Il decadimento $\bar{B}_d \rightarrow \bar{K}^* \mu^+ \mu^-$: uno studio nel Modello Standard

Marco Fedele

Università La Sapienza, INFN, Roma

 $\bar{B}_d \rightarrow \bar{K}^* \mu^+ \mu^-$

• La Lagrangiana del Modello Standard è la Lagrangiana rinormalizzabile più generale contenente i fermioni ed il campo di Higgs • La Lagrangiana del Modello Standard è la Lagrangiana rinormalizzabile più generale contenente i fermioni ed il campo di Higgs

• Passando della base degli autostati di flavour alla base degli autostati di massa per i fermioni si osserva l'assenza di correnti neutre con cambiamento di sapore (Flavour Changing Neutral Currents)

• La Lagrangiana del Modello Standard è la Lagrangiana rinormalizzabile più generale contenente i fermioni ed il campo di Higgs

• Passando della base degli autostati di flavour alla base degli autostati di massa per i fermioni si osserva l'assenza di correnti neutre con cambiamento di sapore (Flavour Changing Neutral Currents)

• I processi con cambiamento di sapore possono accadere unicamente a livello di loop

Decadimenti del mesone B e ricerca di nuova fisica

Decadimenti del mesone B e ricerca di nuova fisica

I decadimenti che coinvolgono FCNC sono assenti al tree-level

I decadimenti che coinvolgono FCNC sono assenti al tree-level

₩

l contributi a livello di loop sono rilevanti

I decadimenti che coinvolgono FCNC sono assenti al tree-level ↓ I contributi a livello di loop sono rilevanti ↓ Dracessi di puqua fisica

Processi di nuova fisica potrebbero influire in maniera significativa Il decadimento $ar{B}_d o ar{K}^* (o K^- \pi^+) \mu^+ \mu^-$

Il decadimento $ar{B}_d o ar{K}^* (o K^- \pi^+) \mu^+ \mu^-$

• Decadimento con FCNC

Il decadimento $ar{B}_d o ar{K}^* (o K^- \pi^+) \mu^+ \mu^-$

- Decadimento con FCNC
- Analisi angolare effettuabile dal punto di vista sperimentale, con risultati combinabili in opportuni *theoretical clean observables* (P_i, P'_i) dipendenti dalla massa invariante del sistema dileptonico (q²)

Contributi al decadimento $ar{B}_d o ar{K}^* \mu^+ \mu^-$

- Contributi principali provenienti da operatori a pinguino

Contributi al decadimento $\bar{B}_d \rightarrow \bar{K}^* \mu^+ \mu^-$

- Contributi principali provenienti da operatori a pinguino
- Contributi secondari provenienti da operatori corrente-corrente

Contributi al decadimento $ar{B}_d o ar{K}^* \mu^+ \mu^-$

- Contributi principali provenienti da operatori a pinguino
- Contributi secondari provenienti da operatori corrente-corrente

Contributi adronici fattorizzabili (e piccoli) nel limite $m_b \rightarrow \infty$, ma con correzioni di ordine Λ/m_b nel caso di massa finita

Contributi al decadimento $ar{B}_d o ar{K}^* \mu^+ \mu^-$

- Contributi principali provenienti da operatori a pinguino
- Contributi secondari provenienti da operatori corrente-corrente

Contributi adronici fattorizzabili (e piccoli) nel limite $m_b \rightarrow \infty$, ma con correzioni di ordine Λ/m_b nel caso di massa finita (tuttavia spesso trascurate nelle analisi fenomenologiche!!)

• Predizioni effettuate nel MS

Image: Image:

Stato dell'arte

- Predizioni effettuate nel MS
- Dati raccolti ad LHCb in vari bin del q^2

- Predizioni effettuate nel MS
- Dati raccolti ad LHCb in vari bin del q^2

Forte discrepanza nel *clean osservable* P'_5 :

Observable	Experiment	SM prediction
$(P'_{5})_{[0.1,2]}$	$0.45^{+0.21}_{-0.24}$	$0.533^{+0.033}_{-0.041}$
$(P'_5)_{[2,4.3]}$	$0.29^{+0.40}_{-0.39}$	$-0.334^{+0.097}_{-0.113}$
$\langle P'_5 \rangle_{[4.3,8.68]}$	$-0.19^{+0.16}_{-0.16}$	$-0.872^{+0.053}_{-0.041}$
$\langle P'_5 \rangle_{[14.18,16]}$	$-0.79^{+0.27}_{-0.22}$	$-0.779^{+0.328}_{-0.363}$
$\langle P'_5 \rangle_{[16,19]}$	$-0.60^{+0.21}_{-0.18}$	$-0.601^{+0.282}_{-0.367}$

Descotes-Genon, Matias and Virto, 1307:5683

LHCb collaboration, 1308:1707

- Predizioni effettuate nel MS
- Dati raccolti ad LHCb in vari bin del q^2

Forte discrepanza nel *clean osservable* P'_5 :

Observable	Experiment	SM prediction
$(P'_{5})_{[0.1,2]}$	$0.45^{+0.21}_{-0.24}$	$0.533^{+0.033}_{-0.041}$
$\langle P'_{5} \rangle_{[2,4,3]}$	$0.29^{+0.40}_{-0.39}$	$-0.334^{+0.097}_{-0.113}$
$\langle P'_5 \rangle_{[4.3, 8.68]}$	$-0.19^{+0.16}_{-0.16}$	$-0.872^{+0.053}_{-0.041}$
$\langle P'_5 \rangle_{[14.18,16]}$	$-0.79^{+0.27}_{-0.22}$	$-0.779^{+0.328}_{-0.363}$
$\langle P'_{5} \rangle_{[16,19]}$	$-0.60^{+0.21}_{-0.18}$	$-0.601^{+0.282}_{-0.367}$

Descotes-Genon, Matias and Virto, 1307:5683

LHCb collaboration, 1308:1707

Tuttavia...

Ma noi non siamo convinti...

Le predizioni effettuate non ci hanno convinto

Ma noi non siamo convinti...

Le predizioni effettuate non ci hanno convinto

• *Clean observables* definiti come opportuni rapporti tra osservabili angolari

Ma noi non siamo convinti...

Le predizioni effettuate non ci hanno convinto

• *Clean observables* definiti come opportuni rapporti tra osservabili angolari

∜

ridotta l'incertezza proveniente dai fattori di forma (così fattorizzati)

Le predizioni effettuate non ci hanno convinto

• *Clean observables* definiti come opportuni rapporti tra osservabili angolari

∜

ridotta l'incertezza proveniente dai fattori di forma (così fattorizzati)

TUTTAVIA

sperimentalmente l'integrazione sul bin viene effettuata sugli osservabili angolari e *non sui rapporti*

Le predizioni effettuate non ci hanno convinto

• *Clean observables* definiti come opportuni rapporti tra osservabili angolari

∜

ridotta l'incertezza proveniente dai fattori di forma (così fattorizzati)

TUTTAVIA

sperimentalmente l'integrazione sul bin viene effettuata sugli osservabili angolari e *non sui rapporti*

• Analisi effettuata nel limite di massa infinita del *B*, nonostante le correzioni siano rilevanti e non trascurabili

Le predizioni effettuate non ci hanno convinto

• *Clean observables* definiti come opportuni rapporti tra osservabili angolari

∜

ridotta l'incertezza proveniente dai fattori di forma (così fattorizzati)

TUTTAVIA

sperimentalmente l'integrazione sul bin viene effettuata sugli osservabili angolari e *non sui rapporti*

- Analisi effettuata nel limite di massa infinita del *B*, nonostante le correzioni siano rilevanti e non trascurabili
- Incertezza adronica sottostimata rispetto alle ultime stime [Khodjamirian et al., 1006.4945]

$$P(ec{\lambda}|ec{D}) = rac{P(ec{D}|ec{\lambda})P_0(ec{\lambda})}{\int dec{\lambda}P(ec{D}|ec{\lambda})P_0(ec{\lambda})}$$

 $\vec{\lambda}:$ set di parametri

 \vec{D} : dati sperimentali

$$P(ec{\lambda}|ec{D}) = rac{P(ec{D}|ec{\lambda})P_0(ec{\lambda})}{\int dec{\lambda}P(ec{D}|ec{\lambda})P_0(ec{\lambda})}$$

Prodotti dell'analisi:

• p.d.f. per gli osservabili

- $\vec{\lambda}$: set di parametri
- \vec{D} : dati sperimentali

• p.d.f. per i parametri

$$P(ec{\lambda}|ec{D}) = rac{P(ec{D}|ec{\lambda})P_0(ec{\lambda})}{\int dec{\lambda}P(ec{D}|ec{\lambda})P_0(ec{\lambda})}$$

Prodotti dell'analisi:

- p.d.f. per gli osservabili
- Punti cruciali da implementare:
 - Fattori di forma

- $\vec{\lambda}$: set di parametri
- \vec{D} : dati sperimentali

• p.d.f. per i parametri

Contributi adronici

 $\bar{B}_d \rightarrow \bar{K}^* \mu^+ \mu^-$

Fattori di Forma

• Termini non perturbativi

Image: Image:

Fattori di Forma

- Termini non perturbativi
- Valori ottenuti tramite "Light Cone Sum Rules" per bassi valori del q^2

- Termini non perturbativi
- Valori ottenuti tramite "Light Cone Sum Rules" per bassi valori del q^2
- Valori ottenuti tramite approssimazione su reticolo per alti valori di q^2

- Termini non perturbativi
- Valori ottenuti tramite "Light Cone Sum Rules" per bassi valori del q^2
- Valori ottenuti tramite approssimazione su reticolo per alti valori di q^2

Contributi adronici

• Termini non fattorizzabili e non locali, dovuti ai loop del charm

Contributi adronici

- Termini non fattorizzabili e non locali, dovuti ai loop del charm
- Espressi in letteratura come correzioni al coefficiente di Wilson C_9 nella base transversa

$$\Delta C_9^{M_i}(q^2)$$

Contributi adronici

- Termini non fattorizzabili e non locali, dovuti ai loop del charm
- Espressi in letteratura come correzioni al coefficiente di Wilson C₉ nella base transversa

$$\Delta C_9^{M_i}(q^2)$$

• Analisi effettuata nella base dell'elicità, in cui i contributi possono essere parametrizzati nella forma

$$\Delta C_9^{\lambda}(q^2) = rac{m_B^2}{q^2} 16 \pi^2 (h_{\lambda}^0 + q^2 h_{\lambda}^1)$$

di più diretto controllo

 Fit eseguito su un ampio set di osservabili (BR, A_{FB}, F_L, P₁, P₂, P₃, P'₄, P'₅, P'₆, P'₈)

- Fit eseguito su un ampio set di osservabili (BR, A_{FB}, F_L, P₁, P₂, P₃, P'₄, P'₅, P'₆, P'₈)
- Risultati sperimentali riprodotti in modo più che soddisfacente

- Fit eseguito su un ampio set di osservabili (BR, A_{FB}, F_L, P₁, P₂, P₃, P'₄, P'₅, P'₆, P'₈)
- Risultati sperimentali riprodotti in modo più che soddisfacente
- Interessante risultato riguardo ai valori di P'₅...

- Fit eseguito su un ampio set di osservabili (*BR*, *A_{FB}*, *F_L*, *P*₁, *P*₂, *P*₃, *P*₄', *P*₅', *P*₆', *P*₈')
- Risultati sperimentali riprodotti in modo più che soddisfacente

 Interessante risultato riguardo ai valori di P'₅...

bin (q^2)	fit value	experimental value
$2.0 \le q^2 \le 4.3$	0.20(37)	0.29(40)
$4.3 \le q^2 \le 8.68$	-0.22(45)	-0.19(16)

Risultati nel bin [0.1,2] compatibili con le stime degli ordini di grandezza effettuate in [Khodjamirian et al., 1006.4945] a $q^2 = 1$ (correzioni ad NLO importanti ma *non* calcolate)

	fit results	Khodj. results
$\Delta C_9^{M_1}$	4.47 ± 1.83	$0.72^{+0.57}_{-0.37}$
$\Delta C_9^{M_2}$	3.03 ± 1.32	$0.76\substack{+0.70 \\ -0.41}$
$\Delta C_9^{M_3}$	3.94 ± 1.80	$1.11^{+1.14}_{-0.70}$

• Iniziale discrepanza tra dati sperimentali e predizioni teoriche

- Iniziale discrepanza tra dati sperimentali e predizioni teoriche
- Necessità di un'appropriata considerazione dei contributi adronici

- Iniziale discrepanza tra dati sperimentali e predizioni teoriche
- Necessità di un'appropriata considerazione dei contributi adronici
- Riproduzione di tutti i dati sperimentali senza la necessità di introdurre nuova fisica

- Iniziale discrepanza tra dati sperimentali e predizioni teoriche
- Necessità di un'appropriata considerazione dei contributi adronici
- Riproduzione di tutti i dati sperimentali senza la necessità di introdurre nuova fisica
- Range per il contributo adronico coerente con le ultime stime

- Iniziale discrepanza tra dati sperimentali e predizioni teoriche
- Necessità di un'appropriata considerazione dei contributi adronici
- Riproduzione di tutti i dati sperimentali senza la necessità di introdurre nuova fisica
- Range per il contributo adronico coerente con le ultime stime
- Possibili studi futuri per una migliore determinazione del contributo adronico

Grazie per l'attenzione!