

Produzione associata ttH e decadimento nei canali multi-leptonici

Federico Lasagni Manghi

08/04/2015 – Federico Lasagni Manghi – IFAE 2015

Riassunto

- In the second se
- Produzione associata tt
 TH
 H
 H
 H
 H
 H
 H
 H
 H
 H
 H
 H
 H
 H
 H
 H
 H
 H
 H
 H
 H
 H
 H
 H
 H
 H
 H
 H
 H
 H
 H
 H
 H
 H
 H
 H
 H
 H
 H
 H
 H
 H
 H
 H
 H
 H
 H
 H
 H
 H
 H
 H
 H
 H
 H
 H
 H
 H
 H
 H
 H
 H
 H
 H
 H
 H
 H
 H
 H
 H
 H
 H
 H
 H
 H
 H
 H
 H
 H
 H
 H
 H
 H
 H
 H
 H
 H
 H
 H
 H
 H
 H
 H
 H
 H
 H
 H
 H
 H
 H
 H
 H
 H
 H
 H
 H
 H
 H
 H
 H
 H
 H
 H
 H
 H
 H
 H
 H
 - Canali multi-leptonici
 - Procedura di analisi
- Il canale 2/ SS (Same Sign):
 - Definizione e stima dei fondi data-driven
 - Risultati
 - Leptoni non-prompt con il Matrix Method
- Conclusioni
- L'articolo, fresco di pubblicazione: https://atlas.web.cern.ch/Atlas/GROUPS/PHYSICS/CONFNOTES/ATLAS-CONF-2015-006/

Produzione associata ttH

- Dopo la scoperta del bosone di Higgs, lo studio degli accoppiamenti diventa essenziale
- Il ttH è un canale privilegiato grazie all'alta mass del top
- σ (produzione) ~ Yukawa coupling del top
- Sezione durto prevista a 8 TeV: $\sigma = 129^{+5}$ -12(scala) ± 10 (PDF) fb

- Suddiviso in categorie in base ai devcatimenti di H (e t)
- ◆ Selezioni progettate per evitare sovrapposizioni con altre ricerche ttH in decadimenti H → bb e H → γγ ad ATLAS

ttH: canali multileptonici

- Canali multi-leptonici ancora inesplorati in ATLAS.
- \blacksquare Decadimenti che constribuiscono al segnale: H \rightarrow WW, H \rightarrow ZZ and H \rightarrow $\tau\tau$
- Preparazione dati, generazione MC e selezione oggetti in comune tra i sotto-canali
- Sorgenti di fondo principali:
 - Processi tt + leptoni provenienti da jet o con carica mal identificata
 - ttw con extra jets o ttZ con leptoni persi o mis-identificati
 - Eventi dibosonici + jets

	Higgs boson decay mode			
Category	WW^*	au au	ZZ^*	Other
$2\ell 0\tau_{\rm had}$	80%	15%	3%	2%
3ℓ	74%	15%	7%	4%
$2\ell 1 au_{ m had}$	35%	62%	2%	1%
4ℓ	69%	14%	14%	4%
$1\ell 2 au_{had}$	4%	93%	0%	3%

Il canale 2I SS, 0 τ

Procedura di analisi

- Analisi basata sui tagli
- Selezione degli oggetti e
 Overlap Removal in comune

Definizione del canale

- Richiede due leptoni isolati dello stesso segno (SS) con $p_T > 25$ (20) GeV
- Gli elettroni devono avere $|\eta| < 1.37$ per sopprimere errori di ricostruzione carica

• $N_{jet} \ge 4$, $N_{bjet} \ge 1$. [$N_{jet} < 4 \rightarrow$ regione di controllo]

Stima dei fondi

- Fondi ttV, dibosonici e minori stimati da MC
- Misidentificazione della carica misurata sul picco della Z
- Leptoni fake (provenienti da jets) stimati con tecniche data-driven
 - Il metodo publicato utilizza regioni di contorno (side-band regions)
 - Matrix Method in via di sviluppo

Stima dei fondi fake

Frequenze dei *fake* stabili (entro il 20%) con il numero dei jet

Risultati: Regione di Segnale

Combinazione e limiti SM

- Combinando tutte le categorie, $\mu = \sigma/\sigma_{SM} = 2.1^{+1.4}$
- Il limite osservato (atteso) al 95% CL è μ (ttH) < 4.7 (2.4)
- Fate riferimento alla presentazione di Giuseppe per maggiori dettagli

IFAE 2015 Roma

Matrix Method

- Il Matrix Method è un metodo data-driven per la stima dei fondi dipendenti da leptoni provenienti da jet
- Le distribuzioni di questi fondi sono ottenute contando le coppie di leptoni isolati e non, pesandole in base a efficienze reali e fake
 - Tre livelli di trigger utilizzati: basso p_{τ} (prescalato), medio p_{τ} isolato e alto p_{τ} .
 - Due regioni differenti: ΔR (I-bjet) < 1.2 e > 1.2
- Efficienze reali determinate con metodo tag and probe sul picco di massa del bosone Z

Efficienze fake parametrizzate in funzione di p_τ, η (leptone) e distanza leptone-bjet

- Misurate in regioni arricchite di *fake*
- La distribuzione dei fondi può essere in funzione di qualsiasi quantità
 - → il metodo può essere usato per analisi multi-variate

Misura delle efficienze fake

Risultati nella regione di controllo

* Regione di controllo $N_{jet} < 4$

- Solo i due jet con più alto impulso sono contati (sia nel segnale sia nei fondi), per non interferire con il canale 3I
- * Sono aggiunte anche le altre sorgenti di fondo più significative

Conclusioni

- Il canale tt
 H channel è essenziale per le misure di Modello Standard (e oltre)
- Dalla combinazione dei canali $\mu = \sigma/\sigma_{SM} = 2.1^{+1.4}_{-1.2}$
- Limite osservato: $\mu < 4.7$
- Canale 2I SS 0τ, leptoni non-prompt:
 - Stimati nelle regioni di contorno per Run 1
 - Matrix method in stato avanzato di sviluppo
 - Necessario per sfruttare tecniche multivariate nel Run 2

Backup

Misidentificazione di carica

- Charge mis-id misurata con un metodo completamente data-driven basato su un likelihood fit
- Si è vista una forte dipendenza da |η|, in particolare per elettroni a basso p_T
- Taglio |η| < 1.37 deciso per ridurre l'impatto di questo fondo

Controllo del fondo ttV

- La regione di controllo per validare il MC ttZ utilizza decadimenti on-shell del bosone Z
- Regione di validazione per tt W definita come la selezione 2/SS0 cecetto $N_{bjet} \ge 2$ e $N_{jet} = 2 \text{ o } 3$

Piani per il Run 2

- Matrix Method necessario per il Run 2
 - Strumenti in sviluppo
- Uso di tecniche multivariate
- Framework AnalysisTop per:
 - Derivazione delle Ntuple
 - Studi preliminari su:
 - Opzioni di trigger ed efficienze
 - Regioni di segnale e controllo