

The Importance of Accelerator Measurements for the Interpretation of UHECR data

Ralf Ulrich

Karlsruhe Institute of Technology

October 30th 2014, Rome

Ultra-High Energy Cosmic Rays, Data

Extensive Air Showers

J.Oehlschlaeger, R.Engel, FZKarlsruhr

Air showers are very extended cascades and contain a huge number of particles $N \sim E_0/(O(1 \text{ GeV}))$

Typical observables are:

- X_{max} Slant depth of shower maximum
	- N^e Number of electrons at ground level
	- N_{μ} Number of muons at ground level

At Ultra-High Energies

X_{max} most precisely measured N_{μ} most challenging to understand

Ultra-High Energy Cosmic Rays, Experiments

1600 Water-Cherenkov Detectors, ≈3000km2

Data and Reconstruction

Ultra-High Energy Cosmic Rays, Questions

Sources?

- $\bullet E_{\text{max}} \propto \beta_s zBL$
- Due to energy losses, sources cannot be "far" away $({\sim \mathcal{O}(10 \,\mathrm{Mpc})})$
- There are only few very powerful "good" source candidates...
- **o** Iron easier to accelerate than proton
- Difficult to produce protons at $F > 10^{20}$ eV
- **•** Unknown how useful directional information is (charge of particles? magnitude and structure of fields? distances?)

Phenomenological Fits of the Energy Spectrum

- Data very precise over wide range in energy
- No simple model works
- ⊕ Also composition sensitive data disfavours simple models

High Energy Neutrinos, Observations

- The first real astrophysical neutrino candidates
- Up to PeV energies
- Atmospheric prompt charm production?

Science 342 (2013) 1242856 PRL 111, 021103 (2013)

High Energy Neutrinos, Questions

- What is the physics of the **most violent astrophysical** events?
- Where are ultra-high neutrinos produced in the universe?
- Neutrinos from galactic Supernova.
- How do neutrinos interact with their environment.

High Energy Neutrinos, Experiments

Upgrades: larger (huger), and more precise

High Energy Neutrino Production (Atmospheric)

Spectrum-weighted moments: $Z=\int\limits_0^1$ 0 $x_{\rm F}^{\gamma} \cdot \frac{{\rm d}n}{{\rm d}x_{\rm F}} {\rm d}X_{\rm F}$

Neutrino flux: $Φ_ν \propto Z$

- In Extensive air showers: decay \leftrightarrow interaction
- Pions, Kaons, Charmed Mesons

More details e.g.: arXiv:9505417/hep-ph

Interactions in Air Showers

Requirements and Problems:

- Interactions up to $\sqrt{s} \sim 500 \text{ TeV}$ \rightarrow Far bevond accelerator energies...
- \triangleright Mainly soft physics $+$ diffraction: forward region \rightarrow Difficult to instrument
	- \rightarrow Only fixed target at lower energies...
- Target is air: $p air$, πair , K-air, A-air, ...
	- \rightarrow Typical target very different from air: Nuclear effects must be considered...

Ingredients:

- Theory: $pQCD$ (hard) + Gribov-Regge (soft)
- A lot of phenomenology: Diffraction, String fragmentation, Saturation, Remnants, Nuclear effects.

Older models:

Glauber based, different mostly in remnants+diffraction, for example: QGSJet01 (Kalmykov, Ostapchenko) **SIBYLL** (Engel, Gaisser, Lipari, Stanev)

Recent models:

QGSJetII (Ostapchenko) Theory $++$, Optimized for cosmic rays

EPOS (Werner, Pierog) $Phenomenology++$ Optimized for LHC. RHIC (and cosmic ravs)

Problems: Acceptance and Extrapolations

\Rightarrow Reduce extrapolation uncertainties in interaction models

Center-of-mass-energy

LHC, Central measurements plus forward region

- **Phase-space**
	- **o** Nuclear Effects

LHC: compare p-p, Pb-p and e.g. p-O

 \bullet high-x F

Fixed Target Experiments at SPS, but also with LHC beam

Large Hadron Collider and Experiments

Relevance of Collider Experiments

- Central $(|\eta| < 1)$
- Endcap $(1 < |\eta| < 3.5)$
- Forward $(3 < |\eta| < 5)$, HF
- CASTOR+T2 ($5 < |\eta| < 6.6$)
- FSC (6.6 $< |n| < 8$)
- ZDC ($|\eta| > 8$), LHCf
- How relevant are specific detectors at LHC for air showers?
- \rightarrow Simulate parts of shower individually.

Secondaries of the first interaction in lab-system

- **•** Simulate first interaction with SIBYLL
- proton at 10^{17} eV $\rightarrow \sqrt{s_{NN}}=14$ TeV (LHC)
- Histogram particle densities above threshold of (0.3GeV for muons+hadrons and 0.003GeV for E.M.)

Lateral Particle Density on Ground Level

Electron Density

• Air shower models so far only tuned to about 10% ! • Forward detectors are crucial.

Lateral Particle Density on Ground Level

Muon Density

• Air shower models so far only tuned to about 10% ! • Forward detectors are crucial.

Particle Densities at 1000 m From Shower Core

Density at 1000m

Longitudinal Shower Development

Electron Profile

• Air shower models so far only tuned to about 10 % ! • Forward detectors are crucial.

Longitudinal Shower Development

Muon Profile

• Air shower models so far only tuned to about 10 % ! • Forward detectors are crucial.

Energy Density per Pseudorapidity

Most energy is directed toward the forward region

Acceptance for Charm Production at LHC

LHCb: \approx 7% of total production observed

Model Tuning to LHC Data (at 7 TeV) **Impact**

Caveats / Potential:

- Only central rapidities $|\eta| < 2$
- Not highest possible center-of-mass energies
- Mainly proton-proton data

Other Observables: Fluctuations

Caveats:

- Very different compared to $\langle X_{\rm max} \rangle$
- LHC tuning did improve the high energy end, but worsened the agreement at lower/medium energies

Other Observables: Muon Production Height

Status after tuning to 7 TeV:

- General model performance after first LHC tuning better, but not yet sufficient
- More aspects and more data needs to be taken into account
- Partly iron is now on the same level of model uncertainty than protons \rightarrow nuclear effects become more relevant!

Correlations between Average and RMS

- All models compatible with a changing mass composition as a function of energy
- Some tension of a few models with the data

Muon Content at Ground Level

Auger, arXiv-1408.1421 [atro-ph]

- More muons in air shower data than expected
- No consistency between different observables can be achieved
- \rightarrow Possible cause: interaction physics in air showers models is not accurate

(Forward) ρ^0 Production, QGSJetII.3 \rightarrow QGSJetII.4

Charge Exchange, Leading π^0/ρ^0 production:

Impact on Muons in Air Showers

Systematically change the leading π^0/ρ^0 ratio in CONEX:

(SIBYLL, proton, $10^{19.5}$ eV)

(f19 is the scaling factor for ratio at 10^{19} eV, logarithmic energy dependence)

Ulrich, Engel, Baus, ISVHECRI 2014

Forward ρ^0 production, QGSJetII.4

Prediction of inclusive athmospheric muon fluxes as a test of hadronic interaction models

A.V. Lukyashin, ISVHECRI 2014

 \Rightarrow Too many ρ^0 produced now?

Model Tuning to LHC Data up to 7 TeV

S. Ostapchenko, ISVHECRI 2014

Proton-Air Cross Section is one of the most important quantities for air shower modeling

Proton-Proton \rightarrow Proton-Air, With Tevatron Data

Nucl.Phys.Proc.Suppl. 196 (2009) 335

Proton-Proton \rightarrow Proton-Air, With LHC Data

Nucl.Phys.Proc.Suppl. 196 (2009) 335

Muon Production in Extensive Air Showers

 $A + air \rightarrow$ hadrons $p + air \rightarrow$ hadrons π + air \rightarrow hadrons

> $e^\pm \rightarrow e^\pm + \gamma$ $\gamma \rightarrow e^+ + e^-$

 $\pi^\pm \to \mu^\pm + \nu_\mu/\bar{\nu_\mu}$

Important energies: 10 - 1000 GeV

Air shower components: hadrons, electromagnetic, muons

Parent Particles of Muons mother particle is equivalent to a secondary particle produced in e.g. a minimum bias p-N interaction. The most probable energy of the grandmother particle is within the range of the

Projectiles in air showers that lead to muon production

Hadronic Interactions in EAS

• Pion cascade in air

 \bullet Pions decay into muons with a peak around \sim 35 GeV

Forward Detectors

TOTEM

- TOTEM: Very forward particle production and elastic
- LHCf: Very forward photon, pi⁰, neutrons
- CASTOR: Very forward energy, diffraction

CASTOR

Relevant for Astroparticle Physics

TOTEM, LHCf, TOTEM+CMS

- Total, elastic, inelastic, diffractive cross-sections
- Forward photon and neutron spectra.
- **o** Diffraction
- **•** Generell particle production characteristics

For example:

TOTEM/T2 + CMS/CASTOR

Particle Reconstruction

Jets, leptons and resonances at η up to 6.6

Cosmic Ray Models and Recent LHC Data: CMS

Very forward underlying event:

JHEP 1304 (2013) 072

In CMS:

- Used for pPb and PbPb (and forward pp) detector studies and correction factors
- Where relevant, also event generator comparisons are performed

Cosmic Ray Models and Recent LHC Data: TOTEM

Forward charged multiplicities: Europhys.Lett. 98 (2012) 31002

Cosmic Ray Models and Recent LHC Data: LHCb

Eur.Phys.J. C73 (2013) 2421

Comparison on event generator level:

- Forward energy flow
- **•** Forward Lambda production, strangeness
- More in preparation...

Tool: CRMC http://www.auger.de/∼rulrich/crmc.html

Proton-Oxygen Data at LHC

- Asymmetric heavy-ion run with proton-oxygen nuclei
- After LS1, $\sqrt{s} = 9$ TeV (Proton beam at 3.5 TeV)
- Oxygen very close to atmospheric material of extesive air shower production (nitrogen)

PRD 83 (2011) 054026

Fixed Target with LHC Beam

Bent crystal, UA9:

e.g. PRL 87 (2001) 094802

A Fixed Target ExpeRiment at LHC

arXiv/hep-ph 1207.3507

- **Precision QCD**
- \bullet W/Z studies,
- Quarkonia physics
- Cosmic Rays, Neutrino Production

First steps

IDHEFIX Proposal in H2020, 1st AFTER Week in Nov 2014

Note:

There is no simple experiment, for a precise and relevant measurement...

Scientific motivation:

How accurate is the modeling of shower development with CORSIKA? Both: Electromagnetic and Muon component.

Explore the origin of the air shower muon problem with p-C, π -C shower measurement?

Constrain the prompt charm high-energy muon production very precisely up to TeV energies.

Note:

There is no simple experiment, for a precise and relevant measurement...

Scientific motivation:

How accurate is the modeling of shower development with CORSIKA? Both: Electromagnetic and Muon component.

Explore the origin of the air shower muon problem with p-C, π -C shower measurement?

Constrain the prompt charm high-energy muon production very precisely up to TeV energies.

Advantages:

- \bullet Directly test CORSIKA $+$ hadronic models !
- Very obvious and clear connection to UHECR physics
- For the first time: end-to-end calibration of air shower development
- Detectors relatively simple and maybe can be partly reused from other experiments. At least the technology.
- Pierre Auger Software framework (Offline) can be used almost 1:1. Simulation, reconstruction and analysis almost identical to Auger.

Challenges:

- Pion beam
- Calibration of detector systems. Best with pure electron and muon beams.

Sensitivity to Interaction Physics

- Wide range of energies, reaching beyond accelerators
- Uncertainty: extrapolation of hadronic interactions
	- Phase space (!)
	- Energy

\rightarrow Very different impact on different EAS observables:

 X_{max} Very high energy interactions Muons Low energy interactions

Summary

Hadrons **Muons** Flectrons Iron, $lgE/eV = 16$ $t = 0$ μs

⇒ Astrophysics at accelerators

- ⇒ Air Shower Muon Problem
- ⇒ Prompt-charm production, PeV neutrino