

IFAE 2015

Università di Roma

Tor Vergata

8-10 Aprile 2015

Beam splash events @ ATLAS

- First beam splash events recorded by ATLAS on Sunday April the 5th
- (Re)comissioning of LHC and ATLAS with beams has finally started!
- Hopefully we'll get first collisions @ 13 TeV before the summer

https://twiki.cern.ch/twiki/bin/view/AtlasPublic/EventDisplayRun2Start

Event 5879, Run 260272

Event 6539, Run 260272

1798 2015

Marino Romano - Top Physics at aTLAS

Top quark physics

O Top quark basics:

- Mass: 173.21 ± 0.51 ± 0.71 GeV (PDG, Chin. Phys. C, 38, 090001 (2014))
- *•* Decays: charged current weak decays in t → Wb

• Why study top quark physics?

- ✓ Yukawa coupling with the Higgs $\sim 1 \rightarrow$ Important role in the EWSB
- ✓ Life-time shorter than hadronization time →Unique possibility to observe a 'bare' quark
- Precise tests of the Standard Model and verification of pQCD
- Privileged window to search for new physics

Top cross section measurements

- $t\bar{t}$: inclusive and differential
- Single top
- $t\bar{t} + \gamma$ associate production

1708 2015

Marino Romano - Top Physics at aTLAS

Top pair production and decays

$t\bar{t}$ inclusive cross section:

summary

 $\sigma(t\bar{t}) @ \sqrt{s} = 7 \text{ TeV}$

 $\sigma(t\bar{t}) @ \sqrt{s} = 8 \text{ TeV}$

Good agreeement of all measurements with SM predictions

Sep 2014

stat. uncertaintv

σ., ±(stat) ±(syst) ±(lumi)

 $241 \pm 2 \pm 31 \pm 9 \text{ pb}$

 $228 \pm 9^{+29}_{-26} \pm 10 \text{ pb}$

 $257 \pm 3 \pm 24 \pm 7 \text{ pb}$

242.4 ± 1.7 ± 5.5 ± 7.5 pb

239.0 ± 2.1 ± 11.3 ± 6.2 pb

 $\textbf{241.5} \pm \textbf{1.4} \pm \textbf{5.7} \pm \textbf{6.2 pb}$

350

400

300

total uncertainty

Experimental uncertainties already comparable with theoretical ones

Dilepton eµ measurement is the most precise measurement to date

1798 2015

https://atlas.web.cern.ch/Atlas/GROUPS/PHYSICS/CombinedSummaryPlots/TOP/

6

$t\bar{t}$ inclusive cross section $e\mu$ channel $\frac{EPJC 74 (2014) 3109}{\sqrt{s} = 7 \text{ TeV}, \int Ldt = 4.6 \text{ fb}^{-1}}{\sqrt{s} = 8 \text{ TeV}, \int Ldt = 20.3 \text{ fb}^{-1}}$

Simultaneous fit of the total and fiducial tt production cross section, b-jet reconstruction and tagging efficiency in 1- and 2-btag samples

- Significant reduction of major (btag) systematics
- Ø Fiducial phase space: less MC generator dependent

No extrapolation to the full phase space

Top pairs differential cross section measurements in ATLAS

Total $\sigma_{t\bar{t}}$ measurements show very good agreement with the SM

• New physics phenomena can still affect the *shape* of $\sigma_{t\bar{t}}$

Top reconstruction strategies

- Top-quark decay products are well separated and can be recostructed individually
- Top-antitop kinematic evaluated from the reconstructed decay products

- Optimized of high-pt (> 300 GeV) top quarks
- P Top quark decay products are not isolated
- Hadronically decaying top quark is reconstructed in a single large radius jet

Top pair differential cross section

arXiv:1502.05923, Submitted to JHEP

 $\sqrt{s} = 7 \text{ TeV}, \int L dt = 4.06 \text{ fb}^{-1}$

- Top-antitop differential cross section $\left(\frac{d\sigma}{dX}\right)$ where $X = m_{t\bar{t}}, p_{T,t\bar{t}}, |y_{t\bar{t}}|, p_{T,t}$ and $|y_t|$
 - Fiducial measurement: pseudo top (\hat{t}) observables instead of parton tops
- Out-based analysis in the *l*+jets channel
- Final fiducial level measurement extracted via unfolding methods

$t\bar{t}$ differential cross section: boosted tops $\int_{\sqrt{s}}^{\text{ATLAS-CONF-2014-057}} \int_{\sqrt{s}}^{\text{ATLAS-CONF-2014-057}} \int_{\sqrt{s}}^{1} = 8 \text{ TeV}, \int Ldt = 20.3 \text{ fb}^{-1}$

- o First measurement of high- p_T (boosted) top cross section
- Semi-leptonic (e/μ) channel with $p_T(t_{had}) > 300 \text{ GeV}$
 - Ø Boosted hadronic top defined as a single large-R jet
- Fiducial (particle pseudo tops) and total (parton tops) phase space measurements

$t\bar{t} + \gamma$ inclusive cross section

arXiv:1502.00586, Accepted by PRD

$$\sqrt{s} = 7 \text{ TeV}, \int L dt = 4.6 \text{ fb}^{-1}$$

Measurement in the lepton+jet channel

⁰
¹
^{lepton} (e/μ), ≥ 4jets(≥ 1btag), E_T^{miss}, 1γ
[−]
[−]

- Inclusive *fiducial* cross section extracted via binned template likelihood fit
 - Template: p_T^{iso} ($\sum p_T^{track}$ with $\Delta R(track, \gamma) < 0.2$)
 - O Templates built for prompt photons (signal&bkg) and bkg non-prompt photons sources

Single top cross section

Single top *t*-channel cross section

- Contributions from signal and background evaluated via MC
- Lepton + 2 jets channel, 1-btag
- σ_{t-chan} extracted via a maximum-likelihood fit of the NN output in the data
- O Total and fiducial phase space measurements

ATLAS-CONF-2014-007

$$\sigma_{t-chan}(\sqrt{s} = 8 \text{ TeV}) = 82.6 \pm 11.8 \text{ pb}$$

(aMC@NLO)
 $\sigma_{t-chan}^{aNNLO}(\sqrt{s} = 8 \text{ TeV}) = 87.8^{+3.4}_{-1.9} \text{ pb}$
 $\sigma_{t-chan}(\sqrt{s} = 8 \text{ TeV}) = 3.4 \pm 0.5 \text{ pb}$

Marino Romano - Top Physics at aTLAS

Top properties measurements

- Top mass
- $t\bar{t}$ charge asymmetry
- $t\bar{t}$ spin correlation

1708 2015

Top quark mass in Run I

Top mass summary

https://atlas.web.cern.ch/Atlas/GROUPS/PHYSICS/CombinedSummaryPlots/TOP/

Precision on m_t measurement at LHC is constantly improving and getting closer to the precision achieved at Tevatron

Top quark mass

Most precise measurement in ATLAS

arXiv:1503.05427, Submitted to EPJC

 $\sqrt{s} = 7 \text{ TeV}, \int L dt = 4.6 \text{ fb}^{-1}$

- *o* 3D template fit in the lepton+jets channel
 - $ommode{m_t}$, global jet energy scale factor (JSF) and bJet energy scale factor (bJSF)

 m_t

- ID template fit in dilepton channel
- ✓ Templates: $m_{t,reco}$, $m_{lb,reco}$, $m_{W,reco}$ and R_{lb}^{reco} (ratio of the sum of the p_T of the bjets from the top and light jets from the W)

 Templates built by varying the fit parameters in Monte Carlo

 $m_{t,reco}$

 $m_{W,reco}$

 R_{lb}^{reco}

 $m_{lb,reco}$

✓= linear
dependency for signal
and bg
✓= linear
dependency but not
fitted
✓= linear dependency
for signal only

Probability density functions for each parameter evaluted by fitting each template distribution for signal and background

1708 2015

Marino Romano - Top Physics at aTLAS

Top quark mass

arXiv:1503.05427, Submitted to EPJC

 $\sqrt{s} = 7 \text{ TeV}, \int L dt = 4.6 \text{ fb}^{-1}$

ℓ t̄t kinematics reconstructed by a fit maximizing an event likelihood → $m_{t,reco}$, $m_{W,reco}$ and R_{lb}^{reco}

• m_t is not fixed in the fit

 Signal and background PDFs are used in an unbinned likelihood fit to the data for all events separately for 1 and 2+ btag samples:

 $L(m_{t,reco}, m_{W,reco}, R_{lb}^{reco} | m_t, JSF, bJSF, n_{bkg})$, l+jets

$t\bar{t}$ charge asymmetry in Run I

 $A_{C} = \frac{N(\Delta|y| > 0) - N(\Delta|y| < 0)}{N(\Delta|y| > 0) + N(\Delta|y| < 0)} \quad \begin{array}{l} \Delta|y| = |y_{t}| - |y_{\bar{t}}| \\ \Delta|y| = |y_{t^{+}}| - |y_{t^{-}}| \end{array}$

 $A_{FB} = \frac{N(\Delta y > 0) - N(\Delta y < 0)}{N(\Delta y > 0) + N(\Delta y < 0)} \qquad \Delta y = y_t - y_{\bar{t}}$

- *A_{FB}* measured at Tevatron
 Not a "good" observable at LHC
- A_C Extensively measured @ 7 TeV

All results obtained after unfolding to parton level

- Dilepton channel (submitted to JHEP)
 - Simultaneous measurement of $A_C(tt)$ and $A_C(ll)$
- Single lepton channel (JHEP02(2014)107)
- Combination with CMS (ATLAS-CONF-2014-012)
- Results in agreement with SM predictions

17aE 2015

Marino Romano - Top Physics at aTLAS

$t\bar{t}$ charge asymmetry in l^+l^- channel

arXiv:1501.07383, Submitted to JHEP

 $\sqrt{s} = 7 \text{ TeV}, \int L dt = 4.6 \text{ fb}^{-1}$

- Dilepton channel allows lepton-based asymmetry
 - No dependence on top reco algorithms
- Unfolding procedures to correct reco $\Delta |y|$ spectra for detector response and acceptance

Spin correlation measurements

 $A = \frac{N(\uparrow\uparrow) + N(\downarrow\downarrow) - N(\uparrow\downarrow) - N(\downarrow\uparrow)}{N(\uparrow\uparrow) + N(\downarrow\downarrow) + N(\uparrow\downarrow) + N(\downarrow\uparrow)} A^{SM}_{helicity} = 0.38 \pm 0.04$

7 TeV analysis: Phys. Rev. D. 90, 112016 (2014)

Four observables used to extract the spin correlation from a binned likelihood fit of f_{SM} where

 $A_{measured} = f_{SM} A_{SM}^{th}$

• $\Delta \phi(ll)$ shows highest sensitivity

Ø 8 TeV analysis: arXiv:1412.4742, submitted to PRL

• Spin correlation extracted via a template fit on $\Delta \phi(ll)$ distribution

 $f_{SM} = 1.20 \pm 0.05(stat) \pm 0.13(syst)$

- Most precise measurement to date
- See Paolo Dondero's poster for stop exclusion from $t\bar{t}$ spin correlation

ATLAS		tī s	tī spin correlation measurements				
$\int Ldt = 4.6 \text{ fb}^{-1}, \sqrt{s}$	= 7 Te\	/		f _{SM}	± (stat)	± (syst)	
Δφ (dilepton)		Q		1.19	± 0.09	± 0.18	
Δφ (I+jets)				1.12	± 0.11	± 0.22	
S-ratio			-	0.87	± 0.11	± 0.14	
cos(θ₊) cos(θ₋) helicity basis		• •	•	0.75	± 0.19	± 0.23	
cos(θ₊) cos(θ_) maximal basis		• • •		0.83	± 0.14	± 0.18	
0	0.5		1	1.5 Stand	dard mod	2 lel fractior	

1708 2015

Marino Romano - Top Physics at aTLAS

Summary

- O Top quark measurements have provided stringent tests of SM
- O Top quark pair production
 - Inclusive cross-section measured with 4% accuracy (and it gets better after combinations!)
 - Differential cross sections: resolved and boosted topologies, parton and particle level
 - Spin correlation, charge asymmetry measurements
 - SM predictions in general good agreement with data
- O Top quark mass
 - o World combination reaches uncertainty of ~0.8 GeV!
- O Top quark measurements have started to probe for new physics
 - Stop exclusion from cross section and spin correlation (see Paolo Dondero's poster)
- Stay tuned for new results with early data in Run II at 13 TeV, as well as for more refined studies from Run I!

Backup

17aE 2015

Common object definitions

O Details can vary among the different analyses

Ø Jets:

- Reconstructed from topological clusters using the anti-kt algorithm (R = 0.4)
- *ο p*_T> 25 GeV, |η| <2.5
- B-tagging via a Neural network based algorithm (MV1) with average efficiency of 70% and light jet rejection factor ~140

O Electrons:

- O EM cluster with track matched
- Isolation in tracker and calorimeter
- $E_{\rm T}$ > 25 GeV, $|\eta|$ < 1.37 or 1.52 < $|\eta|$ < 2.47

O Muons:

- Tracks in inner detector and muon spectrometer
- Isolation in tracker and calorimeter
- *o* $p_{\rm T}$ > 20 GeV, $|\eta|$ <2.5
- Missing transverse energy
 - Vector sum of energy deposits in calorimeters, with corrections based on the associated reconstructed object

$t\bar{t}$ inclusive cross section $e\mu$ channel EPJC 74 (2014) 3109

Top pair differential cross section Phys. Rev. D 90, 072004

 $\sqrt{s} = 7 \text{ TeV}, \int L dt = 4.06 \text{ fb}^{-1}$

- O Total $\sigma_{t\bar{t}}$ measurements show very good agreement with the SM
 - New physics phenomena can still affect the *shape* of $\sigma_{t\bar{t}}$
- Top-antitop relative differential cross section $\left(\frac{1}{\sigma}\frac{d\sigma}{dX}\right)$ where $X = m_{t\bar{t}}, p_{T,t\bar{t}}, |Y_{t\bar{t}}|$ and $p_{T,t}$
 - *Relative* measurement more precise than the *absolute* \rightarrow cancellation of correlated systematics
- Ocut-based analysis in the *l*+jets channel
- *•* $t\bar{t}$ system reconstructed via a kinematic likelihood fit.
- Final parton level measurement extracted via unfolding methods

Results: comparison with generators Phys. Rev. D 90, 072004 $\sqrt{s} = 7 \text{ TeV}, \int Ldt = 4.06 \text{ fb}^{-1}$

Electron and muon channel combination via the Asymmetric Iterative BLUE (AIB)

MC generators: Alpgen, PowHeg and Mc@Nlo interfaced with Herwig+Jimmy 일종 and PowHeg+Pythia

- General trend of data being softer in $p_{T,t}$ above 200 GeV
- All four MC generators well describe the shape of $m_{t\bar{t}}$ and $p_{T,t\bar{t}}$
- Alpgen gives the best prediction of the $|y_{t\bar{t}}|$

Data

Reconstruction of the *tt* system via kinematic likelihood fit

O The tt system reconstruction is performed trough a kinematic fit using a maximum likelihood approach

$$\mathcal{L} = \mathcal{B}\left(\widetilde{E}_{p,1}, \widetilde{E}_{p,2} | m_W, \Gamma_W\right) \cdot \mathcal{B}\left(\widetilde{E}_l, \widetilde{E}_\nu | m_W, \Gamma_W\right) \cdot \\ \cdot \mathcal{B}\left(\widetilde{E}_{p,1}, \widetilde{E}_{p,2}, \widetilde{E}_{p,3} | m_t, \Gamma_t\right) \cdot \mathcal{B}\left(\widetilde{E}_l, \widetilde{E}_\nu, \widetilde{E}_{p,4} | m_t, \Gamma_t\right) \cdot \\ \cdot \mathcal{W}\left(\widehat{E}_x^{miss} | \widetilde{p}_{x,\nu}\right) \cdot \mathcal{W}\left(\widehat{E}_y^{miss} | \widetilde{p}_{y,\nu}\right) \cdot \mathcal{W}\left(\widehat{E}_{lep} | \widetilde{E}_{lep}\right) \cdot \\ \cdot \prod_{i=1}^4 \mathcal{W}\left(\widehat{E}_{jet,i} | \widetilde{E}_{p,i}\right) \cdot P\left(b \text{ tag | quark}\right),$$

- O The likelihood assesses the compatibility of the event with a typical ttbar pair
- O The algorithm is fed with the 4 or 5 reconstructed highest-pt jets (and their b-tag info), the lepton and the E_T^{miss}
- O The output is the permutation of the four jets, lepton and E_T^{miss} that maximizes the likelihood

From the detector-level spectra to the cross section measurement

The 'detector-level' spectra are linked to the 'parton level' cross section σ_j via

$$N_i = \sum_j M_{ij} \epsilon_j \sigma_j \beta L + B_i$$

Where

O N_i is the number of observed data events in the bin j.

- O L is the luminosity
- OB_i is the number of background events in the bin i.
- $o \beta$ is the branching ratio
- $O M_{ij}$ is the 'migration matrix'
- $\circ \epsilon_j$ is the efficiency of the selection

$t\bar{t}$ + jets differential cross section

Ocut-based analysis in the *l*+jets channel

- Particle level measurement
- ✓ Limited by systematic uncertainties, background modelling (for n_{jets} < 4) and jet energy scale (n_{jets}≥4)

 $\frac{d\sigma_{tt}}{dN_{jets}}$: sensitive to hard emissions in QCD bremsstrahlung processes.

 $\frac{d\sigma_{tt}}{dp_{t,jet}}$: sensitive to the modelling of higher-order QCD effects in MC

 $\sqrt{s} = 7 \text{ TeV}, \int Ldt = 4.6 \text{fb}^{-1}$

Jet multiplicity in top-antitop final states

- Useful to constrain models of initial and final state radiation (ISR/FSR)
- Provides a test of perturbative QCD
- Single-lepton channel
 - o Four jet p_T thresholds: (25, 40, 60, and 80 GeV)
- Results are corrected for all detector effects through unfolding
- Ø Measurement is limited by systematic uncertainties,
 Ø background modelling (at lower jet multiplicities)
 Ø jet energy scale (at higher jet multiplicities)

Jet multiplicity in top-antitop final states

OMC@NLO modelling predicts a lower jet multiplicity spectrum and softer jets

OPredictions from ALPGEN + HERWIG or PYTHIA and **POWHEG + PYTHIA are** consistent with the data

Single top/antitop t-chan ratio

 $R_t = \frac{\sigma_{ub \to td}}{\sigma_{d\bar{b} \to \bar{t}d}}$

Phys. Rev. D. 90, 112006 (2014)

 $\sqrt{s} = 7 \text{ TeV}, \int L dt = 4.7 \text{ fb}^{-1}$

- Very sensitive to the ratio of the PDF of the valence quark in the high x regime
 - Smaller uncertainties because of error cancelations
- O Sensitive to new physics effects
- O Same analysis technique used in the σ_{tchan} measurement

Tt charge asymmetry in Run II

Interest shown for boosted analyses

Ocombinations with resolved analyses could improve the precision

A_C at high *m_{tt}* particularly sensitive to new physics

Run II ideal environment for boosted analyses

Expected 7x more boosted tops (*m_{tt}*>1TeV) with 5/fb

Interest shown also for $A_C(tl)$ with a high p_T hadronically decaying top (arXiv:1401.2443)

$$A_{C}^{tl} = \frac{N(\Delta|y|^{tl} > 0) - N(\Delta|y|^{tl} < 0)}{N(\Delta|y|^{tl} > 0) + N(\Delta|y|^{tl} < 0)}$$

No ambiguity due to the z-component of the neutrino 170E 2015 Marino Romano - Top Physics at 0720

Spin correlation observables

• Angular distributions of daughter pairs

$$\frac{d\sigma}{d\cos\theta_1 d\cos\theta_2} \sim 1 - \mathbf{A}\alpha_1 \alpha_2 \cos\theta_1 \cos\theta_2$$

O Elicity basis: top rest frame

 Maximal basis: event-by-event axis that maximize correlation for gg fusion

O S-ratio

Ratio of matrix elements of like-helicity gluon fusion with spin correlation to without correlation

$$S = \frac{(|M|_{RR}^{2} + |M|_{LL}^{2})_{corr}}{(|M|_{RR}^{2} + |M|_{LL}^{2})_{uncorr}}$$

=
$$\frac{m_{t}^{2}[(t \cdot l^{+})(t \cdot l^{-}) + (\bar{t} \cdot l^{+}) - m_{t}^{2}(l^{+} \cdot l^{-})]}{(t \cdot l^{+})(\bar{t} \cdot l^{-})(t \cdot \bar{t})}$$

17aE 2015

Marino Romano - Top Physics at aTLAS

Spin correlation: stop exclusion

- $o t\bar{t}$ spin correlation is sensitive to SUSY processes $\tilde{t}\bar{\tilde{t}} \rightarrow t\bar{t}\tilde{\chi}^0 \tilde{\chi}^0$
- Limits on stop production can be set by measuring $t\overline{t}$ spin correlation

$t\bar{t}$ charge asymmetry in Run I

 $A_{C}^{tt} = \frac{N(\Delta|y| > 0) - N(\Delta|y| < 0)}{N(\Delta|y| > 0) + N(\Delta|y| < 0)} \qquad \Delta|y| = |y_{t}| - |y_{\bar{t}}|$ $A_{C}^{ll} = \frac{N(\Delta|y| > 0) - N(\Delta|y| < 0)}{N(\Delta|y| > 0) + N(\Delta|y| < 0)} \qquad \Delta|y| = |y_{l}| - |y_{l}|$

Extensively measured @ 7 TeV

All results obtained after unfolding to parton level

- Dilepton channel (submitted to JHEP)
 - Simultaneous measurement of $A_C(tt)$ and $A_C(ll)$
- Single lepton channel (JHEP02(2014)107)
- Combination with CMS (ATLAS-CONF-2014-012)
- Results in agreement with SM predictions
 - To understand the discrepancies in A_{FB} @ Tevatron

Marino Romano - Top Physics at aTLAS

Summary

Physics of the top quark can answer fundamental questions.

O So far all results agree with SM predictions

Most of the measurements are limited by systematics.

O Top analyses in ATLAS presented in this talk

- O Top pair cross section (total, differential and associate production)
- O Top-quark mass measurement
- O Top-antitop charge asymmetry
- O Top-antitop spin correlation

• Additional results can be found at the ATLAS public page

https://twiki.cern.ch/twiki/bin/view/AtlasPublic/

Stay tuned for new results with early data in Run II at 13 TeV, as well as for more refined studies from Run I!