx, σy, σz respectively (for brevity of notation in the following the Pauli oper-
ators will be denoted by X, Y and Z), and p0 = 1− p (with p ∈ [0, 1]), while
pi = p/3 for i = 1, 2, 3. Such a channel is EB for p ≥ 1/2. The corresponding
set of Choi bipartite density operators is given by the Werner states

CΓp = (1− 4

3
p)|α〉〈α|+ p

3
1 . (3.8)
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3.2. Entanglement breaking channels

|α〉
Γp

A

B WEB

Figure 3.3: Experimental scheme showing the detection of the depolarising
channel Γp as a non EB channel. The expectation value of WEB is measured
locally.

It is then possible to detect whether a depolarising channel is not EB by
exploiting a detection operator suitable for the above set of states [57, 58],
namely

WEB =
1

4
(1⊗1−X ⊗X + Y ⊗ Y − Z ⊗ Z) . (3.9)

The method can then be experimentally implemented by preparing a two-qubit
state in the maximally entangled state |α〉, then operating with the quantum
channel to be detected on one of the two qubits and measuring the operator
WEB acting on both qubits at the end (see Fig. 3.3). If the resulting average
value of WEB is negative, we can then conclude that the channel Γp under
consideration is not EB. Notice that the final measurement can be performed
locally by decomposing WEB into local operators (see Eq. (3.9)).

We now show that our method provides also a lower bound on a particular
feature of EB channels recently defined in Ref. [59] as follows. Let M be
a generic map acting on a qudit (i.e. a d-dimensional system) and Dσ the
completely depolarizing channel defined as Dσ[ρ] = σ, where σ is an arbitrary
state. The quantity µc(M ) is defined as the minimum value of the mixing
probability parameter µ ∈ [0, 1] that transforms the convex combination (1−
µ)M + µDσ into an EB channel, i.e. in formulae

µc(M ) = min
σ
{µ|(1− µ)M + µDσ ∈ EB} . (3.10)

Clearly µc(M ) nullifies if M is already an EB channel. By the Choi-Jamio lkow-
ski isomorphism, we can rephrase the definition (3.10) in term of Choi states
as

µc(M ) = min
σ

{
µ|(1− µ)CM + µσ ⊗ 1

d
∈ Sep

}
, (3.11)

and link this quantity to the well-known generalized robustness of entangle-
ment.

Given a state ρ, the generalized robustness of entanglement is defined [60,
61] as the minimal s > 0 such that the state ρ+sσ

1+s
is separable, where σ is an

arbitrary state (not necessarily separable), namely

R(ρ) = min
σ
{s|ρ+ sσ

1 + s
∈ Sep}. (3.12)

This quantity can be interpreted as the minimum amount of noise necessary to
wash out completely the entanglement initially present in the state ρ. Thus,
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3. Quantum Channel Detection

by defining pc(ρ) = 1− 1
1+R(ρ)

and interpreting ρ as the Choi state CM corre-

sponding to the map M , we can bound µc(M ) as

µc(M ) ≥ pc(CM ). (3.13)

This can be seen from Eq. (3.12), since the minimizing set involved in the
definition (3.11) of µc(M ) is smaller than the minimizing set considered for
R(ρ). We can then derive a bound for the generalized robustness from the
experimental data of an entanglement detection procedure [62] as

R(ρ) ≥ |c|/wmax, (3.14)

where c is measured experimentally via the expectation value of the witness,
i.e. Tr[Wρ] = c < 0, while wmax is the maximal eigenvalue of the operator W .
As a result, we find that

µc(M ) ≥ 1− 1

1 + |c|/wmax
, (3.15)

which links the expectation value c measured experimentally with the theoret-
ical quantity µc(M ).

In the case of the depolarising channel (3.7) with p < 1/2, by using the
detection operator WEB given by Eq. (3.9) (with c = p−1/2 and wmax = 1/2),
the above bound takes the form

µc(Γp) ≥
1− 2p

2− 2p
. (3.16)

In this case, however, the bound turns out to be not tight since the theoretical
µc(Γp) can be computed to be 2−4p

3−4p
by following the method developed in [59].

3.3 Separable random unitaries

We now consider the case of RU channels, defined as

U [ρ] =
∑
k

pkUkρU
†
k , (3.17)

where Uk are unitary operators and pk > 0 with
∑

k pk = 1. Notice that this
kind of maps includes several interesting models of quantum noisy channels,
such as the already mentioned depolarising channel or the phase damping
channel and the bit flip channel [1]. RUs were also studied extensively and
characterised in Ref. [63].

We now consider the case where the RU channel acts on a bipartite system
AB as follows

V [ρAB] =
∑
k

pk(Vk,A ⊗Wk,B)ρAB(V †k,A ⊗W
†
k,B), (3.18)
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A
M

B
M [ρAB] ⇐⇒ |α〉

M
A

B

C

D

Figure 3.4: Scheme of the Choi-Jamio lkowski isomorphism in the case of four-
partite states. The state |α〉 on the right is the maximally entangled state with
respect to the bipartition AB|CD.

where both Vk,A and Wk,B are unitary operators for all k’s, acting on systems A
and B, respectively. Quantum channels of the above form are named separable
random unitaries (SRUs) and they form a convex subset in the set of all CP-
TP maps acting on bipartite systems. Interesting examples of channels of this
form are given by Pauli memory channels [64].

The Choi state corresponding to quantum channels acting on bipartite
systems is a four-partite state (composed of systems A,B,C and D), as shown
in Fig. 3.4. Notice that the state |α〉 = 1√

dAB

∑dAB
k,j=1 |k, j〉AB |k, j〉CD (where

dAB = dAdB is now the dimension of the Hilbert space of the bipartite system
AB) can also be written as |α〉 = |α〉AC |α〉BD, namely it is a biseparable state
for the partition AC|BD of the global four-partite system. The Choi states
corresponding to SRU channels therefore form a convex set, which is a subset
of all biseparable states for the partition AC|BD. Since the generating set
of SRUs is given by local unitaries UA ⊗ UB, the generating biseparable pure
states in the corresponding set of Choi states have the form

|UA ⊗ UB〉 = (UA ⊗ 1C) |α〉AC ⊗ (UB ⊗ 1D) |α〉BD . (3.19)

We name the set of four-partite Choi states corresponding to SRUs as SSRU .
It is now possible to design detection procedures for SRU maps by employing
suitable operators that detect the corresponding Choi state with respect to
biseparable states (in AC|BD) belonging to SSRU .

We now focus on the case of a unitary transformation U acting on two
qudits, that is explicitly supposed to be non separable. The corresponding
Choi state is pure and has the form

|U〉 = (U ⊗ 1) |α〉 . (3.20)

Therefore, in the same spirit as for the witness of Eq. (3.2), a suitable detection
operator for U as a non SRU gate can be constructed as

WSRU = α2
SRU 1−CU , (3.21)

where CU = |U〉 〈U |, and the coefficient αSRU is the overlap between the closest
biseparable state in the set SSRU and the entangled state |U〉, namely

α2
SRU = max

MSRU

〈U |CMSRU
|U〉 . (3.22)
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3. Quantum Channel Detection

Notice that, since the maximum of a linear function over a convex set is always
achieved on the extremal points, the maximum above can be calculated by
maximizing over the pure biseparable states (3.19), i.e.

αSRU = max
UA,UB

| 〈UA ⊗ UB|U〉| =
1

d2
max
UA,UB

|Tr[(U †A ⊗ U
†
B)U ]|. (3.23)

Recall that the Choi states given by Eq. (3.19) correspond to the generating
points for SRU channels, which is actually a superset of the extremal points
of the SRU set.

As an example of the above procedure consider the CNOT gate acting on
a two-qubit system, defined by

CNOT =

(
1 0
0 X

)
, (3.24)

with 1 representing the 2× 2 identity matrix, and X the usual Pauli operator.
The coefficient αSRU for U = CNOT can be computed as follows. The state of
Eq. (3.20) specialized for the CNOT gate is clearly not separable with respect
to the split AC|BD and it can be expressed in the Schmidt decomposition
regarding that split as

|CNOT〉 =
1√
2

(|00〉AC |α〉BD + |11〉AC
∣∣ψ+

〉
BD

) , (3.25)

where |ψ+〉 = 1√
2
(|01〉+ |10〉). The above expression naturally proves that the

maximum overlap with any biseparable state with respect to AC|BD cannot
exceed the value of 1/

√
2. Since the convex set SSRU of allowed states in our

optimisation problem is smaller than the set of all biseparable states, this would
provide only an upper bound for the maximum overlap αSRU . However, two
local unitary operations UA and UB that saturate this bound can be explicitly
found, namely

UA = S, (3.26)

UB = e−i
π
4
X , (3.27)

where S is the phase gate given by S = diag(1, i). This finally proves that the
optimal coefficient αSRU equals 1/

√
2 even if we restrict to the set of biseparable

states SSRU . Moreover, the detection operator WCNOT = 1
2
1−CCNOT can be

decomposed into a linear combination of local operators as follows

WCNOT =
1

64
(311111−1X 1X −XXX 1−X 1XX

− ZZ 1Z + ZY 1Y + Y Y XZ + Y ZXY

− Z 1Z 1−ZXZX + Y XY 1+Y 1Y X

− 1ZZZ + 1Y ZY +XY Y Z +XZY Y ) , (3.28)
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|α〉

•
A

B

C WCNOT

D

Figure 3.5: Experimental scheme implementing the detection of the CNOT
gate as a non SRU map.

where for simplicity of notation the tensor product symbol has been omitted.
As we can see from the above form, the CNOT can be detected by using
nine different local measurements settings, namely {XXXX,ZZZZ,ZY ZY,
Y XY X, Y Y XZ, Y ZXY,ZXZX,XY Y Z,XZY Y }. Actually, in the first line
of the above expression the expectation values of operators 1X 1X,XXX 1,
X 1XX can be obtained by measuring the operator XXXX and suitably
processing the experimental data. Similar groupings can be done for the other
terms in Eq. (3.28), such that the only measurement settings needed are the
nine listed above. Following [57, 65], it can be also easily proved that the
above form is optimal in the sense that it involves the smallest number of
measurement settings. From an experimental point of view, the optimal de-
tection procedure can be implemented as follows: prepare a four-qubit system
in the state |α〉 = |α〉AC |α〉BD, apply the quantum channel to qubits A and
B, and finally perform the set of nine local measurements reported above in
order to measure the operator WCNOT of (3.28). If the resulting average value
is negative then the quantum channel is detected as a non SRU map. The
experimental scheme is shown in Fig. 3.5. Notice that the number of mea-
surements needed in this procedure is much smaller than the one required for
complete quantum process tomography, since the former scales as d2

AB [58, 66]
while the latter as d4

AB [1].
The number of measurement settings in the detection scheme can be further

decreased if we allow a non optimal detection operator, in the sense that the co-
efficient αSRU in WCNOT is smaller than the maximum value. In this case, since
the state CCNOT is a stabilizer state with generators {XXX 1,1X 1X,Z 1Z 1,
ZZ 1Z}, an alternative detection operator can be derived, following the ap-
proach of Ref. [37]. The resulting suboptimal detection operator turns out to
be

W̃CNOT = 31−2

[
(1+XXX 1)

2

(1+1X 1X)

2

+
(1+Z 1Z 1)

2

(1+ZZ 1Z)

2

]
, (3.29)

which requires only the two local measurement settings {XXXX,ZZZZ}.
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The robustness of the method in the detection of the CNOT gate is extensively
analysed in [28] and will be discussed in the next chapter.

3.4 Separable maps

We now focus on the detection of non separable maps. By definition, a sepa-
rable map Msep is given by

Msep[ρAB] =
∑
k

(Ak ⊗Bk)ρAB(A†k ⊗B
†
k), (3.30)

namely it can be written in terms of separable Kraus operators [26]. In this
section we do not require the TP constraint to be fulfilled. Notice that the set
of separable maps is a larger set than the set of SRUs studied above. A general
map M acting on two qudits is not separable if and only if the corresponding
Choi state CM is entangled with respect to the splitting AC|BD [25].

Analogously to the case of SRU maps, for a non separable unitary U we
can define a detection operator of the same form of Eq. (3.21), i.e.

WS = α2
S 1−CU , (3.31)

where now the coefficient α2
SRU is replaced by α2

S defined as

α2
S = max

Msep

〈U |CMsep |U〉 . (3.32)

Since the set of SRUs is a subset of all separable maps, in general αS ≥ αSRU
holds, see Fig 3.6. Since the extremal points of the set of separable maps
are by construction maps with a single Kraus operator, the maximum in Eq.
(3.32) is attained on pure states (see appendix C.1). We can thus compute the
maximum on pure Choi states CMsep corresponding to separable maps of the
form Msep = A⊗B. The calculation of αS can then be simplified as

αS = max
A,B
| 〈A⊗B|U〉| = 1

d2
max
A,B
|Tr[(A† ⊗B†)U ]|. (3.33)

Notice that now we do not require A⊗B to be TP, otherwise both the operators
A and B would be automatically unitary, as they act on a finite dimensional
Hilbert space. Interestingly, we now show that for a general unitary U on
two-qubit systems the two coefficients αSRU and αS coincide, while for higher
dimension this is no longer the case.

We compute the coefficients by starting from the Schmidt decomposition
of an operator O acting on two qudits, which can be written as

O =
r∑
i=1

λiAi ⊗Bi, (3.34)

42



3.4. Separable maps

Figure 3.6: Pictorial scheme showing the relation αS ≥ αSRU . Notice that the
minimal distance between the map M and the set of SRU channels (red), i.e.
1 − α2

SRU , is achieved over the generating set of SRUs and is generally larger
than the minimal distance with the set of separable maps (blue), i.e. 1− α2

S.

where {Ai}i=1,...,d2 and {Bi}i=1,...,d2 are two orthogonal bases (Tr[A†iAj] =

Tr[B†iBj] = dδij) for the operator space, and r is the Schmidt rank fulfill-
ing 1 ≤ r ≤ d2. Notice that the unique Schmidt coefficients λi are always
positive and ordered, i.e. λ1 ≥ · · · ≥ λr. As a result, if we write the unitary
U in the Schmidt decomposition (3.34), it follows that the maximum (3.33) is
achieved by the choice of A⊗B = A1⊗B1, where A1 and B1 are the operators
corresponding to the largest Schmidt coefficient λ1. We then have

αS =
1

d2
|Tr[(A†1 ⊗B

†
1)U ]| = λ1. (3.35)

It is then interesting to establish whether the optimal separable operator A1⊗
B1 has to be unitary as well. As mentioned above, we will show in the following
that this is true for two-qubit systems but no longer holds when the dimension
increases. We first show that for two qubits it is always possible to find a
separable unitary UA⊗UB such that the overlap with U achieves the maximum
λ1, namely

∃ UA, UB s.t. | 〈UA ⊗ UB|U〉| = αSRU = λ1. (3.36)

This is a consequence of the Cartan decomposition [67, 68] of a general unitary
U acting on two qubits. Indeed U can be rewritten as

U = (VA ⊗ VB)Ũ(WA ⊗WB), (3.37)

where VA, VB,WA and WB are single-qubit unitaries and

Ũ = ei(θxX⊗X+θyY⊗Y+θzZ⊗Z). (3.38)

Notice that, by the definitions cα = cos θα and sα = sin θα, Ũ takes the form

Ũ = (cxcycz + isxsysz)1⊗1+(cxsysz + isxcycz)X ⊗X
+(sxcysz + icxsycz)Y ⊗ Y + (sxsycz + icxcysz)Z ⊗ Z. (3.39)
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According to (3.37), it is then straightforward to see that the above form of Ũ
directly leads to the Schmidt decomposition of U . By defining

cxcycz + isxsysz ≡ ρ0e
i2φ0 , (3.40)

cxsysz + isxcycz ≡ ρ1e
i2φ1 , (3.41)

sxcysz + icxsycz ≡ ρ2e
i2φ2 , (3.42)

sxsycz + icxcysz ≡ ρ3e
i2φ3 , (3.43)

we can indeed rewrite Ũ as

Ũ =ρ0e
iφ0σ0 ⊗ eiφ0σ0 + ρ1e

iφ1σ1 ⊗ eiφ1σ1

+ ρ2e
iφ2σ2 ⊗ eiφ2σ2 + ρ3e

iφ3σ3 ⊗ eiφ3σ3, (3.44)

with the notation σ0 = 1, σ1 = X, σ2 = Y and σ3 = Z. We now notice that
the magnitudes of the coefficients in front of the bipartite operators correspond
to the Schmidt coefficients themselves and the phases can be reabsorbed into
the Pauli operators without changing the orthogonality relations. Hence, by
setting Ai ≡ VAe

iφiσiWA for the system A and Bi ≡ VBe
iφiσiWB for B, we

arrive at the following Schmidt decomposition of U :

U =
4∑
i=1

ρiAi ⊗Bi. (3.45)

Therefore, given a unitary U on two qubits, it is always possible to find a
local unitary achieving the maximum λ1, since there always exists a Schmidt
decomposition of U involving only unitary operators as local basis. For higher
dimensional systems the above argument does not hold. Actually, already in
the two-qutrit case it may happen that the maximum (3.35) can be attained
only by local non unitary operators. This means that the closest (under the
criterion defined in Eq. (3.33)) separable map to a unitary U may be non
unitary.

We now show an explicit example for a system of two qutrits given by the
gate Z3 defined as

Z3 = diag(1, 1, 1, 1, 1, 1, 1, 1,−1), (3.46)

which is clearly unitary and not separable. We can rewrite Z3 in the Schmidt
form with Schmidt rank r = 2 as

Z3 = λ1A1 ⊗B1 + λ2A2 ⊗B2, (3.47)

where λ1,2 =
√

1
2
(9±

√
17)/3, while the operators A1,2 andB1,2 are non unitary

and can be written as

A1,2 =

√
3√

102± 22
√

17
diag(5±

√
17, 5±

√
17, 1±

√
17), (3.48)

B1,2 =

√
3√

646± 150
√

17
diag(11± 3

√
17, 11± 3

√
17, 9±

√
17). (3.49)
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From the Schmidt decomposition it immediately follows that the value of the

maximum overlap is given by αS = λ1 =
√

1
2
(9 +

√
17)/3 ' 0.854, while the

coefficient αSRU can be computed numerically, leading to αSRU ' 0.786 (see
appendix C.2). Hence, this finally proves that for the gate Z3 the maximum
attained over SRUs is strictly smaller then the maximum achieved by separable
maps, αSRU < αS.

We want to stress that our method is then suitable to detect the gap be-
tween separable and SRU maps, as long as d ≥ 3, by the amount of violation
of the expectation value of WSRU . For instance, the unitary Z3 can be detected
as a non SRU map by an operator of the following form

WZ3 = α2
SRU 1−CZ3 , (3.50)

where CZ3 = |Z3〉 〈Z3| and αSRU ' 0.786. The expectation value of WZ3 over
the Choi state of the experimentally accessible map M thus allows us to dis-
tinguish between non SRU and non separable maps. Actually, M is detected
to be non SRU if Tr[WZ3CM ] < 0, and in addition we can say that M is non
separable if Tr[WZ3CM ] < α2

SRU − α2
S. Therefore, as it always happens with

states, if we want to distinguish between any kind of entanglement and mul-
tipartite entanglement, a stronger violation of the positivity of Tr[WSRUCM ]
makes our knowledge of M more accurate. Notice that the above discrimina-
tion works perfectly for systems composed of two qudits, with d ≥ 3, but no
longer works when we reduce to a two-qubit system, since in this latter case
our method cannot distinguish between separable and SRU maps any more.

Last but not least, as it is the case for witnesses based on the GME [69],
the detection operator WS developed to reveal the non separability of U and
defined in Eq. (3.31) provides a lower bound for the gate fidelity F (U,M )
[66], namely

F (U,M ) = Tr[CUCM ] ≥ α2
S − Tr[WSRUCM ]. (3.51)

Notice that the same argument holds for the detection operator WSRU defined
in Eq. (3.21); however, as the negativity of WS is a stronger requirement than
the negativity of WSRU , the expectation value of the detection operator WS

provides a higher value for the gate fidelity F (U,M ).

3.5 PPT channels

In this section we consider a larger set of quantum channels, namely PPT
channels. A CP map M acting on two qudits is positive partial transpose
(PPT) if and only if the composite map MT = TA ◦M ◦ TA, being TA the
partial transposition map on the first system A, is CP [27, 70]. Since a map
M is CP if and only if the corresponding Choi operator CM is positive, we can
restate the above definition as: a CP map M is PPT if and only if the Choi
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operator CMT
related to the composite map MT is positive. Notice that the

above definition is different from the one given, for instance, in Ref. [71].
By the above correspondence we develop a method to detect whether a

map is non-positive partial transpose (NPT). We employ techniques already
developed for the detection of entangled NPT states [72], namely we consider
a detection operator of the following form

WPPT = |λ−〉 〈λ−|TA , (3.52)

where |λ−〉 is the eigenvector of the Choi state CMT
corresponding to the most

negative eigenvalue λ− for the NPT map M .
The expectation value of the above detection operator should now be mea-

sured for the Choi operator corresponding to the composite map M ◦ TA,
since the partial transposition following M is already taken into account in
the form of the operator (3.52). Therefore, a crucial point of this approach is
now related to the implementation of the map TA, which is non CP. A possible
solution is to add noise to the map TA in order to make it CP [73]. Following
the approach of Ref. [73] we consider the minimal amount of depolarising noise
such that the following map

T̃A[ρAB] = (1− p)TA[ρAB] + p
1AB

d2
(3.53)

is CP. This is given by p = d3/(d3 + 1) [73]. From an experimental point
of view, we then consider the implementation of the map T̃A instead of the
non-physical map TA, as shown in Fig. 3.7. This procedure leads to an extra
contribution in the expectation value of the detection operator, related to the
presence of the depolarized term in Eq. (3.53). The expectation value of WPPT

for the Choi state CM ◦T̃A related to the composite map M ◦ T̃A is thus given
by

Tr[WPPTCM ◦T̃A ] = (3.54)

= (1− p) 〈λ−|CMT
|λ−〉+ p 〈λ−|MT [

1AB

d2
]⊗ 1CD

d2
|λ−〉

= (1− p)λ− + p 〈λ−|MT [
1AB

d2
]⊗ 1CD

d2
|λ−〉 .

Notice that the negative term λ− comes from the NPT-ness of the map M ,
while the other term is due to the implementation of T̃A in the proposed
experimental procedure. The expression above clearly shows that the operator
WPPT can be regarded as a witness with respect to the set of PPT maps,
as its expectation value is always non-negative on this set. Therefore, if the
expectation value of the detection operator WPPT is negative, the map M is
guaranteed to be NPT. Notice that the expectation value given by Eq. (3.54)
usually depends on the to-be-detected map M , and generally the requirement
of the negativity of the expectation value of WPPT is stronger than what one
actually need to be sure that M is NPT. Therefore, in order to find the optimal
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|α〉

T̃A M

A

B

C WPPT

D

Figure 3.7: Experimentally-feasible scheme to implement the detection of the
NPT map M .

detection operator WPPT, one should minimize the last term of Eq. (3.54) with
respect to the set of all PPT maps M PPT, i.e.

min
MPPT

〈λ−|M PPT
T [

1AB

d2
]⊗ 1CD

d2
|λ−〉 , (3.55)

a hard task that drastically simplifies when the map M is promised to be
unital.

Let us thus assume that the map M is unital. The expectation value in
Eq. (3.54) then takes the simple form

Tr[WPPTCM ◦T̃A ] = (1− p)λ− +
p

d4
. (3.56)

In this case the addition of the depolarized term that makes the map TA

physically implementable introduces only a constant shift in the expectation
value of WPPT. As a result, for any PPT unital map M PPT

unital we have

Tr[WPPTCMPPT
unital
◦ T̃A] ≥ p

d4
. (3.57)

Therefore, if we know a priori that the map M to be detected is a unital map,
then we are guaranteed that it is a NPT map whenever the expectation value
of WPPT is smaller than p/d4.

As an illustrative example we consider again the case of the CNOT gate.
Here we want to detect such a gate as a NPT map by following the experimental
procedure discussed above. It is straightforward to see that the Choi state
CCNOTT

corresponding to the map CNOTT = TA ◦ CNOT ◦ TA has a single
negative eigenvalue λ− = −1/2. Since the CNOT is unital, from Eq. (3.56) it
follows that Tr[WPPTCCNOT◦T̃A ] = 0, and the gap with the bound provided by
Eq. (3.57) (' 0.055 in this case) is then experimentally accessible.

3.6 Completely co-positive channels

In this section we consider the set of completely co-positive (CCOP) channels
[74]. CCOP channels are of great interest as they are connected via the Choi-
Jamio lkowski isomorphism to PPT states [72].
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|α〉
D

A

B WCCOP

Figure 3.8: Experimental scheme showing the detection of the dephasing chan-
nel D as a non CCOP channel. Notice that the expectation value of WCCOP,
namely Tr[WCCOPCD ], can be measured locally.

A CP map C acting on a qudit is CCOP if and only if the composite map
CT = T ◦C , where T is the transposition map, is CP. Since a quantum map
is CP if and only if the corresponding Choi operator is positive, we can restate
the above definition as follows: a CP map C is CCOP if and only if the Choi
operator CCT

related to the composite map CT is positive.
By the above correspondence we develop a method to detect whether a

map is non CCOP by adapting techniques developed for the detection of NPT
entangled states [72]. Consider then a map M that does not belong to the
set of CCOP channels. From the above definition it follows that the bipartite
Choi state CMT

= (TA⊗I )[CM ] has at least one negative eigenvalue. Let λ−
be the most negative eigenvalue corresponding to the eigenvector |λ−〉. The
following operator, i.e.

WCCOP = |λ−〉〈λ−|TA , (3.58)

is thus suitable to detect the NPT state CMT
corresponding to the non CCOP

map MT . Notice that the transposition map on the Choi state acts only on
the first qudit, i.e. TA.

As an illustrative example we consider the case of the dephasing noise D
acting on a single qubit, defined by the following CP-TP map

D [ρ] = pρ+ (1− p)ZρZ , (3.59)

where Z is a Pauli operator. It is easy to see that the Choi state CD corre-
sponding to D takes the form

CD = p|α〉〈α|+ (1− p)|φ−〉〈φ−|, (3.60)

with |φ−〉 = 1√
2
(|00〉−|11〉). The above state can be shown to be NPT whenever

p 6= 1/2. It is then possible to derive the following detection operator [57, 58]
from Eq. 3.58:

WCCOP =

{
1
4
(1⊗1+X ⊗X + Y ⊗ Y − Z ⊗ Z) for p < 1

2
,

1
4
(1⊗1−X ⊗X − Y ⊗ Y − Z ⊗ Z) for p > 1

2
.

(3.61)

This method can be experimentally implemented by preparing a two-qubit
state in the maximally entangled state |α〉, then operating with the quantum
channel D to be detected on one of the two qubits and measuring the operator
WCCOP acting on both qubits at the end (see Fig. 3.8). If the resulting average
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value Tr[WCCOPCD ] is negative, we can then conclude that the Choi state
CDT

= T ◦ D is NPT and that the channel D under consideration is not
CCOP.

Finally, we would like to stress that, since every NPT state is entangled,
the detection of a non CCOP channel M implies that M is not EB as well,
however the opposite does not hold in general. Actually the set of EB channels
is a subset of the CCOP channels, and the two sets coincide only when the
channels act on two-dimensional systems. From the perspective of QCD, this
implies that for higher dimensional systems a quantum channel detected as
non EB may nevertheless belong to the set of CCOP maps.

3.7 Bi-entangling operations

In this section we focus on bi-entangling (BE) operations, a class of quantum
maps that can generate at most bipartite entanglement. They were introduced
in Ref. [75] in the context of quantum computation and were shown to be
efficiently simulatable classically. BE operations are quantum maps acting on
two qudit systems AB in such a way that they can be expressed as convex
combinations of (a) separable operations, (b) operations that swap the two
qudits and then act as a separable operation, and (c) EB channels, that break
any entanglement between the two qudits on which the channel acts and extra
ancillae [75]. Via the Choi-Jamio lkowski isomorphism we can then characterize
the set of BE operations in terms of the corresponding Choi states.

Consider a BE operation MBE acting on the bipartite system AB, not
necessarily TP. The Choi state CMBE

associated to MBE is then a four-partite
state (composed of subsystemsA, B, C andD). Separable maps have separable
Choi states with respect to the bipartition AC|BD [25]. As a consequence,
maps of type (b), with a swap gate followed by separable maps, have separable
Choi states in AD|BC. EB channels correspond to separable Choi states in
the bipartition AB|CD. A general Choi state CMBE

for a BE map can then be
written as a convex combination of four-partite states biseparable with respect
to bipartitions AC|BD, AD|BC and AB|CD, namely

CMBE
= p

∑
i

piC
(AC|BD)
i + q

∑
j

qjC
(AD|BC)
j + r

∑
k

rkC
(AB|CD)
k , (3.62)

where (p, q, r), {pi}, {qj} and {rk} are probability distributions. Notice that
the first term corresponds to the set (a), the second to (b) and the third to (c).
In other words, the Choi states CMBE

corresponding to BE operations lie in
the convex hull of states biseparable with respect to the bipartitions AC|BD,
AD|BC and AB|CD for the four-partite system ABCD. We name this convex
set of four-partite Choi states corresponding to BE operations as SBE. It is
now possible to develop detection procedures for BE operations by employing
suitable operators that detect the corresponding Choi state with respect to the
biseparable states belonging to SBE.
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We now focus on the case of a non BE unitary U acting on two qudits. The
corresponding Choi state is pure and given by |U〉 = (U ⊗1) |α〉. Therefore, a
suitable detection operator for U as a non BE operation can be constructed as

WBE = α2
BE 1−CU , (3.63)

where CU = |U〉 〈U |, and the coefficient αBE is the overlap between the closest
biseparable state in the set SBE and the entangled state |U〉, namely

α2
BE = max

MBE

〈U |CMBE
|U〉 . (3.64)

Since the maximum of a linear function over a convex set is always achieved on
the extremal points, the maximum involved in αBE can be always calculated
by maximizing over the pure biseparable states in SBE, i.e.

αBE = max
|Ξ〉∈SBE

| 〈Ξ|U〉|. (3.65)

By exploiting the Schmidt decomposition [1] of the state |U〉, the maximization
above can be expressed analytically as

αBE = max
i

max
λ

λi(U), (3.66)

where the index i labels the bipartitions AC|BD, AD|BC and AB|CD, and
λi(U) are the Schmidt coefficients of |U〉 in the bipartition i. Therefore, in order
to find the coefficient αBE one has to find the maximal Schmidt coefficient
of |U〉 for a fixed bipartite splitting, and then maximize it among all the
bipartitions involving only two versus two subsystems.

As an example of the above procedure consider the following unitary oper-
ation V acting on a two-qubit system

V =


1 0 0 0
0 0 1 0
0 1 0 0
0 0 0 −1

 . (3.67)

Notice that the gate V is a modified swap gate such that it is no longer a
BE operation. The coefficient αBE for V can be computed following the steps
outlined above. The Choi state |V 〉 associated to the gate V is given by

|V 〉 =
1√
2

(|α〉AD |00〉BC +
∣∣φ−〉

AD
|11〉BC), (3.68)

and the Schmidt coefficients of V with respect to the bipartitions AC|BD,
AD|BC and AB|CD can be easily computed as λAC|BD(V ) = (1

2
, 1

2
, 1

2
, 1

2
),

λAD|BC(V ) = ( 1√
2
, 1√

2
, 0, 0) and λAB|CD(V ) = (1

2
, 1

2
, 1

2
, 1

2
). Therefore, the coef-

ficient αBE equals 1/
√

2 and a suitable detection operator in order to detect
V as a non BE operation takes the form

WBE =
1

2
1−CV . (3.69)
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|α〉

V

A

B

C WBE

D

Figure 3.9: Experimental scheme implementing the detection of the gate V
defined in Eq. 3.67 as a non BE operation.

From an experimental point of view, the detection procedure can be imple-
mented as follows: prepare a four-qubit system in the state |α〉 = |α〉AC |α〉BD,
apply the quantum gate V to qubits A and B, and finally perform a suitable set
of local measurements in order to measure the operator (3.69). If the resulting
average value Tr[WBECV ] is negative then the quantum map is detected as a
non BE operation. The experimental scheme is shown in Fig. 3.9.

We conclude this section by noticing that the method described above leads
to different detection operators with respect to the detection method for non
separable maps developed in Sec. 3.4. Indeed, the optimal detection operator
that reveals the gate V as a non separable map is

WS =
1

4
1−CV . (3.70)

Already in the two-qubit case the operator above is stronger than WBE in
Eq. (3.69), in the sense that it has a negative expectation value for a larger
set of quantum maps. This is actually due to the fact that BE maps are a
strict subset of separable maps (since the set of separable Choi states in the
bipartition AC|BD is a strict subset of SBE).

3.8 Summary and further developments

In summary we have presented an experimentally feasible method to detect
several sets of quantum channels. The proposed procedure works when some a
priori knowledge on the quantum channel is available and is based on a link to
detection methods for entanglement properties of multipartite quantum states
via witness operators.

The method has been first explicitly illustrated in the simple case of EB
channels, and then presented to detect separability properties of quantum
channels. In particular, methods to reveal non SRUs and non separable maps
have been derived, showing also the possibility to detect the gap between the
sets of SRUs and separable maps. This result highlights a richer separability
structure of Choi operators that has no counterpart in the separability prop-
erties of ordinary entangled/separable states. The present method has been
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applied also to detect other properties of quantum maps that rely on a convex
structure and reflect on properties of the corresponding Choi states, such as,
for example, PPT and CCOP channels, and BE operations.

The advantage over standard quantum process tomography is that a much
smaller number of measurement settings is needed in an experimental imple-
mentation. Finally, we want to point out that the proposed scheme can be im-
plemented with current technology, for instance in a quantum optical scheme
[76, 77].
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Chapter 4
Map Detection: Noise
Robustness and Experimental
Realization

The experimental realization of a quantum channel is unavoidably affected
by noise. One possible way to check how well this has been achieved is to
make a full tomography of the process. This nevertheless is known to be very
expensive in terms of number of measurements to be performed [1]. Since in
many practical situations, one is only interested in some specific properties
of the channel, a more suitable approach is the quantum channel detection
(QCD) method developed in the previous chapter. The method allows to
detect properties of quantum channels when some a priori knowledge about
the form of the channel is available.

In this chapter we illustrate in detail the QCD method for detecting non
separable maps and consider in particular the explicit examples of the CNOT
and CZ gates. We analyse their robustness in the presence of noise for several
quantum noise models, namely depolarising, dephasing, bit flip and amplitude
damping noise [28]. We then demonstrate experimentally the possibility of ef-
ficiently detecting properties of quantum channels and quantum gates via the
above QCD method. The optimal detection scheme is first achieved for non
entanglement breaking (EB) channels of the depolarizing form and is based on
the generation and detection of polarized entangled photons. We then demon-
strate channel detection for non separable maps by considering the CNOT gate
and employing two-photon hyperentangled states [29].

4.1 Detecting the CNOT and CZ gates

In this section we briefly remind how the channel detection method works in
the case of separable random unitary (SRU) and separable maps.

Consider the case of detecting a non separable unitary operation U acting
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4. Map Detection: Noise Robustness and Experimental Realization

on a bipartite system AB. As explained in Secs. 3.3 and 3.4, a suitable
detection operator can be constructed as

WU = β 1−CU , (4.1)

where β is an appropriately chosen coefficient, and CU = |U〉〈U | is the projec-
tor on the Choi state corresponding to the unitary U , i.e. |U〉 = (U ⊗ 1) |α〉.
The choice of β depends on the set we want to rule out: if we want to detect
the unitary U as a non SRU map, we set β = α2

SRU given by Eq. (3.22), while
if we aim at revealing U as a non separable map, we choose β = α2

S defined
in Eq. (3.32). Notice that generally αS ≥ αSRU , except in the two-qubit case
where the inequality always holds. Thus, as far as quantum channels acting
on two qubits are concerned, there is no chance to detect the gap between the
sets of separable and SRU maps. Throughout this chapter we mainly focus
on the case of two qubits, we then prefer to talk about the detection of U as
a non separable channel instead of as a non SRU, since the condition of non
separability is stronger than the condition of not being SRU.

We now specify the above construction to the particular case of the CNOT
gate acting on two qubits. As discussed in the previous chapter, the general
detection operator (4.1) takes the form

WCNOT =
1

2
1−CCNOT, (4.2)

with CCNOT = |CNOT〉〈CNOT|. Notice that the detection operator WCNOT

above can be decomposed into a linear combination of local operators as al-
ready shown in Eq. (3.28).

As a second significant example consider the CZ operation, which also
represents an important two-qubit gate in quantum computation [1]. This
operation is defined as

CZ =

(
1 0
0 Z

)
, (4.3)

namely it has the same structure as the CNOT gate, with X replaced by Z.
This case can be connected to the detection procedure for the CNOT gate by
exploiting the following relation between the CNOT and CZ gates

CZ = (1⊗H)CNOT(1⊗H), (4.4)

where H is the Hadamard gate, defined as H = 1√
2
(X + Z). Since the two

gate operations differ only by a local unitary transformation, the maximization
performed in the calculation of αSRU = αS leads to the same value β = 1/2.
The corresponding detection operator WCZ can then be written as

WCZ =
1

2
1−CCZ, (4.5)
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which can be easily decomposed into local Pauli operators as follows:

WCZ =
1

64
(311111−1Z 1Z − Z 1Z 1−ZZZZ

−ZX 1X + ZY 1Y − 1XZX + 1Y ZY

−XZX 1−X 1XZ + Y ZY 1+Y 1Y Z

−Y Y XX − Y XXY −XY Y X −XXY Y ) . (4.6)

Notice that, besides the convenient implementation in terms of local operators,
an other important aspect to study is how much noise the detection operator
WU of (4.1) tolerates. In the next section we will show several cases in which
the presence of noise is taken into account. The map we want to detect is thus
no longer considered as a perfect CNOT (or CZ) gate but instead as a sort of
composite map representing the CNOT (or CZ) with in addition several kinds
of quantum noise.

4.2 Noise robustness

We now study the robustness of the method in the presence of additional noise,
which can influence the operation of the quantum channel. The situation we
have in mind is the following. Suppose we are given an operator WU of the
form (4.1) to detect a unitary U acting on two qubits. Suppose also that the
experimental implementation of U leads to a new noisy map M , which is close
to the original U by construction but not exactly U due to the presence of
noise. Does WU still detect the map M as non separable?

Since the expectation value of the operator WU is continuous with respect
to the Choi state CM , we expect an affirmative answer for maps enough close
to the target unitary U . However, to quantify how close to U a noisy map M
should be in order to be detected by our method, we have to check whether
the expectation value of WU on M , i.e.

Tr[WUCM ] = β − Tr[CMCU ], (4.7)

is negative. To this end, let us notice that the overlap between two Choi states
CL and CM corresponding to the maps L and M acting on D(H) can be
generally written as

Tr[CMCL ] =
1

d2

d∑
i,j=1

Tr[M (|i〉 〈j|)L (|j〉 〈i|)] , (4.8)

where {|i〉} represents the computational basis for the Hilbert space H with
arbitrary finite dimension d. In terms of the Kraus operators {Ak} and {Bl}
of the maps M and L , respectively, the above expression can be rewritten as

Tr[CMCL ] =
1

d2

∑
k,l

|Tr[A†kBl]|2, (4.9)
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where the double summation is over the Kraus operators and the absolute
value comes from the identity Tr[A†] = Tr[A]∗.

In the case which we are interested in, H is a two-qubit system of dimension
d = 4 and L is given by a unitary operation U . Therefore, the above expression
takes the form

Tr[CMCU ] =
1

16

∑
k

|Tr[A†kU ]|2, (4.10)

where the summation is now performed just over the Kraus operators {Ak}
of the noisy map M . The expectation value for the detection operator WU

detecting the gate U can then be rewritten as

Tr[WUCM ] = β − 1

16

∑
k

|Tr[AkU
†]|2. (4.11)

In this context, the general map M thus represents a noisy implementation
of the unitary U by considering no longer a noiseless gate but adding some
quantum noise such as the depolarising, the dephasing, the bit flip or the
amplitude damping noise. In the following subsections we will treat these four
different noisy processes, and derive some bounds on the amount of noise that
the operators WCNOT and WCZ, constructed to detect gates CNOT and CZ,
respectively, can tolerate.

4.2.1 Depolarising noise

We consider first the case of depolarising noise P, whose action is described
by a CP-TP map of the following form

Γq[ρ] =
3∑
i=0

piσiρσi (4.12)

where σ0 = 1 is the identity operator, and {σi} (i = 1, 2, 3) are the three Pauli
operators σ1 = X, σ2 = Y, σ3 = Z respectively. In the case of depolarising
noise we have p0 = 1− 3q/4 (with q ∈ [0, 1]), while pi = q/4 for i = 1, 2, 3, and
therefore the parameter q uniquely describes the depolarising channel.

The presence of noise in the general scenario of a controlled C-Ut unitary
operation can be depicted as follows:

MP,Ut =
P1 • P2

P1 Ut P2

. (4.13)

Here, Ut is the unitary operation acting on the target qubit (in the cases of the
CNOT and CZ gates it is given by X and Z, respectively), and each depolar-
izing channel Pi involves the parameter qi. Notice that q1 and q2 are related
to the depolarising channels P1 and P2. Furthermore, the four depolarizing
processes act independently and are assumed to have the same strength (q1
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Figure 4.1: Expectation value of WCNOT on the noisy state CMP,X
, i.e.

Tr[WCNOTCMP,X
], in terms of the two noise parameters q1 and q2. Notice

that the same plot is obtained for the expectation value of WCZ on the Choi
state CMP,Z

corresponding to the noisy map MP,Z .

(q2) before (after) the controlled operation C-Ut) for the two qubits. Besides
not being so restrictive from a physical perspective, this assumption simplifies
a bit the following calculations. The Kraus operators of the tensor product
map Pi ⊗Pi, denoted by {P i

k}, are obviously given by the tensor product
of the corresponding Kraus operators of the single-qubit depolarising channel.
Notice that the global resulting noisy channel MP,Ut shown above is still a
random unitary channel.

We first start from the detection of noisy CNOT gate via the operator
WCNOT given by Eq. (4.2). From Eq. (4.10), we can compute the overlap
between the noiseless Choi state CCNOT and the Choi operator CMP,X

, cor-
responding to the noisy composite map MP,X given by (4.13) with Ut = X,
as

Tr[CMP,X
CCNOT] =

1

16

∑
k,l

|Tr[P 1
kCNOTP 2

l CNOT]|2, (4.14)

where {P 1
k } and {P 2

l } are the Kraus sets of P1⊗P1 and P2⊗P2, respectively.
By performing the calculation explicitly and remembering that, apart from the
parameters qi, the term on the right hand side above is a symmetric matrix in
k, l, we arrive at the following expression for the expectation value

Tr[WCNOTCMP,X
] = (4.15)

1

2
− 1

16
(16q̄2

1 q̄
2
2 + 2q1q̄1q2q̄2 + q2

1q2q̄2 + q1q̄1q
2
2 +

5

16
q2

1q
2
2),

with the definition q̄i = 1− 3qi
4

for i = 1, 2 (see Fig. 4.1).

Let us now study some special cases of the above situation. Suppose first
that q2 = 0, so that the noise affects the channel only before the CNOT. In

57



4. Map Detection: Noise Robustness and Experimental Realization

this case the expectation value becomes

Tr[WCNOTCMP,X
] =

1

2
− q̄2

1, (4.16)

which is negative for q1 <
4−2
√

2
3
' 0.39. Therefore, the values of q1 below this

threshold lead to a detection of the CNOT gate as a non separable channel.
Since the situation is symmetric, the same obviously holds when q1 = 0 and we
are looking at q2, namely the action of the depolarising channel either before
or after the CNOT operation leads to the same result. Another interesting
situation is when both the channels before and after the CNOT gate introduce
the same level of noise, namely when q1 = q2 = q. In this case we get the
following expression for the expectation value

Tr[WCNOTCMP,X
] =

1

2
− 1

16
(q − 2)2(5q2 − 8q + 4). (4.17)

The CNOT gate is thus detected as a non separable map when q < 0.21.
Notice that the threshold in this case is not as high as the one we obtained
before, since the situation is much noisier because two sources of noise are now
present.

We now consider the case of the CZ gate. The detection of noisy CZ gate
via WCZ turns out to give the same threshold of noise as for the CNOT gate.
This is basically due to the symmetry properties of the depolarising noise,
which acts isotropically along the three directions of the Pauli matrices. It
is then straightforward to find that the expectation value of WCZ on CMP,Z

,
namely Tr[WCZCMP,Z

] is exactly given by Eq. (4.15). Hence, the analysis we
have performed in that case still holds for the CZ gate.

As we can see, the presence of local depolarising noise thus affects the
CNOT and CZ operations in such a way that, beyond a certain amount of noise,
the noisy CNOT and CZ operations are no longer detected as non separable
by our method.

4.2.2 Dephasing noise

Let us now assume that dephasing noise is present, acting independently on
the two qubits A and B in general both before and after the unitary we want
to detect, namely

MD,Ut =
D1 • D2

D1 Ut D2

, (4.18)

where Ut is again either X or Z. Phase damping noise is described by a CP-TP
map of the form (4.12) where the probabilities are now given by p0 = 1 − q,
p1 = p2 = 0 and p3 = q. Notice that in this case the global resulting channel
MD,Ut is still a random unitary channel.
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Figure 4.2: Expectation value Tr[WCNOTCMD,X
] of WCNOT on the noisy state

CMD,X
as a function of the two noise parameters q1 and q2. Notice that the

same behaviour of WCNOT is obtained for the noisy map MB,X , i.e. when bit
flip noise is concerned.

In order to quantify the noise robustness of the detection operator WCNOT

with respect to dephasing noise, we calculate the expectation value of WCNOT

given by Eq. (4.2) with respect to the state CMD,X
, i.e. the Choi state corre-

sponding to the composite map MD,X = (D2 ⊗D2)CNOT(D1 ⊗D1) depicted
in (4.18) with Ut = X. The problem thus reduces to evaluate the overlap be-
tween the Choi states CCNOT and CMD,X

. By using Eq. (4.11), this procedure
leads to the formula

Tr[WCNOTCMD,X
] =

1

2
− [(1− q1)2(1− q2)2 + q1q2(1− q1q2)], (4.19)

that is plotted in Fig. 4.2 for an immediate reading.
From Fig. 4.2 we can see that Tr[WCNOTCMD,X

] < 0 for certain intervals of
the noise parameters q1 and q2. From the symmetry of the expression (4.19),
the action of dephasing noise either before or after the CNOT gate leads to
the same result. In this case, considering e.g. q2 = 0, the expectation value
of WCNOT is negative for q1 < 1 − 1√

2
' 0.29. When instead the dephasing

channels introduce the same level of noise (q1 = q2 = q) the expectation value
of WCNOT turns our to be negative for q < 0.17 and, therefore the CNOT
operation can be detected in this range.

Regarding the robustness of the detection operator WCZ, we need to com-
pute the expectation value of WCZ with respect to the Choi state CMD,Z

,
representing the noisy implementation of the CZ gate, i.e. MD,Z = (D2 ⊗
D2)CZ(D1 ⊗D1). Following the same calculation as before we get

Tr[WCZCMD,Z
] =

1

2
− (1− q1 − q2 + 2q1q2)2, (4.20)

which differs very much from the expectation value calculated for the CNOT
gate, compare Figs. 4.2 and 4.3.
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Figure 4.3: Expectation value of the detection operator WCZ on the noisy
state CMD,Z

in terms of the two noise parameters q1 and q2. Notice that when
q1 = q2 = q, the expectation value Tr[WCZCMD,Z

] is negative for high level of
noise q as well.

Also in this case, see Fig. 4.3, if the noise is present just before or after
the gate, namely q2 = 0 or q1 = 0, our method detects the noisy CZ as a non
separable map if q1 < 1− 1√

2
' 0.29 (or q2 < 1− 1√

2
' 0.29). This threshold is

exactly the same as the one found for WCNOT, thus the operator for detecting
the CZ turns out to be as robust against dephasing noise as WCNOT revealing
CNOT. If the two sources of noise have the same strength, i.e. q1 = q2 = q,
then the expectation value turns out to be negative if the noise level is either

q < 1
2
(1 −

√
1−
√

2) ' 0.18 or q > 1
2
(1 +

√
1−
√

2) ' 0.82. This behaviour
may seem to be very surprising, since it follows that WCZ can tolerate not
only low levels of noise but high levels too. The only regime where it fails is
when the noise has a medium strength. However, this effect can be intuitively
explained as follows. Dephasing noise always commutes with the CZ gate,
thus the noise can be thought to be applied twice before the regarded gate.
For high noise level q, the action of two consecutive dephasing processes leads
almost to the identical map, since Z2 = 1, and so the scenario can be thought
as noiseless. We want to stress that this result is completely different from the
one obtained for WCNOT since there only a low amount of noise was tolerated.

4.2.3 Bit flip noise

Another interesting model of noise is given by bit flip noise B, defined as a
CP-TP map of the form (4.12) with probabilities p0 = 1 − q, p1 = q and
p2 = p3 = 0. As before, we consider the situation in which the noise acts
independently on the two qubits both before and after the controlled operation
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4.2. Noise robustness

Figure 4.4: Expectation value of the detection operator WCZ on the noisy state
CMB,Z

as a function of the two noise parameters q1 and q2.

C-Ut (either CNOT or CZ):

MB,Ut =
B1 • B2

B1 Ut B2

. (4.21)

Let us first focus on the detection of the CNOT gate by the operator WCNOT.
By exploiting Eq. (4.11), where the composite map is now given by MB,X =
(B2 ⊗B2)CNOT(B1 ⊗B1), we arrive at the following expectation value of
WCNOT over its noisy implementation CMB,X

:

Tr[WCNOTCMB,X
] =

1

2
− [(1− q1)2(1− q2)2 + q1q2(1− q1q2)]. (4.22)

This turns out to be the same expectation value as for the case of dephasing
noise, therefore the discussion already done below Eq. (4.19) still holds (see
also Fig. 4.2).

In order to study the robustness of WCZ to detect CZ with additional
bit flip noise, we have to evaluate the quantity Tr[WCZCMB,Z

] with MB,Z =
(B2 ⊗B2)CZ(B1 ⊗B1). By using Eq. (4.11), we get

Tr[WCZCMB,Z
] =

1

2
− (1− q1)2(1− q2)2, (4.23)

which allows us to derive different thresholds for the noise tolerance of CZ (see
Fig. 4.4). If noise is neglected either after (q2 = 0) or before (q1 = 0) the CZ
gate, then the method is able to tolerate a level of noise up to 1− 1√

2
' 0.29,

i.e. either q1 < 1− 1√
2

or q2 < 1− 1√
2
. In the case where both the noise sources

show the same amount of noise, namely q1 = q2 = q, it follows that the CZ
gate is detected as long as q < 0.16.
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4.2.4 Amplitude damping noise

As a last noise model we consider the amplitude damping channel, which is not
a random unitary noise and it is described by the following Kraus operators
acting on a single qubit

A1 =

(
1 0
0
√

1− γ

)
, A2 =

(
0
√
γ

0 0

)
, (4.24)

where γ is the parameter characterising the amount of damping.
In the case of WCNOT, following the same procedure described above and

by considering now the composite map MA,X = (A2 ⊗ A2)CNOT(A1 ⊗ A1),
we have

Tr[WCNOTCMA,X
] = (4.25)

1

2
− 1

16

[
(1 +

√
γ̄1γ̄2(1 +

√
γ̄1 +

√
γ̄2))2 + γ1γ̄1γ2γ̄2

]
,

where we have defined γ̄ = 1−γ. As in the previous cases the above expression
is symmetric under exchange of γ1 and γ2, see Fig. 4.5. When noise acts only
either before or after the CNOT gate, e.g. γ2 = 0, the above expression is
negative for γ1 < 0.53. For the particular case of γ1 = γ2 = γ we get

Tr[WCNOTCMA,X
] =

1

2
− 1

16

[
(1 + γ̄(1 + 2

√
γ̄))2 + γ2γ̄2

]
, (4.26)

which is negative for γ < 0.31. Therefore the composite map MA,X can be
detected as non separable in this range of noise parameter γ.

The noise robustness of WCZ with respect to the amplitude damping noise
can be studied starting from the expectation value of WCZ on MA,Z = (A2 ⊗

Figure 4.5: Expectation value Tr[WCNOTCMA,X
] of WCNOT on the noisy state

CMA,X
, corresponding to the noisy map MA,X , in terms of the two damping

parameters γ1 and γ2.
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4.2. Noise robustness

Figure 4.6: Expectation value of WCZ on the Choi state CMA,Z
as a function of

the two damping parameters γ1 and γ2. The plotted behaviour is very similar
to the behaviour of WCNOT, but nevertheless it is not exactly the same.

A2)CZ(A1 ⊗A1), which is given by

Tr[WCZCMA,Z
] =

1

2
− 1

16
(1 +

√
γ̄1γ̄2)4, (4.27)

and depicted in Fig. 4.6. As we can see from the above expression, when noise
is present only before the CZ gate, i.e. γ2 = 0, a negative result is found for
γ1 < 0.53, exactly as for WCNOT. Notice that, since the above expectation
value is still invariant under exchange of γ1 and γ2, the same holds if noise acts
just after the controlled gate. When noise before and after the CZ gate is the
same, i.e. γ1 = γ2 = γ, it is easy to show that

Tr[WCZCMA,Z
] =

1

2
− 1

16
(1 + γ̄)4. (4.28)

Thus the operator WCZ detects the noisy CZ as a non separable map only if
γ < 0.31. We would like to stress that this value is the same as before only
because we truncate the root of Eq. (4.28) at the second digit.

This last noise model concludes the theoretical study of the robustness of
the QCD method against quantum noise. In particular several important noise
models have been considered so far, and different thresholds in order for our
detection operator to work have been calculated. Notice that one might also
face a different noisy situation, namely, when the maximally entangled state
|α〉, from which the Choi state CU is implemented, is not perfectly prepared.
In this case one should consider two different scenarios. On the one hand,
if the noise is such that it ruins the purity and the entanglement content
of the state |α〉, then it can be suitably recast to the noise models that we
have just discussed. In fact, one can always think of the noisy initial state
as generated by extra noise processes that act on the perfect input state |α〉
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4. Map Detection: Noise Robustness and Experimental Realization

before the to-be-detected unitary U is performed. On the other hand, if the
noise is such that it creates not desired entanglement in the splitting AC|BD,
i.e. the initial maximally entangled state |α〉AC |α〉BD is no longer biseparable
in the bipartition AC|BD, then the method no longer guarantees to detect
non separability. As a result, in an experimental realization of the proposed
method, one has to be sure to deal with a proper biseparable initial state |α〉
by means of either other detection techniques or quantum state tomography
(see Sec. 4.3).

In the next section we will focus on the experimental detection of quan-
tum channels. Channels of the depolarising form and the CNOT gate will
be detected as non EB and non separable, respectively. For this latter case,
dephasing noise will be added to the system in a controlled way. Therefore,
the noise analysis just performed turns out to be useful, and testable in an
experimental set-up.

4.3 Experimental detection of quantum chan-

nels

In this section we focus on the experimental realization of the QCD method
previously explained. The QCD scheme is firstly exploited for non EB chan-
nels of the depolarizing form and is based on the generation and detection of
polarized entangled photons. We then perform the QCD in order to reveal the
CNOT gate as a non separable map by employing two-photon hyperentangled
states.

4.3.1 Single-qubit EB channels

We now show how to experimentally detect the depolarizing channel Γp defined
in Eq. (3.7) as a non EB channel. More precisely, as extensively explained in
Sec. 3.2, the problem reduces to the detection of the corresponding Choi state

CΓp = (1− 4

3
p)|Φ+〉〈Φ+|+ p

3
1 , (4.29)

via the following detection operator:

WEB =
1

4
(1⊗1−X ⊗X + Y ⊗ Y − Z ⊗ Z) . (4.30)

The detection scheme is depicted in Fig. 4.7 (a): we prepare the two-qubit
system in the maximally entangled state |Φ+〉, we then let the depolarizing
channel act on qubit 1, and we finally measure the operator WEB acting on
both qubits 12 for different value of the noise parameter p.

If 〈WEB〉 < 0, then we are guaranteed that the depolarizing channel Γp is
not EB. The theoretically calculated expectation value for the ideal Choi state
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Figure 4.7: (a) Scheme for the 1-qubit depolarizing channel detection; |Φ+〉: 2-
qubit maximally entangled state, Γp: 1-qubit depolarizing channel; WEB: EB
detection operator measurement. (b) Implementation of the 1-qubit depolariz-
ing channel; LC1,2: liquid crystal retarders with axis set at 0◦ and 45◦ respec-
tively; V : applied voltage to the LCs. (c) Polarization analysis set-up used to
evaluate the operator WEB; QWP: quarter-wave plate, HWP: half-wave plate,
PBS: polarizing beam-splitter, SPAD: single-photon avalanche photodiode, C:
coincidence counting electronics.

is 〈WEB〉 = p−1/2, from which we expect Γp to be non EB whenever p < 1/2.
Notice that from the measured 〈WEB〉 we can also establish a lower bound on
the theoretical quantity µc(Γp) discussed at the end of Sec. 3.2.

Experimental procedure: The two-photon states used in this experiment
were produced by a spontaneous parametric down conversion (SPDC) source
operating on the double excitation (back and forth) of a type I, 0.5mm-long
BBO crystal, that, depending on the performed experiment, allows to gen-
erate either a polarization entangled state [78], or a path-polarization hy-
perentangled state [79] of two photons emitted over either two or four spa-
tial modes (see appendix D.1 for major details). The 2-photon polariza-
tion entangled state generated over two spatial modes (Fig. 4.7 (a)) was
|Φ+〉 = 1√

2
(|H〉B|H〉A + |V 〉B|V 〉A), where H (V ) stands for the horizontal

(vertical) polarization of photon A (Alice’s) or B (Bob’s).
We simulated a 1-qubit depolarizing channel, Γp of Eq. (3.7), acting on

Bob’s photon by inserting two liquid crystal retarders (LC1 and LC2) on the
path of photon B, one having its fast axis horizontal and the other oriented
at 45◦ with respect to the horizontal [76] (Fig. 4.7 (b)). Depending on the
applied voltage V , it is possible to change the retardation between ordinary
and extraordinary polarized radiation. More precisely, by applying either V1
or Vπ to a LC, it can be made to act as either a full- or a half-wave plate,
respectively. Thus, by varying independently the voltage applied to LC1 and
LC2 for different time intervals, we could apply the four Pauli operators to
photon B with different values of the weight p (see appendix D.1).

In order to measure the detection operator WEB given by Eq. (4.30) as
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4. Map Detection: Noise Robustness and Experimental Realization

Figure 4.8: Expectation value 〈WEB〉 of the detection operator (full symbol,
solid line) and minimal bound of µc(Γp) (empty symbol, dotted line) as a
function of the noise parameter p.

a function of the noise level, varying between the values 0 and 1, we needed
to evaluate X⊗2, Y ⊗2 and Z⊗2 for different values of p. This was done, for
each choice of p, by measuring the coincidences between photons A and B in
8 different settings [80] of the polarization analysis set-up which consisted of
a quarter-wave plate (QWP), a half-wave plate (HWP), a polarizing beam-
splitter (PBS) and a single-photon avalanche photodiode (SPAD) (Fig. 4.7
(c)).

Experimental results: The detection operator we obtained is shown in
Fig. 4.8, together with the theoretical behaviour for a perfectly pure state
and the actual one used in the experiment. In order to compare our results
with the theory, we need in fact to take into account the imperfection of the
experimentally simulated Choi state. Indeed, the two-photon state produced
by the SPDC source corresponds to |Φ+〉 only up to a finite fidelity F0 = 0.935±
0.004 (measured by performing a two-photon quantum state tomography for
p = 0). Replacing

|Φ+〉〈Φ+| −→ 4F0 − 1

3
|Φ+〉〈Φ+|+ 4− 4F0

3

1

4
(4.31)

in Eq. (4.29), we can thus write the experimental Choi state as:

CΓp,exp =
(

1− 4 p

3

)4F0 − 1

3
|Φ+〉〈Φ+|+

(p
3

4F0 − 1

3
+

1− F0

3

)
1 . (4.32)

Notice that the experimental data are in full agreement with the theoretical
value 〈WEB〉, computed on the noisy state CΓp,exp with F0 = 0.935±0.004. The
error bars on 〈WEB〉 are obtained by propagating the Poissonian uncertainties
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associated with the coincidence counts and the error bars on p are estimated
by considering the finite response time of the LC.

Let us notice that we indeed obtain the EB property of the channel for a
value of p up to around 0.5 as expected from the theory, and, as a consequence
of Eq. (3.10), the bound on µc(Γp) gets trivial above this value (see Fig. 4.8).

4.3.2 Two-qubit separable maps

As a demonstration of the achievability of the optimal detection method for
non separable maps we consider the explicit case of the CNOT gate acting on
two qubits 12. Following the method explained in Sec. 3.3 and already recalled
in Sec. 4.1 of this chapter, the corresponding detection operator reads

WCNOT =
1

2
1−|CNOT〉〈CNOT|, (4.33)

where |CNOT〉 is the Choi state associated to the CNOT gate (now taken
with qubit 1 as the target and qubit 2 as the control, contrarily to the usual
convention). The Choi state |CNOT〉 is thus given by

|CNOT〉 = CNOT21 ⊗ 134

∣∣Φ+
〉
13

∣∣Ψ+
〉
24

(4.34)

=
1√
2

(
∣∣Φ+

〉
13
|01〉24 +

∣∣Ψ+
〉
13
|10〉24) ,

where |Φ+〉 and |Ψ+〉 are maximally entangled states of the Bell basis. No-
tice that here we implement the above state by starting from the maximally
entangled state |Φ+〉13 |Ψ+〉24, instead of |Φ+〉13 |Φ+〉24. This choice, besides
not affecting the technique, will be more convenient in the experimental real-
ization that follows. The detection operator above can be measured by using
nine different local measurement settings, see Sec. 3.3. Notice that a possible
way to reduce the experimental effort is to consider the suboptimal operator

W̃CNOT = 31−2

[
(1+1X⊗3)

2

(1+X 1X 1)

2

+
(1−1Z 1Z)

2

(1+Z⊗3 1)

2

]
, (4.35)

where we omitted the tensor products and from which it is clear that it requires
only two measurement settings.

In this experiment we also demonstrate the robustness of the detection
method in the presence of undesired dephasing noise acting on both qubits
12, before and/or after the CNOT gate, as discussed in Sec. 4.2.2. The
noise robustness of the operator W̃CNOT with respect to dephasing noise is
evaluated by the expectation value of W̃CNOT given by Eq. (4.35) with respect
to the state CMD,X

, the Choi state corresponding to the noisy map depicted
in (4.18) with Ut = X. We would like to stress that, despite requiring only
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two measurement settings, the operator W̃CNOT of (4.35) turns out to be as
efficient as WCNOT of (4.33) in the presence of dephasing noise, in the sense that
it detects non separability of CMD,X

in the same range of values of the noise

parameters. Indeed the two operators can be shown to fulfil W̃CNOT = 2WCNOT

if restricted to the subspace of states spanned by CMD,X
. Therefore, in the

present experiment we measure W̃CNOT instead of WCNOT, as this requires
fewer experimental settings. Furthermore, the theoretical expectation value of
W̃CNOT on the noisy state CMD,X

is still given by Eq. (4.19) (multiplied by a
factor two), that we report for convenience in the following:

Tr[W̃CNOTCMD,X
] = 1− 2[(1− q1)2(1− q2)2 + q1q2(1− q1q2)]. (4.36)

Recall that whenever the noise has the same strength before and after the
CNOT gate (q1 = q2 = q), it is always possible to detect the non separability
character of the map MD,X for sufficiently low values of the noise parameter,
namely q < 0.17.

Experimental procedure: For this second experiment, we used the SPDC
source operating over four emission modes (see appendix D.1). Hence we
prepared the 4-qubit hyperentangled state |Ξ〉 = |Φ+〉13|Ψ+〉24 where∣∣Φ+

〉
13

=
1√
2

(|H〉B |H〉A + |V 〉B |V 〉A), (4.37)∣∣Ψ+
〉
24

=
1√
2

(|r〉B |l〉A + |l〉B |r〉A), (4.38)

and r (l) designs the right (left) path of photon A or B.
We implemented a CNOT gate on Bob’s photon by inserting a half-wave

plate set at 45◦ on the left path of photon B: thus the path (qubit 2 ) acts
as the control and the polarization (qubit 1 ) acts as the target (Fig. 4.9 (b)).
After the CNOT gate, the 4-qubit state then reads:

|Ξout〉 =
1

2

(
|H r〉B|H l〉A + |V l〉B|H r〉A + |V r〉B|V l〉A + |H l〉B|V r〉A

)
=

1√
2

(
|Φ+〉13|r〉2|l〉4 + |Ψ+〉13|l〉2|r〉4

)
. (4.39)

Using the correspondence |H〉B,A ↔ |0〉13,|V 〉B,A ↔ |1〉13 , |r〉B,A ↔ |0〉24 and
|l〉B,A ↔ |1〉24, Eq. (4.39) is equivalent to the Choi state of the CNOT channel
expressed in the logical basis (4.34).

Dephasing noisy processes were simulated by acting independently on qubits
1 and 2, before and/or after the CNOT gate (Fig. 4.9 (a)) by inserting a LC
with its fast axis at 0◦ with respect to the horizontal and a thin glass plate,
both before and after the CNOT (Fig. 4.9 (c)). Each LC induces a phase
between |H〉B and |V 〉B, that can be set to either 0 or π by applying a voltage
V1 or Vπ respectively, thus acting either as 1 or Z for qubit 1 ; each glass
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Figure 4.9: (a) Scheme for the 2-qubit CNOT channel detection in presence of
dephasing noise; |Ξ〉: 4-qubit hyperentangled state; πi: polarization qubit and
ki: path qubit, with i = A,B; D1,2: independent 2-qubit dephasing channels;
W̃CNOT: CNOT detection operator measurement. (b) CNOT implementation:
a half-wave plate (HWP) set at 45◦ flips the polarization of photon B when
its path is lB. (c) 2-qubit dephasing channel implementation; LCi: liquid
crystal retarder with its axis set at 0◦; glassi: thin glass plate; i = 1, 2. (d)
Path analysis set-up; glass: thin glass plate, BS: beam-splitter; i = A,B.
(e) Polarization analysis set-up used in combination with (c) to evaluate the
operator W̃CNOT; HWP: half-wave plate, PBS: polarizing beam-splitter, SPAD:
single-photon avalanche photodiode, C: coincidence counting electronics.

plate introduces a phase φ between |r〉B and |l〉B, that can be set to 0 or π by
calibrated rotations of the plate, thus acting either as 1 or Z for qubit 2. By
varying the relative time of action of each dephaser, in a similar manner as in
the 1-qubit channel experiment, we were able to vary the values of q1 and q2.

In order to measure the operator W̃CNOT (4.35) as a function of q1 and q2,
we needed to evaluate X⊗4 and Z⊗4 for several values of q1 and q2. Thus, for
each value of q1 and q2, we measured coincidence counts between photons A
and B in 32 different settings of the polarization-path analysis set-up. The
polarization analysis in this case is achieved via a HWP and a PBS (Fig.
4.9 (e)) while the path analysis is done either directly sending the photons
to the detectors (thus measuring |r〉 and |l〉) or passing them first through a
beam-splitter and a thin glass plate (thus measuring |d〉 = 1√

2
(|r〉 + |l〉) and

|a〉 = 1√
2
(|r〉 − |l〉)) (Fig. 4.9 (d)).
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Figure 4.10: CNOT detection operator expectation value 〈W̃CNOT〉 as a func-
tion of the noise parameter q.

Experimental results: We obtained the values reported in Fig. 4.10 as a
function of q1 = q2 = q. Again, to compare them properly with the theory, we
must take into account the finite purity of the initial state that we prepared to
simulate the Choi state of the CNOT gate. We could model the experimental
Choi state of the CNOT noisy channel, given the visibilities (measured in
the diagonal basis) of the polarization (νπ = 0.858 ± 0.008) and path (νk =
0.904± 0.004) entanglement for q = 0 (see appendix D.2).

As can be seen, our results are in good agreement with the theoretical
calculation. Notice that the slight discrepancy remaining for large q is probably
due to imperfections in the simulated dephasing channels. As expected, from
these results it is evident that a low level of noise makes the CNOT to be no
more an entangling gate, in particular the non separability of the map is no
longer detected for q ≥ 0.1 in our experiment.

Eventually, in Fig.4.11 two additional measurements of 〈W̃CNOT〉 for which
only q1 was varied, in the cases q2 = 0 and q2 = 0.30, are reported. The expec-
tation value for the imperfect initial Choi state prepared was calculated using
the model described in the appendix. Here again we believe the discrepancy
with the experimental data for large q1 may be due to imperfections in the
simulated dephasing noise. In the case q2 = 0, the non separability of the
map is no longer detected for q1 > 0.21 in our experiment; while for the case
q2 = 0.30, as expected from Sec. 4.2.1, the entanglement of the CNOT gate is
never detected, whatever the strength q1 of the noise before the gate.

4.4 Conclusions and further perspectives

In summary, we have reviewed an experimentally feasible method to detect
specific properties of noisy quantum channels and we have analysed in partic-
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Figure 4.11: CNOT detection operator expectation value as a function of the
noise parameter q1, in two cases: q2 = 0 (left) and q2 = 0.30 (right).

ular the case of detection of non separable maps acting on two qubits. We
have studied in detail the robustness of the method in the presence of noise
and imperfections in the channel operation for the case of a unitary channel,
considering the explicit examples of CNOT and CZ gates. We have discussed
four realistic noise models, namely depolarising, dephasing, bit flip and ampli-
tude damping noise, and derived the corresponding noise thresholds in which
the method works.

The QCD method has been then tested in the cases of a single-qubit non
EB channel and of a two-qubit non separable map with very good agreement
between experimental measurements and theoretical predictions. We would
like to stress that the presented QCD method allows to check the entanglement
properties of a noisy multiqubit gate with fewer measurements than those
required by full quantum process tomography [66], and could thus be a more
convenient tool for routine performance checks on quantum gates.
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Chapter 5
Quantum Cloning by Cellular
Automata

Quantum cellular automata (QCAs) have attracted considerable interest in
recent years [32, 33], due to their versatility in tackling several problems in
quantum physics. Quantum automata describing single particles correspond
to the so-called quantum random walks [81], whose probability distributions
can be simulated with an optical set-up [82, 83]. Solid-state and atom-optics
systems, such as spin-chains, optical lattices, or ion chains, can be viewed
as implementations of QCAs, though in a Hamiltonian description. Recently
QCAs have also been considered as a model of quantum field theory at the
Planck scale [84, 85]. In this scenario, general coordinate transformations
correspond to foliations, such as those introduced in Ref. [86] for operational
structures, e.g. the digital equivalent of the relativistic boost is given by a
uniform foliation over the automaton [87]. Besides the link with fundamental
research, the possibility of foliations makes the QCA particularly interesting
also for implementing quantum information tasks.

In this chapter we explore such a potentiality for the case of quantum
cloning as a sample protocol [30]. We firstly introduce a quantum cellular
automaton that achieves approximate phase-covariant cloning of qubits and
optimize its performances for 1→ 2N economical cloning. We then show how
the foliations can be optimized and exploited for improving the efficiency of
the protocol.

5.1 Two fundamental preliminaries

The concepts of both phase-covariant cloning and QCAs are needed in order to
understand the content of this chapter. We will thus briefly explained them in
the following, mainly focusing on the basic features that are required to realize
quantum cloning via QCAs.
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5.1.1 Phase-covariant cloning

It is well known that quantum cloning of non orthogonal states violates unitar-
ity [88] or linearity [89] of quantum theory. However, one can achieve quantum
cloning approximately, for a given prior distribution over input quantum states.
For uniform Haar distribution of pure states the optimal protocol has been de-
rived in Ref. [31], whereas for equatorial states it has been given in Refs.
[90, 91].

Here we consider specifically this second protocol, corresponding to clone
the two-dimensional equatorial states of the form

|φ〉 =
1√
2

(|0〉+ eiφ |1〉). (5.1)

The cloning is phase-covariant in the sense that its performance is independent
of φ, i.e. the fidelity is the same for all states |φ〉. For certain numbers of input
and output copies it was shown that the optimal fidelity can be achieved by
a transformation acting only on the input and blank qubits, without extra
ancillae [92, 93]. Since these transformations act only on the minimal number
of qubits, they are called “economical”. The unitary operation Upcc realizing
the optimal 1→ 2 economical phase-covariant cloning is given by [92]

Upcc |0〉 |0〉 = |0〉 |0〉 , (5.2)

Upcc |1〉 |0〉 =
1√
2

(|0〉 |1〉+ |1〉 |0〉),

where the first qubit is the one we want to clone, while the second is the blank
qubit initialised to input state |0〉. In Ref. [93] the economical map performing
the optimal N →M phase-covariant cloning for equatorial states of dimension
d is explicitly derived for M = kd+N , with integer k.

5.1.2 Quantum cellular automata

In order to analyse a QCA implementation of the economical quantum cloning,
we now recall the reader some properties of QCAs we are considering here.

Our automaton is one-dimensional, and a single time-step corresponds to
a unitary shift-invariant transformation achieved by two arrays of identical
two-qubit gates in the two-layer Margolus scheme [32] reported in Fig. 5.1.
Notice that this is the most general one-dimensional automaton with next-
nearest neighbour interacting minimal cells. Due to the locality of interactions,
information about a qubit cannot be transmitted faster than two-systems per
time step, and this corresponds to the cell (qubit) “light-cone” made of cells
that are causally connected to the first. Every event outside the cone has no
chance to be influenced by what happened in the first cell, thus the quantum
computation of the evolution of localized qubits is finite for finite numbers of
time-steps.
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5.1. Two fundamental preliminaries

Figure 5.1: Realization of one-dimensional quantum cellular automaton with
a structure composed of two layers of gates A and B. This is the most general
one-dimensional automaton with next-nearest neighbour interacting minimal
cells.

We now remind the concept of foliation on the gate-structure of the QCA
[87]. Usually in a quantum circuit –drawn from the bottom to the top as the
direction of input output– one considers all gates with the same horizontal
coordinate as simultaneous transformations. A foliation on the circuit corre-
sponds to stretching the wires (namely without changing the connections), and
considering as simultaneous all the gates that lie on the same horizontal line af-
ter the stretching. Such horizontal line can be regarded as a leaf of the foliation
on the circuit before the stretching transformation. Therefore, a foliation cor-
responds to a specific choice of simultaneity of transformations (the “events”),
namely it represents an observer or a reference frame. Examples of different
foliations are given in Fig. 5.2. Upon considering the quantum state at a
specific leaf as the state at a given time (at the output of simultaneous gates),
different foliations correspond to different state evolutions achieved with the
same circuit. Therefore, in practice we can achieve a specific state belonging
to one of the different evolutions, by simply cutting the circuit along a leaf,
and tapping the quantum state from the resulting output wires (the operation
of “stretching” wires should be achieved by remembering that by convention
the wires represent identical evolutions, not “free” evolutions).

Figure 5.2: Foliations over the automaton. Two leafs of two different uniform
foliations are depicted with dash-lines in different colors (the complete foliation
is obtained upon repeating vertically the leaf). The systems along each leaf are
taken as simultaneous. The red “cut” is usually referred to as the rest-frame
foliation.
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5. Quantum Cloning by Cellular Automata

5.2 Phase-covariant cloning by QCAs

We now show how to perform a 1→ 2N phase-covariant cloning of the equa-
torial states (5.1) with a QCA of N layers, with all gates identical, performing
the unitary transformation denoted by A, acting on two qubits.

Due to causality, we can restrict our treatment to the light-cone centred in
the state to be cloned |φ〉 and initialise all blank qubits to |0〉, as shown in Fig.
5.3. By requiring phase-covariance for the cloning transformation, the unitary
operator A must commute with every transformation of the form Pχ ⊗ Pχ,
where Pχ is the general phase-shift operator Pχ = exp[ i

2
(1−σz)χ] for a single

qubit, with σz the Pauli matrix along z. Therefore, we impose the condition

[A,Pχ ⊗ Pχ] = 0, ∀χ . (5.3)

This implies that the matrix A must be of the form A = diag(1, V, 1), where
V is a 2× 2 unitary matrix. Notice that the transformation A then acts non-
trivially only on the subspace spanned by the two states {|01〉 , |10〉} and it is
completely specified by fixing V .

In order to derive the optimal cloning transformation based on this kind of
QCA we now maximize the average single-site fidelity of the 2N -qubit output
state with respect to the unitary operator A. In order to achieve this, we write
the initial state of 2N qubits in the following compact form

|Ψ0〉 =
1√
2

(|Ω〉+ eiφ |N〉), (5.4)

where we define |Ω〉 = |0 . . . 0〉 as the “vacuum state” with all qubits in the |0〉
state, and |k〉 = |0 . . . 01k0 . . . 0〉 as the state with the qubit up in the position
k, and all other qubits in the state down. Without loss of generality in the
above notation the qubit to be cloned is supposed to be placed at position N
and it is initially in the state |φ〉. Since [Pχ ⊗ Pχ,

∑
k σz,k] = 0 for all χ, the

gate A commutes with the operator
∑

k σz,k and thus preserves the number
of qubits up. Therefore, the evolved state through each layer belongs to the
Hilbert space spanned by the vacuum state and the 2N states with one qubit
up. The whole dynamics of the QCA can then be fully described in a Hilbert
space of dimension 2N + 1. The output state can thus be generally written as

|Ψ2N〉 =
1√
2

(|Ω〉+ eiφ
2N∑
k=1

αk |k〉), (5.5)

where the amplitudes αk of the excited states depend only on the explicit form
of the gate A.

The reduced density matrix ρk of the qubit at site k can then be straight-
forwardly derived from the output state (5.5) as

ρk = Trk̄[|Ψ2N〉 〈Ψ2N |] (5.6)

=
1

2

[(
1 +

∑
j 6=k

|αj|2
)
|0〉 〈0|+ e−iφα∗k |0〉 〈1|+ eiφαk |1〉 〈0|+ |αk|2 |1〉 〈1|

]
,
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5.2. Phase-covariant cloning by QCAs

Figure 5.3: Cone of gates which contribute to the phase-covariant cloning,
given the input state |φ〉 at site N .

where Trk̄ denotes the trace on all qubits except qubit k. The local fidelity of
the qubit at site k with respect to the input state |φ〉 then takes the simple
form

Fk = 〈φ| ρk |φ〉 =
1

2
(1 + Re{αk}). (5.7)

As we can see, Fk depends only on the amplitude αk of the state with a single
qubit up exactly at k. Since the gate A is generally not invariant under ex-
change of the two qubits, the fidelities at different sites are in general different.
We then consider the average fidelity, namely

〈F 〉 =
1

2N

2N∑
k=1

Fk, (5.8)

as figure of merit to evaluate the performance of the phase-covariant cloning
implemented by QCAs. Notice that the whole procedure corresponds to a
unitary transformation on the 2N -qubit system, without introducing auxiliary
systems, namely it is an economical cloning transformation.

The calculation of the amplitudes αk was performed numerically by updat-
ing at each layer the coefficients of the state (5.5). Notice that the amplitude
of layer j and site k influences only the amplitudes of the subsequent layer
j + 1 and sites either k − 1, k or k, k + 1, depending on whether the state |1〉
enters in the right or left wire of A, respectively. The action of A on the qubits
j and j + 1 can thus be written as

A(j, j + 1) |k〉 =


v22 |j〉+ v12 |j + 1〉 if k = j

v21 |j〉+ v11 |j + 1〉 if k = j + 1

|k〉 otherwise ,

(5.9)

where vij are the entries of the operator V in the basis {|01〉 , |10〉}. Notice
that the vacuum state |Ω〉 is invariant under the action of A. The iteration of
Eq. (5.9) for each layer leads to the amplitudes of the output state (5.5).
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5. Quantum Cloning by Cellular Automata
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Figure 5.4: Chromatic map of the local fidelities in terms of the considered
qubit and the layer. The orange colour is brighter for increasing local fidelity.
The simulation involves a number of layers N = 40, while the total number of
qubits is 2N , since it doubles at each layer.

5.2.1 Performances in the rest frame

As a first explicit example we consider a QCA employing the optimal 1 → 2
phase-covariant cloning (5.2). In this case the gate A must implement the
unitary transformation (5.2). The non-trivial part V of gate A can then be
chosen to be

V =
1√
2

(
1 1
−1 1

)
, (5.10)

where all coefficients are real. The corresponding local fidelities at every layer
are reported in Fig. 5.4. As we can see, the figure exhibits fringes of light
and dark colour. Moreover, the light-cone defined by causality can be clearly
seen: outside this cone no information about the initial state can arrive, thus
every system has the same fidelity of 1/2. Notice that there is a sort of line,
approaching the right top corner, along which the fidelity is quite high. This
is because the 1→ 2 phase-covariant cloning is optimised with the blank qubit
initialised to the state |0〉. Regarding the local fidelities of the final states, they
are in general quite different from each other, and can vary very quickly even
between two neighbouring qubits. The average fidelity is reported in Fig. 5.5
as a function of the number of layers. Notice that the average fidelity of the
optimal economical phase-covariant quantum cloning (without the constraint
of automaton structure) approaches the value 3/4 for a large number of output
copies [91].

In order to improve the average fidelity we have then maximized it with
respect to the four parameters defining the unitary operator V . Numerical
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5.2. Phase-covariant cloning by QCAs
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Figure 5.5: The average 1 → 2N phase-covariant cloning fidelity achieved
by the QCA in the rest frame (see Fig. 5.2). Comparison with the optimal
economical phase-covariant cloning in Ref. [91]. The purple dots represents
the QCA cloning optimized over the unitary gate A. The blue dots correspond
to the use of gate A achieving the optimal 1 → 2 cloning Upcc in Eq. (5.2).
The yellow dots represent the unrestricted optimal economical cloning.

results achieved up to N = 20 show that the optimal cloning performed in
this case is not much better than the one given by the iteration of (5.10).
Eventually, the latter turns out to be outperformed only when the number of
layers composing the automaton is even, as shown in Fig. 5.5.

Further numerical results show that no gain can be achieved if the automa-
ton is composed of layers of two different gates A and B. Actually, in this case
it surprisingly turns out that the optimal choice corresponds to B = A, namely
we do not exceed the average fidelity obtained by employing a single type of
gate. As a result, since all one-dimensional QCA with next-nearest neighbour
interacting cells with two qubits can be implemented by a two-layered struc-
ture, we have then derived the optimal phase-covariant cloning transformation
achievable by the minimal one-dimensional QCA.

5.2.2 Performances exploiting different foliations

We now show that the average fidelity in the case of a single-gate automaton
can be improved by considering different foliations.

Suppose that we are given a fixed number M of identical gates A to im-
plement a QCA. We are then allowed to place the gates in any way such that
the causal structure of the considered automaton is not violated. Which is
the configuration, i.e. the foliation, that performs the optimal phase-covariant
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5. Quantum Cloning by Cellular Automata

Figure 5.6: Illustration of the classification of foliations. A possible foliation
with M = 6 gates is given. From the correspondence between the gates lying
under the “cut” and the rotated dots on the right, we identify this foliation
with the partition {4, 1, 1}.

cloning for fixed M? In this framework we have to maximize not only over
the parameters that define V but also over all possible foliations. Thus, the
M fixed gates play the role of computational resources, and the optimality is
then defined in terms of both the parameters characterising the single gate A
and the disposition of the gates in the network.

As a first example, suppose that we are given M = 3 gates. In this case
there are 3 inequivalent foliations: one for the rest frame (see Fig. 5.2), and
two along the straight lines defining the light-cone. As expected, for increas-
ing M the counting of foliations becomes more complicated and the problem
is how to choose and efficiently investigate each possible foliation. It turns out
that the problem of identifying all possible foliations of a QCA of the form
illustrated in Fig. 5.3 for a fixed number of gates M is related to the parti-
tions of the integer number M itself (by partition we mean a way of writing
M as a sum of positive integers, a well known concept in number theory [94]).
Two sums that differ only in the order of their addends are considered to be
the same partition. For instance the partitions of M = 3 are exactly 3 and
given by {3}, {2, 1}, and {1, 1, 1}, while the partitions of M = 6, correspond-
ing to a 3-layer setting in the rest frame, are 11 and given by {6}, {5, 1},
{4, 2}, {4, 1, 1}, {3, 3}, {3, 2, 1}, {3, 1, 1, 1}, {2, 2, 2},{2, 2, 1, 1}, {2, 1, 1, 1, 1},
and {1, 1, 1, 1, 1, 1}. The link between foliations and partitions is illustrated in
Fig. 5.6, which shows how partitions can be exploited to identify foliations.
For a fixed number of gates M the number of foliations is then automatically
fixed and each foliation corresponds to a single partition. The correspondence
is obtained as follows: each addend represents the number of gates along par-
allel diagonal lines, starting from the vertex of the light-cone, as shown in Fig.
5.6 for the particular case of M = 6.

Based on this correspondence, we can investigate the performance of the
phase-covariant cloning as follows. For any fixed foliation, we first maximize
the average fidelity with respect to the four parameters of the unitary V ,
defining the gate A. Then we choose the highest average fidelity that we have
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5.3. Summary of results

M(Layers) 〈Frest〉 〈F 〉 Optimal foliation
1(1) 0.853 0.853 {1}
3(2) 0.676 0.693 {3}
6(3) 0.617 0.679 {2, 2, 2}
10(4) 0.588 0.670 {4, 3, 3}
15(5) 0.570 0.653 {4, 4, 4, 3}
21(6) 0.558 0.614 {4, 3, 2, 2, 2, 2, 2, 2, 2}
28(7) 0.550 0.603 {6, 6, 6, 5, 5}

Table 5.1: Results of the maximization over foliations up to M = 28 corre-
sponding to QCAs composed of up to 7 layers.

obtained by varying the foliation. We worked out this procedure numerically
for M = 1, 3, 6, 10, 15, 21, 28, i.e. the number of gates composing the QCA with
N = 1, 2, 3, 4, 5, 6, 7 layers, respectively. Our results are shown in Table 5.1,
where the maximization in the rest frame is also reported for comparison. As
we can see, exploiting different foliations leads to a substantial improvement
of the average fidelity.

5.3 Summary of results

In this chapter we have introduced a way of achieving quantum cloning through
QCAs. We have derived the optimal automaton achieving economical phase-
covariant cloning for qubits. We have shown how the fidelity of cloning can be
improved by varying the foliation over the QCA, with fixed total number of
gates used.

By developing an efficient method to identify and classify foliations by
means of number theory, we have thus optimised the performance of the QCA
phase-covariant cloning for a given fixed number of identical gates, and ob-
tained in this way the most efficient foliation.
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Conclusions

In this work we have mainly presented several results related either to the
quantum states that are employed in quantum algorithms, and to the quantum
channel detection method, i.e. a theoretical technique suitable to point out
specific properties of quantum channels.

With regards to the former, we have connected real equally weighted states
to hypergraph states, a new class of quantum states defined according to under-
lying mathematical hypergraphs. Some meaningful properties of the concerned
states, as e.g. entanglement, become then more accessible and much easier to
investigate. It is worth mentioning that the study of entanglement content of
such states is of great importance, as it is a possible way to access the ori-
gin of the great computational power of quantum physics. Furthermore, due
to their simple mathematical structure, real equally weighted states are often
employed in other quantum protocols. Thus, a deeper understanding of these
states might shed new light on their role in other branches of quantum informa-
tion. In order to understand the role of entanglement in quantum computing,
we have also calculated the dynamics of entanglement along the Grover algo-
rithm, showing that is scale invariant and never vanishing. Moreover, several
well-known criteria, that provide an efficient classical simulation of quantum
computation, have been applied in the Grover case. However, none of them has
turned out to be successful, suggesting that something really quantum could
be effectively exploited by Grover’s algorithm.

On the other hand, a theoretical technique to detect quantum channels has
been basically developed in order to simplify the routine checks on experimen-
tally realized quantum gates. Indeed, the method can be applied whenever
some a priori knowledge about the form of the channel is available, as it is
very often the case in a laboratory. The method is able to point out some
specific properties of interest by avoiding full quantum process tomography,
a technique that requires a large number of measurement settings and is not
convenient if one is interested just in a single property of the channel under
consideration. In other words, despite being more informative than quantum
channel detection, the quantum process tomography usually provides much
information that is practically not needed. The quantum channel detection
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Conclusions

method overcomes this fact, providing knowledge about only the properties of
interest. In addition, the proposed method can be implemented with nowa-
days technology, leading to a ready-to-use protocol to check performances of
experimentally realized quantum gates.

At last, we have shown how to realize phase-covariant quantum cloning
via quantum cellular automata. Even though it does not fit into the two main
topics faced in this work, the achieved result should be regarded as a significant
example showing how to perform a very well-known quantum task, such as
cloning, by using the recently spread field of quantum cellular automata. We
would like to stress that, since quantum cellular automata can be seen as
networks of local gates, the presented task can be eventually interpreted as
the realization of quantum cloning by a very simple quantum network.
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Appendix A
A.1 Group structure of the generalized stabi-

lizer operators

We now prove that the operators {Ki}i=1,2,...,n defined in Eq. (1.14) generate
an Abelian group. The group properties follow immediately: the closure is
given by construction, the associativity by the matrix algebra, the identity
and the inverse belong to the set since K2

i = 1 and Ki = K†i , respectively.

On the other hand, the commutativity can be proved as follows. Suppose
we are given Ki and Kj with i 6= j, otherwise everything trivialises. Since
the concept of neighbourhood is symmetric we can keep Ki fixed and see what
happens for different Kj. If j is not in N(i) then the stabilizer operators
trivially commute. Therefore, the only situations we have to check is when
j ∈ N(i), namely when some of the CZ gates acting on N(i) in the definition
of Ki involve also the qubit j. Each of these gates takes the form CkZji1i2...ik−1

(with k arbitrary) and generally does not commute with Xj defining Kj.

It is nevertheless easy to see that, in order to prove that [Ki, Kj] = 0, it is
sufficient to show that

[(Xi ⊗ CkZji1i2...ik−1
), (CkZii1i2...ik−1

⊗Xj)] = 0, (A.1)

for any number of qubits k− 1 and vertices i1i2...ik−1. This is because we can
think to commute the two operators Ki and Kj by following a step-by-step
procedure consisting in swapping each term (Xi ⊗ CkZji1i2...ik−1

) of Ki with
the corresponding term (CkZii1i2...ik−1

⊗Xj) of Kj.

In order to prove Eq. (A.1), we rewrite the general controlled Z gate acting
on k qubits as

CkZji1i2...ik−1
= 1j ⊗(1−P )i1i2...ik−1

+ Zj ⊗ Pi1i2...ik−1
, (A.2)

where Pi1i2...ik−1
= |11...1〉i1i2...ik−1

〈11...1|. Then, by exploiting the anti-com-

85



A. Appendix

mutativity of Pauli matrices, it follows that

(Xi ⊗ CkZji1i2...ik−1
)(CkZii1i2...ik−1

⊗Xj) =

= (Xi ⊗ 1j ⊗(1−P )i1i2...ik−1
+Xi ⊗ Zj ⊗ Pi1i2...ik−1

)

× (1i⊗Xj ⊗ (1−P )i1i2...ik−1
+ Zi ⊗Xj ⊗ Pi1i2...ik−1

)

= Xi ⊗Xj ⊗ (1−P )i1i2...ik−1
+XiZi ⊗ ZjXj ⊗ Pi1i2...ik−1

= Xi ⊗Xj ⊗ (1−P )i1i2...ik−1
+ ZiXi ⊗XjZj ⊗ Pi1i2...ik−1

= (CkZii1i2...ik−1
⊗Xj)(Xi ⊗ CkZji1i2...ik−1

). (A.3)

Thus, since the commutativity relation stated in Eq. (A.1) holds for any k− 1
and qubits i1i2...ik−1, the commutativity of any two stabilizers defined by (1.14)
finally follows.

A.2 Equivalence of the circuital definition and

the stabilizers description

In order to prove that the two definitions stated in the main article are equiva-
lent we essentially follow Ref. [35]. The proof is by induction on the number of
hyperedges. The case with no hyperedges is trivially stabilized by the Pauli ma-
trices {X1, X2, ..., Xn}, since the corresponding graph state is given by |+〉⊗n.
Suppose now a general hypergraph state |g≤n〉, corresponding to the hyper-
graph g≤n, is stabilized by Ki as defined in (1.14), namely Ki |g≤n〉 = |g≤n〉.
We want to show that if we apply CkZi1i2...ik to |g≤n〉, the new hypergraph
state

∣∣g′≤n〉 = CkZi1i2...ik |g≤n〉 is stabilized by a new stabilizer generated by
K ′i, derived from the hypergraph g′≤n where the k-hyperedge {i1, i2, ...ik} is

added (or removed). Namely we want to prove that K ′i
∣∣g′≤n〉 =

∣∣g′≤n〉, where
K ′i is defined according to (1.14) for the new hypergraph g′≤n.

If we consider i 6= i1, i2, ..., ik then by definition we have K ′i = Ki and, since
[Ki, C

kZi1i2...ik ] = 0, the following holds

K ′i
∣∣g′≤n〉 =

∣∣g′≤n〉 for i 6= i1, i2, ..., ik. (A.4)

So, as for the proof regarding the commutativity of the stabilizer group, we
need to focus only on the operators {K ′i1 , K

′
i2
, ..., K ′ik}, since the others are not

affected by the action of CkZi1i2...ik . Keeping in mind the decomposition (A.2)
of CkZi1i2...ik , it is then easy to show that for every i = i1, i2, ..., ik the following
relation holds

CkZi1i2...ikKiC
kZi1i2...ik = Ck−1Zi2...ikKi = K ′i for i = i1, i2, ..., ik. (A.5)

Therefore, by exploiting the equation above, we can easily show that the
hypergraph state

∣∣g′≤n〉 is eigenstate of K ′i with eigenvalue one for vertices

i = i1, i2, ..., ik. Hence, it follows that the hypergraph state
∣∣g′≤n〉 is stabilized

by any K ′i with i = i1, i2, ..., in, which are the correlation operators that can
be defined according to the hypergraph g′≤n.
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A.3 Inequivalence of k-uniform hypergraphs

under the local Pauli group

Here we prove that every k-uniform hypergraph state cannot be transformed
to any other k′-uniform hypergraph with k 6= k′, by the only action of local
Pauli operators, namely X, Y and Z.

Let us rewrite a general hypergraph state in the more convenient form

|g≤n〉 =
1√
2n

2n−1∑
x=0

cαxl |x〉, (A.6)

where αxl denotes the set of cardinality l of subsystems of the state |x〉 that
are in the state |1〉. In other words, given the state |x〉, αxl represents the set
of indices corresponding to qubits where the excitations are. Then, having in
mind that a general k-uniform hypergraph can be created from |+〉⊗n using∏

j C
kZαjk

(αjk are index sets of cardinality k referring to the vertices on which

the CkZ operations act, for a given hyperedge j), it is easy to see that for any
k-uniform state there is at least one cαk negative (condition C1) and all cαk′
with k′ < k are positive (condition C2).

In the following we prove that, starting from a k′ < k-uniform hypergraph
state, it is not possible to transform it into a k-uniform one by only using
local X and Z. Notice that, as Y = iXZ, the Y operations are already
considered. Furthermore, since X and Z anti-commute, it is not restrictive
to apply always Z before X. As a result the two following cases describe the
most general strategy we could apply.

Case 1) We just use any k′ < k controlled Z operations (which includes
local Z’s when k′ = 1). This nevertheless fails always because to make cαk
negative we generate at least one cαk′ with k′ < k which is negative as well,
which contradicts C2.

Case 2) We apply arbitrary k′ < k controlled Z operations and then include
any number of X gates anywhere. We now show that this procedure will fail

Nβl\αk Ncr Nβl∩αk Nαk\βl Nγl′

odd odd odd
even odd (1)

odd even (2)

even even odd
even even (3)

odd odd (4)

even odd even
even even (5)

odd odd (6)

odd even even
even odd (7)

odd even (8)

Table A.1: All possible cases for index sets - for an explanation, see main text.
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Figure A.1: Drawing showing an example for possible index sets. Each dark
grey circle represents a set αk′ . In this case Nβl\αk = 2, Ncr = 2, Nβl∩αk = 1,
Nαk\βl = 2 and Nγl′

= 4. This is an example of case (3) in Table A.1. Notice
that we do not take into account the case where subsets αk′ cross the border
between the set αk \ βl and the intersection, since it is easy to see that this
case never affects our counting.

again. Let us denote as cβl the coefficient that will afterwards be transformed
to the negative coefficient cαk (l is of course arbitrary). We then need to apply
X in γl′ ≡ (αk ∪ βl) \ (αk ∩ βl) (such that cβl → cαk and C1 holds). Now, since
the action of X’s cannot change the sign of the coefficient cβl , the number of
Ck′Zαk′ operations we apply in the set βl must be odd (thus the number of
different subsets αk′ must be odd as well). Let us denote this number as Nβl ,
and in the following NS will always denote the number of sets αk′ (coming
from Ck′Zαk′ operations) included in the general set of indices S. We can then
distinguish four different cases that may happen, summarised in Table A.1.

By Ncr we mean the subsets αk′ that lie across the border of the set βl \αk
and the intersection βl ∩ αk (see Fig. A.1 for a comprehensible explanation).
Notice that Nβl = Nβl\αk+Ncr+Nβl∩αk must be odd from the hypothesis, while
the number of sets αk′ in αk \ βl, namely Nαk\βl , is instead not determined,
and might be either odd or even. Notice that the number of subsets αk′ in γl′
is given by Nγl′

= Nβl\αk +Nαk\βl .

For the cases (1) − (4) − (6) − (7) the contradiction to C2 can be found
by realizing that cγl′ = −1 (since Nγl′

is odd). This coefficient will be mapped
into c{} = −1 (the coefficient of the state with all zeros) by the action of Xγl′

,
and thus contradicting C2.

For the cases (2)− (3) the contradiction to C2 is given by cγl′∪(αk′∈βl∩αk) =
−1 (since Nγl′

+ Nβl∩αk is odd), which becomes c(αk′∈βl∩αk) = −1 after Xγl′
.

By γl′ ∪ (αk′ ∈ βl ∩ αk) we mean the union between the set γl′ and the sets αk′
which belong to the intersection βl ∩ αk.

For the case (8) the contradiction to C2 is cγl′\(αk′∈αk\βl) = −1, since this
coefficient is mapped by Xγl′

into c(αk′∈αk\βl) = −1. By γl′ \ (αk′ ∈ αk \ βl) we
mean the difference between the set γl′ and the sets αk′ which belong to the

88



A.3. Inequivalence of k-uniform hypergraphs under the local Pauli group

set given by αk \ βl.
Regarding the case (5), since Ncr is odd we can always find a subset θt in the

intersection βl ∩ αk with cardinality t < k such that the coefficient c(βl\αk)∪θt =
−1. Therefore, when we apply Xγl′

this is mapped into c(αk\βl)∪θt = −1 which
clearly shows a contradiction to C2 since (αk \ βl) ∪ θt is a subset of αk with
cardinality strictly smaller than k.
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Appendix B
B.1 Asymptotic limit of the GME En

We now calculate the GME En when a single solution is concerned, i.e. M = 1,
in the asymptotic limit of a large number of qubits. In order to do so, we focus
on the maximal overlap that defines En in Eq. (2.8), namely

| . . . | = cos θk√
2n − 1

[(
cos

α

2
+ sin

α

2

)n − sinn
α

2

]
+ sin θk sinn

α

2
. (B.1)

Let us study the asymptotic behaviour of the above expression as n� 1 before
performing the maximization over the parameter α. Remember that α ∈ [0, π],
thus it is convenient to consider two cases: either α/2 = π/2 or α/2 < π/2.
Notice that in this way, we cover all possible values of α, independently of the
optimal value of α that maximizes the overlap.

Case α/2 = π/2) It is trivial to show that the overlap (B.1) reduces to

lim
n�1
| . . . | = sin θk. (B.2)

Case α/2 < π/2) In the limit n � 1, all terms depending only on sinn α
2

disappear and we have

lim
n�1
| . . . | = lim

n�1
cos θk

(
1 + t√

2(1 + t2)

)n
, (B.3)

where we have introduced the tangent t = tanα/2. Notice that the argument
of the n-th power, i.e. 1+t√

2(1+t2)
, is never strictly greater than 1, otherwise the

overlap would become infinite in the asymptotic limit n� 1. Thus, considering
n� 1, we are left with only two possibilities: either

lim
n�1
| . . . | = 0, (B.4)

if the term in round brackets is strictly smaller than 1, or

lim
n�1
| . . . | = cos θk, (B.5)
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if the term in round brackets is exactly 1.
Therefore, the asymptotic limit forces the overlap to take only three pos-

sible different values, which are either sin θk, cos θk or 0. The maximization of
the overlap can then only converge to one of these three options, eventually
providing the GME En in the asymptotic limit n� 1.

The case of two symmetric solutions, i.e. M = 2, can be studied exactly
in the same way as the previous case with a single solution. Now the overlap
defining En in Eq. (2.14) reads

| . . . | = cos θk√
2n − 2

[(
cos

α

2
+ sin

α

2

)n − ( cosn
α

2
+ sinn

α

2

)]
(B.6)

+
sin θk√

2

(
cosn

α

2
+ sinn

α

2

)
,

and we have to consider three different cases, α/2 = 0, α/2 = π/2 and 0 <
α/2 < π/2.

Case α/2 = 0) We straightforwardly get

lim
n�1
| . . . | = sin θk√

2
. (B.7)

Case α/2 = π/2) We again obtain

lim
n�1
| . . . | = sin θk√

2
. (B.8)

Case 0 < α/2 < π/2) Following the same approach developed in the case
of a single solution, we notice that the overlap for two solutions can be either
0 or cos θk.

Therefore, the GME E2 for two symmetric solutions in the asymptotic limit
n � 1 follows trivially, since the maximum of the overlap is restricted to be
either sin θk/

√
2, cos θk or 0.

B.2 Calculation of the GME E2

Here we show how to compute the maximal eigenvalue of the reduced density
operator ρP = TrQ[|ψk,M=1〉 〈ψk,M=1|] of the states |ψk,M=1〉 with a single so-
lution in terms of the number m of qubits that compose the bipartition P .
Recall that the reduced state ρP is given by the following 2m × 2m matrix

ρP =


a . . . a b
...

. . .
...

...
a . . . a b
b . . . b c

 , (B.9)
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where a = 2n−mA2, b = a − A(A − B), and c = a − A2 + B2, with A =
cos θk/

√
2n − 1 and B = sin θk. Notice that ρP has rank two, and then we

expect only two strictly positive eigenvalues.
In order to calculate the two non-vanishing eigenvalues of ρP we aim at

reducing the matrix ρP−λ1, defining the secular equation, to a lower triangular
matrix as follows. We substitute the 1-st column for the difference between
the 1-st and the 2-nd column, and then we do the same with the 1-st row. We
do the same step by step for all the first (2m − 2) columns and rows, so that
we arrive at following matrix

−2λ λ 0

λ
. . . . . .

. . . −2λ λ

λ a− λ b

0 b c− λ


. (B.10)

In order to make the above matrix lower triangular, we now multiply the 2-nd
column by 2, and sum it to the 1-st column. At last, we substitute the 2-nd
column for the previously obtain result. Next, we do the same for the 3-rd
column, but now we multiply by 3, instead of by 2 and again we substitute.
Generally, we continue multiplying the j-th column by j and summing it to
the j − 1-th column previously found, and substituting the j-th column for
the obtained result. Following this procedure, it is straightforward to show
that the two non-vanishing eigenvalues are given by the roots of the following
equation

λ2 − [a(2m − 1) + c]λ+ (2m − 1)(ac− b2) = 0. (B.11)

Therefore, fixed the bipartition m, the maximal eigenvalue reads

λmax =
1

2
+

1

2

[
1− 4(2m − 1)(2n−m − 1), A2(A−B)2

] 1
2 . (B.12)

which represents the squared maximal Schmidt coefficient with respect to the
bipartition P |Q, being P composed of m qubits.

By deriving the above expression as a function of m, it is not difficult to
show that the bipartition that maximizes λmax is the one with m = 1, i.e. a
single qubit versus the rest, for any value of k. This finally provides the GME
E2 of the state |ψk,M=1〉, in terms of the number n of qubits and the iteration
step k.

Now we focus on states |ψk,M=2〉 employed in the Grover search with two
permutation invariant solutions. The reduced density matrix for the general
bipartite splitting P |Q, where P (Q) is composed of m (n−m) qubits, is now
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given by

ρP =


c b . . . b d
b a . . . a b
...

...
. . .

...
...

b a . . . a b
d b . . . b c

 , (B.13)

where a, b, c are given below Eq. (B.9), d = a − 2A(A − B), with now A =
cos θk/

√
2n − 2 and B = sin θk/

√
2, and . Notice that we expect three non-

vanishing eigenvalues, since the matrix ρP above has rank three.
We can reduce the diagonalization of ρP above to the diagonalization prob-

lem faced in the previous case with a single solution. We subtract the last
column of ρP − λ1 from the first one and we substitute the first column for
the obtained result. Then, we sum the first and the last row and divide the
result by two. At last we substitute the last row for the previously found result,
so that we are left with the following matrix

c− d− λ b . . . b d

0 a− λ . . . a b

...
...

. . .
...

...

0 a . . . a− λ b

0 b . . . b 1
2
(c+ d− λ)


. (B.14)

Therefore, it is straightforward to see that one eigenvalue is simply given by
λ = c− d while the other two can be found following the procedure explained
for the case of a single solution.

Once we know the non-vanishing eigenvalues of ρP in terms of m, we can
maximize the largest one over all possible bipartitions m, eventually leading to
the GME E2 of the state |ψk,M=2〉 for two symmetric solutions. Notice that the
above reasoning no longer works if we do not consider a permutation invariant
state, since we can no longer focus only on the number m of qubits composing
the bipartition P , but instead we have to specify the labels of the qubits we
address case by case. This fact makes the calculation almost intractable.
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C.1 Purity of the Choi state CM

An other interesting question concerns the purity of the state CM = (M ⊗
I )[|α〉〈α|] corresponding to the CP-TP map M via the Choi-Jamio lkowski
isomorphism. Under which assumptions is the state CM pure?

We show here that the state CM is pure if and only if the map M acting
on D(H) has a single Kraus operator. It is clear that one direction is trivial:
if the map has a single Kraus operator A then, the corresponding Choi state
CM = (A ⊗ 1)|α〉〈α|(A† ⊗ 1) is pure by construction. But, what about the
inverse?

In order to answer this question, let us consider first the case in which the
given map M has two Kraus operators {A,B}, fulfilling the constraint

A†A+B†B = 1, (C.1)

coming from the TP property. By tracing out both sides, it follows that

||A||2 + ||B||2 = d (C.2)

being d the dimension of the Hilbert space H, and where we have introduced
the Hilbert-Schmidt norm of an operator X as

||X|| =
√

Tr[X†X]. (C.3)

The bipartite state corresponding to the map M is then given by

CM = (A⊗ 1)|α〉〈α|(A† ⊗ 1) + (B ⊗ 1)|α〉〈α|(B† ⊗ 1). (C.4)

Therefore, imposing the purity condition Tr[C2
M ] = 1, we get

||A||4 + ||B||4 + 2|Tr[A†B]|2 = d2, (C.5)

thanks to the identity 〈α| (A†B ⊗ 1) |α〉 = 1
d

Tr[A†B]. Since the constraint
given by Eq. (C.2) always holds for a TP map, we can merge that condition
with the purity one, arriving at

|Tr[A†B]|2 = ||A||2||B||2. (C.6)
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A way to argue that A and B must be the same operator is the following. We
recall the Cauchy-Schwartz inequality for the space of operators, namely

|Tr[A†B]| ≤ ||A||||B||, (C.7)

and remind that the equality holds if and only if the two operators are the
same. Therefore, looking at Eq. (C.6), it is straightforward to see that the
purity condition holds if and only if we have a single Kraus operator. Notice
that the case with more than two Kraus operators can be treated in the same
way, applying at the end a proof by contradiction.

This note definitely concludes the proof, so the Choi state CM correspond-
ing to a given CP-TP map M is pure if and only if the map M has a single
Kraus operator A fulfilling A†A = 1. Notice that if the dimension of the
Hilbert space is finite then A is unitary too, since A†A = 1 implies AA† = 1

for finite dimension d.

C.2 Schmidt decomposition of Z3 and calcula-

tion of αSRU

Consider the gate Z3 defined as Z3 = diag(1, 1, 1, 1, 1, 1, 1, 1,−1) and acting
on two qutrits, i.e. two systems of dimension d = 3. The above gate is clearly
unitary and not separable. By the help of the local basis composed of the nine
elements

E1 =

1 0 0
0 0 0
0 0 0

 , E1 =

0 1 0
0 0 0
0 0 0

 , . . . , E9 =

0 0 0
0 0 0
0 0 1

 , (C.8)

we can express Z3 as Z3 =
∑9

i,j=1 CijEi ⊗ Ej with Cij = Tr[(E†i ⊗ E†j )Z3].
Then, by performing the singular value decomposition [1] of the matrix C of
coefficients, we can rewrite Z3 in the Schmidt form, with Schmidt rank r = 2,
as

Z3 = λ1A1 ⊗B1 + λ2A2 ⊗B2, (C.9)

where λ1,2 =
√

1
2
(9±

√
17)/3 and

A1,2 =

√
3√

102± 22
√

17

[
(5±

√
17)(E1 + E5) + (1±

√
17)E9

]
, (C.10)

B1,2 =

√
3√

646± 150
√

17

[
(11± 3

√
17)(E1 + E5) + (9±

√
17)E9

]
. (C.11)
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Notice that, despite ugly numbers, the four operators A1,2 and B1,2 have a very
convenient diagonal matrix representation given by

A1,2 =

√
3√

102± 22
√

17
diag(5±

√
17, 5±

√
17, 1±

√
17), (C.12)

B1,2 =

√
3√

646± 150
√

17
diag(11± 3

√
17, 11± 3

√
17, 9±

√
17), (C.13)

which are clearly not unitary operators. This makes clear that the value of

the maximum overlap αS is αS = λ1 =
√

1
2
(9 +

√
17)/3 ' 0.854. Now we may

wonder whether there exists a separable unitary UA ⊗ UB such that achieves
this maximum value as well. In the following we will prove that this is not the
case.

In order to show that two local unitaries UA, UB achieving such a maximum
overlap do not exist, let us decompose the general UA and UB as

UA =
d2∑
i=1

αiAi, UB =
d2∑
i=1

βiBi, (C.14)

where {αi}i=1,...,d2 , {βi}i=1,...,d2 are complex coefficients, and {Ai}, {Bi} repre-
sent the bases coming from the Schmidt decomposition of Z3. Recall that the
first two operators A1,2 and B1,2 are given by Eqs. (C.12), (C.13), respectively.
We can then calculate the maximum overlap

αSRU =
1

d2
max
UA,UB

|Tr[(U †A ⊗ U
†
B)U ]|, (C.15)

by numerically maximizing over the complex parameters {αi}, {βi}, fulfilling
the unitary constraints U †AUA = 1 and U †BUB = 1. This eventually leads to
αSRU ' 0.786.

As a side result we mention that, in order to achieve αSRU ' 0.786 as the
overlap between Z3 and local unitaries, it is not restrictive here to consider
only the first two terms composing UA and UB, i.e.

UA = α1A1 + α2A2, UB = β1B1 + β2B2. (C.16)

In fact, besides the Schmidt decomposition of Z3 involves only the two terms
A1⊗B1 and A2⊗B2 (thus, they are the only ones contributing to the overlap
αSRU of (C.15)), the unitary constraints might in general not allow for the
simple decomposition (C.16). In other words, a decomposition of UA and UB
in terms of more components {Ai} and {Bi}, respectively, might weaken the
unitary constraints, resulting in a larger overlap αSRU . We nevertheless believe
that, even with unitary constraints, considering more components of UA and
UB would never improve the overlap αSRU found with the minimal number of
terms. However, up to now our statement has not be proved, and the question
remains open.
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Appendix D
D.1 QCD experimental set-up

SPDC source: The two-photon source used in this experiment is depicted
in Fig. D.1: a type I, 0.5mm-long BBO crystal, illuminated back and forth
by a CW laser at 355nm generates two H-polarized cones of photon pairs by
spontaneous parametric down-conversion (SPDC). One of the cones is trans-
formed into a V-polarized cone by the combined action of a spherical mirror and
a quarter-wave plate, thus allowing the production of polarization-entangled
photon pairs, on two spatial modes selected by a 2-hole mask (Fig. D.1 (a),
[78]). Four spatial modes of emitted pairs (rA-lB and lA-rB) can be selected by
use of a 4-hole mask instead, thus allowing the generation of path-polarization
hyper-entangled photon pairs (Fig. D.1 (b), [79]).

Depolarizing channel: The 1-qubit depolarizing channel acting on Bob’s
photon consists of two liquid crystal retarders (LC1 and LC2), the fast axis
of LC1 being horizontal and the one of LC2 being oriented at 45◦. Thus, LC1

acts as 1 or σz when the applied voltage is V1 or Vπ respectively, LC2 acts as
1 or σx when the applied voltage is V1 or Vπ respectively, and they act as σy
when Vπ is applied to both. The weight p is varied by changing the duration

Figure D.1: Sketch of the SPDC source of two-photon polarization entangled
states (a) or path-polarization hyper-entangled states (b). BBO: β-barium
borate crystal, MP : pump mirror, MS: spherical mirror, QWP: quarter-wave
plate.
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Figure D.2: Implemented Pauli operators during a detection gate. δ: time
when Vπ is applied to LC1 and/or LC2, T : detection gate duration; during
T − δ, V1 is applied to both LC1 and LC2.

δ of the voltage Vπ on each LC with respect to the detection gate duration T :
p = δ

T
(Fig. D.2, [76]).

Two-qubit CNOT gate: The detailed experimental set-up of the 2-qubit
separable map detection is shown in Fig. D.3. LC1 (LC2) and glass1 (glass2)
implement a 2-qubit dephasing process on photon B before (after) the CNOT
gate; the path qubits are analysed with a beam-splitter (BS) and two glass
plates (φA and φB) with a delay ∆x = 0 between the left and the right path;
a half-wave plate (HWP) and a polarizing beam-splitter (PBS) are used to
analyse the polarization qubits; the photons are detected in coincidence by
two fibered single-photon avalanche photodiodes (SPAD).

Note that the Pauli operators for the polarization qubits 1,3 can be ex-
pressed as: σ

(i)
x = |D〉i〈D|i − |A〉i〈A|i, σ(i)

y = |L〉i〈L|i − |R〉i〈R|i, σ(i)
z =

|H〉i〈H|i − |V 〉i〈V |i, where D, A, L and R design the linear diagonal, lin-
ear anti-diagonal, circular left and circular right polarization, respectively, and
i = A,B. For the path qubits 2,4, the Pauli operators can be written as:
σ

(i)
x = |d〉i〈d|i− |a〉i〈a|i and σ

(i)
z = |r〉i〈r|i− |l〉i〈l|i, where |d〉i = 1√

2
(|r〉i + |l〉i)

and |a〉i = 1√
2

(|r〉i − |l〉i) are the diagonal and anti-diagonal path states, and
i = A,B.

D.2 Two-qubit CNOT gate: noise model

In order to model the imperfection of the experimental CNOT Choi state,
we mainly consider two decoherence sources. Firstly, there is a depolarising
process on the polarization degree of freedom given by the non perfect emission
of the state |Φ+〉13 from the source. The noisy initial state can then be modelled
as

ρin = (νπ
∣∣Φ+

〉
13

〈
Φ+
∣∣+ (1− νπ)

113

4
)⊗

∣∣Ψ+
〉
24

〈
Ψ+
∣∣ , (D.1)
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Figure D.3: Experimental set-up of the 2-qubit noisy CNOT channel. 4-qubit
source: polarization-path hyperentangled two-photon source (Fig. D.1 (b));
CNOT: half-wave plate set at 45◦; LC1,2: liquid crystal retarders set at 0◦;
glass1,2: thin glass plates; BS: 50-50 beam-splitter; φA, B: thin glass plates;
∆x: adjustable delay between the left and the right path; HWP: half-wave
plate; PBS: polarizing beam-splitter; SPAD: fibered single-photon avalanche
photodiodes.

where νπ is the visibility in the polarization degree of freedom, and |Ψ+〉24
represents the noiseless initial state in the path degree of freedom. The polar-
ization visibility can be measured experimentally leading to νπ = 0.858±0.008.

The second source of noise instead affects the path degree of freedom just
before the measurement and models the non perfect superposition of modes
at the BS level. The net experimental effect is a non perfect interference that
can be theoretically described by the following dephasing channel DBS:

ρ→ (1− ηk)2ρ+ ηk(1− ηk)[σ(2)
z ρσ(2)

z + σ(4)
z ρσ(4)

z ] + η2
kσ

(2)
z σ(4)

z ρσ(2)
z σ(4)

z , (D.2)

where the parameter ηk represents the strength of the dephasing process and
can be connected to the path visibility νk via the formula νk = (1− 2ηk)

2 [77].
A path visibility νk = 0.904± 0.004 is measured, hence an experimental value
of about ηk = 0.025 is found.

Therefore, instead of the perfect Choi state CMD,X
with MD,X = (D2 ⊗

D2)CNOT(D1⊗D1), we experimentally implemented the following noisy four-
qubit state

ρout = DBS ◦MD,X [ρin], (D.3)

with respect to which we calculate the expectation value of the detection op-
erator W̃CNOT as a function of q1, q2, νπ and ηk. We recall the reader that the
two parameters q1 and q2 are controlled experimentally and can be changed in
order to make the CNOT gate nosier, while νπ and ηk model the unavoidable
noise present in the experimental set-up. In the case with q1 = q2 = q, i.e.
when the controlled dephasing processes before and after the CNOT gate have
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the same strength, the following expectation value of W̃CNOT over the state
ρout given by Eq. (D.3) can be found:

Tr[W̃CNOTρout] = 1− 2νπ + 2[2q3 + ηk(ηk − 1)(2q − 1)3](1 + νπ) (D.4)

− 2q2(3 + 4νπ) + q(3 + 5νπ).

By setting the measured values of νπ and ηk, the above expression is exploited
to fit the experimental data of W̃CNOT in terms of q (see Sec. 4.3 for further
details).
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