Multi-boson production measurements with the CMS detector

Gian Luca Pinna Angioni

NFN Istituto Nazionale di Fisica Nucleare

Università degli Studi di Torino

Physic motivation

- Interesting channels: ZZ,W*W*+jets, ZW, WV&, W+W-,ecc.
- Studies on boson fermion couplings.
- Test of electroweak sector of SM.
 - Sensitive to the self-interaction between gauge bosons via triple/ quadric gauge couplings (TGC,QGC).
 - Fundamental to establish if this Higgs boson really can preserve unitarity in the VV scattering amplitude at all energies.
 - QCD process are dominant to EW !

- Sensitive to anomalous triple/quadric couplings (aTGC,aQGC)
 - Analyzable through effective field theory
- Important background to Higgs and beyond-SM searches

 $ZZ^{(*)} \rightarrow 2\ell 2\ell (8 \text{ TeV})$

Selection:

- Two opposite-sign same-flavor lepton pairs.
- $\bar{\ell} = \mathbf{e}, \mu$ $\ell' = \mathbf{e}, \mu, \tau$
- τ reconstructed in both lepton and hadron decay

Background:

- Z+fake, ZW+fake, WWZ, tt + jets.
- Low in e,µ channels

ZZ^(*)→ 2ℓ2ℓ° (8 TeV)

Cross section:

Fiducial region: 60 GeV $< m_z < 120$ GeV

 Measured separately in each final state and then combined through likelihood fit on number of events.

• Differential in mZZ, $ZZp_{T_1} Z_1 p_{T_2} \ell_1 p_T$

Reference:

arXiv:1406.0113v2

$L [fb^{-1}]$	Experimental σ [pb]	Theory σ [pb]
19.6	$7.7_{-0.5}^{+0.5}$ (stat)_{-0.4}^{+0.5}(syst) ± 0.4 (theo) ± 0.2 (lumi)	7.7±0.6
4/8/15		4

WVz (8TeV) V=W,Z

Reference: arXiv:1404.4619

4/8/15

 \sim 3.4 times SM prediction 91.6±21.7 fb

Expected limit of 403 fb

ZW→IIIv (8 TeV)

W+W+,W-W- and VBS in ll+jets

Obs(exp) significance for VBS = 1.9(3.0) σ

Multi boson measurements

4/8/15

8

Anomalous coupling

- Possibility to test BSM physic adding new triple and quadruple terms/ ٠ operators with different dimension to the SM Lagrangian. (aTGC,aQGC)
- This new terms are introduced using an effective field theory. ٠
- Expected variation in both yield and shape distributions. ٠
- Anomalous coupling tested in almost every channel. .
- Limits set on this operators show no deviations from the SM

ZZ example

9

Conclusion

- All possible multi-boson measurements have been done at CMS.
 - cross-sections measured: no significant deviations from the SM
 - limits set on aTGCs and aQGCs: show no deviations from the SM
- This measurements are the one of the most important measure for the next run at LHC.
 - Good prospective for 300 and 3000 $\rm fb^{-1}$

Backup Slides

Analysis common features

Selection common features:

Prompt leptons in all analysis.

- Requested isolated leptons in a cone $\Delta R = \sqrt{(\Delta \eta)^2 + (\Delta \Phi)^2}$ around leptons.
 - Values and features depend on the analysis
- The measured energy in the cone is corrected for the contribution from pile-up events.
- Leptons compatible with primary vertex (highest Σp_T^2 vertex)
- Fake leptons background measured with a data driven method.

W⁺W⁻→lvlv (8TeV)

Selection:

- Opposite-sign high p_T leptons.
- High missing energy.
- Small high p_T jets numbers.

Background:

W+jets, tt,tW,WZ,ZZ

Cross section:

Cross section measured separatelly in 4 category (flavor, jet numbers) and combined trough likelihood fit.

	Event category		W^+W^- production cross section (pb.)	
0-jet catego	0 iot catogomy	Different-flavor	59.7 ± 1.1 (stat.) ± 3.3 (exp.) ± 3.5 (th	$1.)\pm1.6$ (lum.)
	0-jet category	Same-flavor	64.3 ± 2.1 (stat.) ± 4.6 (exp.) ± 4.3 (th	i.) \pm 1.7 (lum.)
1 :-	1 int anto come	Different-flavor	59.1 ± 2.8 (stat.) ± 6.0 (exp.) ± 6.2 (th	i.) \pm 1.6 (lum.)
1-jet cat	1-jet category	Same-flavor	$65.1\pm5.5(ext{stat.})\pm8.3(ext{exp.})\pm8.0(ext{th})$	1.) \pm 1.7 (lum.)
L [fb ⁻¹]		Expe	rimental σ [pb]	Theory σ [pb]
4	4/8 19.4 60.1±0.9(stat)±3.2(exp)±3.1(th)±1.6(lum)		59.8 ^{+1.3} -1 1 13	

W⁺W⁻→lvlv (8TeV)

Selection:

- Opposite-sign high p_T leptons.
- High missing energy.
- Small high p_T jets numbers.

Background:

W+jets, tt,tW,WZ,ZZ

Cross section:

Cross section measured separatelly in 4 category (flavor, jet numbers) and combined trough likelihood fit.

Reference: CMS-PAS-SMP-14-016

Event category		W ⁺ W ⁻ production cross section (pb.)	
0-jet category	Different-flavor	59.7 ± 1.1 (stat.) ± 3.3 (exp.) ± 3.5 ($(\text{th.}) \pm 1.6 \text{ (lum.)}$
	Same-flavor	64.3 ± 2.1 (stat.) ± 4.6 (exp.) ± 4.3 ((th.) \pm 1.7 (lum.)
1-jet category	Different-flavor	59.1 ± 2.8 (stat.) ± 6.0 (exp.) ± 6.2 ((th.) \pm 1.6 (lum.)
	Same-flavor	65.1 ± 5.5 (stat.) ± 8.3 (exp.) ± 8.0 ((th.) \pm 1.7 (lum.)
L [fb ⁻¹]	Experimental σ [pb]		Theory σ [pb]
4/8/19.4	60.1±0.9(stat)±3.2(exp)±3.1(th)±1.6(lum)		59.8 ^{+1.3} -1.1

$W^+W^- \rightarrow IvIv$ (8 TeV) Fiducials region

WW/WZ+jets diagrams

ZZ Anomalous coupling

- Anomalous tri-linear couplings ZZZ ZZ γ introduced with an effective Lagrangian.
- Parameterized by two CP-violating (f_4^V) and two CP-conserving (f_5^V) complex parameter. V=Z,gamma
- One-dimensional fits for each parameter performed to obtain 95% CL:

 $-0.004 < f_4^Z < 0.004, -0.005 < f_5^Z < 0.005, -0.004 < f_4^\gamma < 0.004, -0.005 < f_5^\gamma < 0.005.$

W+W- Anomalous coupling

- BSM processes parameterized by series of higher-dimensional operators that are the low-energy description of interactions mediated by unknown massive fields. (E.g. Fermi Lagrangian).
- Considering only C and P conserving operators and mass scale of new physic Λ large enough we have the following 6 dimension operators:

$$\mathcal{O}_{WWW} = rac{c_{WWW}}{\Lambda^2} \operatorname{Tr}[W_{\mu\nu}W^{
u\rho}W^{\mu}],$$

 $\mathcal{O}_W = rac{c_W}{\Lambda^2}(D^{\mu}\Phi)^{\dagger}W_{\mu\nu}(D^{\nu}\Phi),$
 $\mathcal{O}_B = rac{c_B}{\Lambda^2}(D^{\mu}\Phi)^{\dagger}B_{\mu\nu}(D^{\nu}\Phi).$

A binned Poisson log-likelihood computed on the invariant mass of the two charged leptons.

W+W- Anomalous coupling

Future projection WZ

- 300 fb-1 (Phase 1) with 50 pileup event and similar detector
- 3000 fb-1 (Phase 2) with 140 pile-up events and with the detector upgrade (new tracker and Ecal, mu-detection down to $\eta < 4$)

 $L_{T1} = (f_{T1}/\Lambda^4) Tr[\hat{W}_{\alpha\nu}\hat{W}^{\mu\beta}] Tr[\hat{W}_{\mu\beta}\hat{W}^{\alpha\nu}]$

Significance	3σ	5σ
SM EWK scattering discovery	$75 {\rm fb}^{-1}$	$185 {\rm fb^{-1}}$
f_{T1}/Λ^4 at 300 fb ⁻¹	$0.8 { m TeV^{-4}}$	$1.0 { m TeV^{-4}}$
f_{T1}/Λ^4 at 3000 fb ⁻¹	$0.45 { m TeV^{-4}}$	$0.55 { m TeV^{-4}}$