

Osservabili pQCD per caratterizzare la materia nucleare "calda e fredda"

D. Caffarri (CERN) for the ALICE Collaboration.

IFAE 2015, Frontiera dell'energia, 09/04/15

D. Caffarri (CERN), IFAE 2015, 09/04/15

Why heavy ions collisions at LHC?

* Ultra-relativistic heavy ions allow to study the phase diagram of the nuclear matter.

★ They are "good tools" to compare and heat nuclear matter in order to recreate
★ a very high density
★ strongly interacting
★ deconfined medium.

Hydrodynamic

Evolution

Energy Stopping

Hard Collisions

* Characterization of the state of the nuclear matter with hydrodynamics quantities, given its complexity and its extent.

D. Caffarri (CERN), IFAE 2015, 09/04/15

itial state

Hot Nuclear Matter

Ultra-relativistic heavy ions as "tools" to compress and heat nuclear matter in order to recreate

- * <u>a very high density</u>
- * strongly interacting
- * <u>deconfined</u> medium.

*Multiplicity of particle produced directly proportional to the energy density of the system. ε ~ 12 GeV/fm³ a LHC

Hot Nuclear Matter

Ultra-relativistic heavy ions as "tools" to compress and heat nuclear matter in order to recreate

- * <u>a very high density</u>
- * strongly interacting
- * <u>deconfined</u> medium.

*Multiplicity of particle produced directly proportional to the energy density of the system. ε ~ 12 GeV/fm³ a LHC

*Bose Einstein correlation between identical bosons allow to study the extension of the system. "homogeneity" V ~ 5000 fm³

Hot Nuclear Matter

Ultra-relativistic heavy ions as "tools" to compress and heat nuclear matter in order to recreate

- * <u>a very high density</u>
- * strongly interacting
- * <u>deconfined</u> medium.

*Multiplicity of particle produced directly proportional to the energy density of the system. ε ~ 12 GeV/fm³ a LHC

- *Bose Einstein correlation between identical bosons allow to study the extension of the system. "homogeneity" V ~ 5000 fm³
- * Direct photon emitted by the hot system
 (as black body radiation) *T* ~ 301 ± 51 MeV

Hard probes in AA and pA collisions

* Hard probes are:

- ***** produced in **hard parton-parton scatterings** in early collision stages
- *** experience the full evolution** of the system and interact with it if they are color charged.
- ***** their production can be **computed using pQCD**.
- * their production cross sections are proportional to the number of possible hard scattering (i.e. to the number of nucleon-nucleon collisions)

Hard probes in AA and pA collisions

* Hard probes are:

- ***** produced in **hard parton-parton scatterings** in early collision stages
- *** experience the full evolution** of the system and interact with it if they are color charged.
- ***** their production can be **computed using pQCD**.
- ***** their production cross sections are **proportional to the number of possible hard scattering** (i.e. to the number of nucleon-nucleon collisions)

* Medium - High-pT hadrons

Medium pT hadrons mainly correlation studies *** Jets**

- * Open heavy flavor
- * Quarkonia

* Electro-week bosons (W, Z) * Direct photons

How to quantify modifications on the hard probes?

***** Centrality:

- * Quantity to determine the overlap region of the two nuclei during the collisions.
- ***** Geometrical model allow to determine the number of **participant** to the collision.
- * Events are classify in "centrality classes" in terms of the percentiles of the total AA cross section.

Central collisions ex. 0-10%, 0-5% Peripheral collisions ex. 70-80%, 80-100%

How to quantify modifications on the hard probes?

***** Centrality:

- * Quantity to determine the overlap region of the two nuclei during the collisions.
- ***** Geometrical model allow to determine the number of **participant** to the collision.
- * Events are classify in "centrality classes" in terms of the percentiles of the total AA cross section.

***** Nuclear modification factor (*R*_{AA}):

* Comparison of the spectra in pp and AA collisions * If AA collisions would be a "simple" superimposition of many pp collisions $R_{AA} = 1$

$$R_{AA}(p_{T}) = \frac{1}{\langle N_{coll} \rangle} \times \frac{d^2 N_{AA}/dp_T d\eta}{d^2 N_{pp}/dp_T d\eta}$$

* Similar ratio can be build comparing central and peripheral(*) AA collisions (R_{CP})

D. Caffarri (CERN), IFAE 2015, 09/04/15

* Partons travel ~4 fm in the high colour-density medium.
* In their path they can loose energy for two mechanisms:
Scatterings with other partons → collisional energy loss
→ dominates at low-pT
Gluon radiation → radiative energy loss
→ dominates at high energy

Gyulassy, Pluemer, Wang, Baier, Pokshitzer, Mueller, Peigné, Schiff, Levai, Vitev, Zhakarov, Salgado, Wiedemann,...

* Partons travel ~4fm in the high colour-density medium.
* In their path they can loose energy for two mechanisms:
Scatterings with other partons → collisional energy loss
→ dominates at low-pT
Gluon radiation → radiative energy loss
→ dominates at high energy

Gyulassy, Pluemer, Wang, Baier, Pokshitzer, Mueller, Peigné, Schiff, Levai, Vitev, Zhakarov, Salgado, Wiedemann,...

***** An example: BDMPS - Z formalism

Baier, Dokshitzer, Mueller, Peigne⁴, Schiff, NPB 483 (1997) 291. Zakharov, JTEPL 63 (1996) 952. Salgado, Wiedemann, PRD 68(2003) 014008.

Radiated gluon energy distrib:

$$\omega \frac{\mathrm{d}I}{\mathrm{d}\omega} \propto \alpha_{s} C_{R} \begin{cases} \sqrt{\omega_{c} / \omega} & \text{for } \omega < \omega_{c} \\ (\omega_{c} / \omega)^{2} & \text{for } \omega \ge \omega_{c} \end{cases}$$

 $E = 0000 \Delta E$ $E - \Delta E$ (medium) Dath length L

Е

E-∆E

↓ ΔE

00000

* Partons travel ~4fm in the high colour-density medium.
 * In their path they can loose energy for two mechanisms:
 Scatterings with other partons → collisional energy loss
 → dominates at low-pT
 Gluon radiation → radiative energy loss

→ dominates at high energy Gyulassy, Pluemer, Wang, Baier, Pokshitzer, Mueller, Peigné,

Schiff, Levai, Vitev, Zhakarov, Salgado, Wiedemann,...

***** An example: BDMPS - Z formalism

Baier, Dokshitzer, Mueller, Peigne⁴, Schiff, NPB 483 (1997) 291. Zakharov, JTEPL 63 (1996) 952. Salgado, Wiedemann, PRD 68(2003) 014008.

Radiated gluon energy distrib:

$$\omega \frac{\mathrm{d}I}{\mathrm{d}\omega} \propto \alpha C_R \begin{cases} \sqrt{\omega_c / \omega} & \text{for } \omega < \omega_c \\ (\omega_c / \omega)^2 & \text{for } \omega \ge \omega_c \end{cases}$$

C_{R:} Casimir Factor: 4/3 for q, 3 for g **Color charge dependence of the energy loss**

Е

ΛE

Ε-ΔΕ

path length L

Х

(medium)

E-∆E

↓ ΔE

20000

* Partons travel ~4fm in the high colour-density medium. * In their path they can loose energy for two mechanisms: **Scatterings with other partons** → collisional energy loss → dominates at low-pT **Gluon radiation** → radiative energy loss → dominates at high energy

Gyulassy, Pluemer, Wang, Baier, Pokshitzer, Mueller, Peigné, Schiff, Levai, Vitey, Zhakarov, Salgado, Wiedemann,...

***** An example: BDMPS - Z formalism

Baier, Dokshitzer, Mueller, Peigne', Schiff, NPB 483 (1997) 291. Zakharov, JTEPL 63 (1996) 952. Salgado, Wiedemann, PRD 68(2003) 014008.

Radiated gluon energy distrib:

D. Caffarri (CERN), IFAE 2015, 09/04/15

 ω_c : scale of the radiated energy $\propto \hat{q}$

 $\hat{q} = \frac{\langle k_T^2 \rangle}{\lambda}$ Transport coefficient related to the **medium characteristics** and to the **gluon density**

Ε-ΛΕ

path length L

Х

(medium)

E-∆E

↓ ΔE

20000

Е

Other than pp collisions at the LHC

D. Caffarri (CERN), IFAE 2015, 09/04/15

High-pT suppression @ LHC

10⁵

* Clear reduction of the charged particles spectra, in particular in central AA collisions, w.r.t to pp.

High-pT suppression @ LHC

 R_{AA} shows:

* a minimum (~0.14) at p_T = 6-7 GeV/c
* slow increase at high-p_T
* still a significant suppression (~0.5)
at p_T ~ 50 GeV/c

High-pT suppression @ LHC


```
R_{AA} shows:
```

* a minimum (~0.14) at $p_T = 6-7 \text{ GeV}/c$ * slow increase at high- p_T * still a significant suppression (~0.5) at $p_T \sim 50 \text{ GeV}/c$

* Charged particle suppression described by models that include parton energy loss models

Cold Nuclear Matter

* The observed suppression might come from effects related to the matter that has a different behavior in case of single nucleons or multiple nucleons collision (cold nuclear matter) ?

*** Shadowing**: parton densities in the nuclei are depleted with respect to the free partons ("low-x gluon fusion").

Cold Nuclear Matter

* The observed suppression might come from effects related to the matter that has a different behavior in case of single nucleons or multiple nucleons collision (cold nuclear matter) ?

*** Shadowing**: parton densities in the nuclei are depleted with respect to the free partons ("low-x gluon fusion").

*** Gluon Saturation**: if gluons are numerous enough (low-x) and extended enough to overlap, they can recombine in the nucleus and saturate.

J. Albacete QM12 Student's lectures

D. Caffarri (CERN), IFAE 2015, 09/04/15

pPb: the control experiment

- * No high-pT suppression is observed in pA collisions.
- * The suppression observed in central AA collisions comes from a final-state effect
- * Charged particles R_{pPb} described by calculations including reduction of low-x gluon flux (saturation, shadowing)

pPb: the control experiment

- *... but enhancement at very high-pT observed by CMS? Not predicted from pQCD calculation.
- * ALICE seems not to observe a similar pattern.
 * ATLAS partially observed an enhancement but within large systematic uncertainties.
- * 10% difference come from interpolation at 5 TeV.
 * Reference pp run at 5 TeV important!

D. Caffarri (CERN), IFAE 2015, 09/04/15

From single particles to jets... jet quenching

***** Full jet reconstruction: anti-kT algorithm + background techniques

- * Jets and di-jets with ~100 GeV energies
- * Pb-Pb events with large di-jet imbalance observed

From single particles to jets... jet quenching

* Detail study of di-jets events, in comparison with pp expectation * Energy imbalance quantified by the di-jet asymmetry variable

 $A_{J} = \frac{E_{T1} - E_{T2}}{E_{T1} + E_{T2}} \qquad \begin{array}{c} E_{T1} > 100 GeV \\ E_{T2} > 25 GeV \end{array}$

* Going to more central events, larger asymmetry in di-jets events with respect to pp.

From single particles to jets... jet quenching

* Detail study of di-jets events, in comparison with pp expectation
* Energy imbalance quantified by the di-jet asymmetry variable
* Study of the recoil energy looking at other particles in the event.

Unbalanced jet energy moved from high to lower p_T (~ $p_T < 8 \text{ GeV/}c$) small to large angles ($\Delta R > 0.8$)

"Transparent probes"

- * Particles without color charge (produced in hard scatterings) should not be affected by the interaction with the medium:
 * Photons
 - * Electro week bosons (W, Z)
- * CMS measured in central Pb-Pb collisions:
 - * Direct photons $R_{AA} \sim 1$ ($p_T > 20 \text{ GeV}/c$)
 - ***** W and Z $R_{AA} \sim 1$
 - * No modification observed

Mass dependence of the energy loss

* Heavy quarks are produced in large virtuality process at the initial stage of the collisions, with short formation time. $\Delta t > 1/m_c \approx 0.1 \text{ fm} << \tau_{\text{QGP}} 5 - 10 \text{ fm}$

Mass dependence of the energy loss

- * Heavy quarks are produced in large virtuality process at the initial stage of the collisions, with short formation time. $\Delta t > 1/m_c \approx 0.1 \text{ fm} << \tau_{\text{QGP}} 5 - 10 \text{ fm}$
- * Gluon radiation of heavy quarks is suppressed due to the introduction of a mass term in the propagator:

***** Dead cone effect

Mass dependence of the energy loss

- * Heavy quarks are produced in large virtuality process at the initial stage of the collisions, with short formation time. $\Delta t > 1/m_c \approx 0.1 \text{ fm} << \tau_{\text{QGP}} 5 - 10 \text{ fm}$
- * Gluon radiation of heavy quarks is suppressed due to the introduction of a mass term in the propagator:

***** Dead cone effect

 Energy distribution of radiated gluons is suppressed by an angle-dependent factor: heavy quarks might lose less energy in the medium?
 Dokshitzer, Khoze, Troyan, JPG 17 (1991) 1602. Dokshitzer and Kharzeev, PLB 519 (2001) 199.

$\Delta E(\text{light}) > \Delta E(c) > \Delta E(b) \rightarrow R_{AA}(\pi) < R_{AA}(D) < R_{AA}(B)$

D. Caffarri (CERN), IFAE 2015, 09/04/15

Wicks, Gyulassy, "Last Call for LHC Predictions" workshop, 2007

* First D R_{AA} measurement in heavy-ion collisions.

* Strong suppression observed: * ~ factor 5 for p_T ~ 10 GeV/c * possible rise at high-p_T?

* First D R_{AA} measurement in heavy-ion collisions.

* Strong suppression observed: * ~ factor 5 for p_T ~ 10 GeV/c * possible rise at high-p_T? * stronger suppression for more central events

* First D R_{AA} measurement in heavy-ion collisions.

* Strong suppression observed: * ~ factor 5 for p_T ~ 10 GeV/c * possible rise at high-p_T? * stronger suppression for more central events

* For p_T > 5 GeV/c similar
suppression for D mesons and
pions

* First D R_{AA} measurement in heavy-ion collisions.

- * Strong suppression observed:
 * factor 5 for p_T 10 GeV/c
 * possible rise at high-p_T?
 * stronger suppression for more central events
- * For p_T > 5 GeV/c similar
 suppression for D mesons and
 pions
- *For $p_T < 5 \text{ GeV}/c$ uncertainties are too large to conclude on possible energy loss mass effect

D mesons and non prompt J/ψ

* ALICE D-mesons results compared with CMS non-prompt J/ψ in a similar kinematic range:
* central rapidity region
* B and D mesons <p_T> -10 GeV/c

* Indication of larger suppression for D mesons than B mesons: * $R_{AA}(B) > R_{AA}(D)$

D mesons and non prompt J/ψ

* ALICE D-mesons results compared with CMS non-prompt J/ψ in a similar kinematic range:
* central rapidity region
* B and D mesons <p_T> -10 GeV/c

- ★ Indication of larger suppression for D mesons than B mesons:
 ★ $R_{AA}(B) > R_{AA}(D)$
- Models that include mass dependence of the energy loss predict a difference in the R_{AA} of D and B mesons

D mesons: control experiment

* ALICE D-mesons R_{pPb} compatible with unity.
 * The D mesons suppression observed in central Pb-Pb collisions comes from hot nuclear matter effects.

D. Caffarri (CERN), IFAE 2015, 09/04/15

D mesons: control experiment

***** ALICE D-mesons R_{pPb} compatible with unity.

- * The **D** mesons suppression observed in central Pb-Pb collisions comes from hot nuclear matter effects.
- * Models including CNM effects (both saturation and shadowing can describe the data)

D. Caffarri (CERN), IFAE 2015, 09/04/15

15
- * QGP signature proposed by Matsui and Satz in 1986.
- * In the plasma phase the interaction potential is expected to be screened beyond the Debye length λ_D (analogous to the e.m. Debye screening).
- * Charmonium and bottomonium states with $r > \lambda_D$ will not bind, expected suppressed production.
- * ... but if many charm pairs are produced, uncorrelated c quarks from the medium could bind at the hadronization of the system and form charmonium.

Matsui, Satz, PLB178 (1986) 416

	SPS 20 GeV	RHIC 200 GeV	LHC 2.76 TeV
Ncc	-0.1	-10	-100

- ***** At the low- $p_T (p_T > 0)$:
 - * ALICE observes a constant suppression vs centrality.
 - * The suppression is smaller than what was observed at RHIC:
 - * predicted signature for regeneration

- ***** At the low- $p_T (p_T > 0)$:
 - * ALICE observes a constant suppression vs centrality.
 - * The suppression is smaller than what was observed at RHIC:
 - * predicted signature for regeneration

- ***** At high- p_T ($p_T > 6.5 \text{ GeV/c}$) :
 - * CMS observed a suppression for J/ψ with $p_T > 6.5$ GeV/c.
 - * Similar (but slightly smaller) suppression than at RHIC.

- * At the low- $p_T (p_T > 0)$:
 - * ALICE observes a constant suppression vs centrality.
 - * The suppression is smaller than what was observed at RHIC:
 - * predicted signature for regeneration

Regeneration involves mainly low-p_T charm quarks? Charm quarks take part in the evolution of the system?

* Models that include recombination of charm quark in a deconfined system can describe J/ψ suppression.

Quarkonia in pPb

18

- * Differently from open HF, J/ ψ production is sensitive to cold nuclear matter effects:
- * at forward rapidity the J/ψ
 production is suppressed by about 20%
- * models including shadowing and coherent energy loss

Conclusions

***** "Color less" probes don't interact with the medium

- *** High-pT particles are suppressed** also at *p*_T > 20 GeV/c
 * Compatible with models that include gluon radiative energy loss
- ***** Jet quenching observed at event-by-event level
 - **quenched energy radiated out of the jet cone at large angles** via low-p_T particles
- * D mesons are more suppressed than non-prompt J/ ψ in central Pb-Pb collisions. This can be explained by models that include mass dependent energy loss.
- $* J/\psi$ seems to be:
 - * "regenerated" at low-pT?
 - * suppressed at high-p_T
- * For (almost) all hard probes the pA results indicate that are not much affected by initial state effects
 - * Only J/ψ is affected in particular in forward region.

Backup

The ALICE experiment

ITS

Central barrel: |η| < 0.9 Tracking Detectors: ITS - TPC PID: TOF - HMPID Calo/PID: EMCAL - TRD

Muon spectrometer: -4 < η < -2.5 μ -ID via tracks matched between tracking and trigger system

Trigger and centrality determination detector in forward region.

From single particles to jets...

* Jets can be used as a tool to understand where the radiated energy went.

***** In cone radiation:

- * particles would be quenched inside the jet increasing his "area": jet broadening
- ***** Out of cone radiation:
 - * particles would be emitted outside of the jet cone, suggesting a R_{AA jets} < 1</pre>

From single particles to jets...

* Jets can be used as a tool to understand where the radiated energy went.

***** In cone radiation:

* particles would be quenched inside the jet increasing his "area": jet broadening

***** Out of cone radiation:

* particles would be emitted outside of the jet cone, suggesting a R_{AA jets} < 1</pre>

* Measured R_{AA jets} < 1 !!
* Energy radiated at large angles, outside
the jet</pre>

Jet shape modification

- Jet fragmentation function
 energy distribution of particles within the jet
- * Expectations from parton energy loss: fragmentation should get softer
 - * Depletion at high-z
 - * Enhancement at low-z

Jet shape modification

* Jet fragmentation function measured at the LHC

functions in PbPb collisions!

Jet-boson (γ , Z) correlation

* E^s = E^{jet} Direct measurement of total jet energy
 * First measurement of s-jet pT imbalance pT^{jet} / pT^s

- * Large imbalance observed in central collisions!
- * With future LHC runs:
 - very precise measuement of medium modified fragmentation functions
 - Pifferential studies as a function of event geometry and shape

Di-jet azimuthal correlations

* No visible angular de-correlation in $\Delta \varphi$ wrt pp collisions

* Large imbalance on jet energy but small effect on jet direction.

Jet R_{AA}: control experiment

* Jets R_{pPb} measured by ALICE shows consistency with R_{AA} = 1
 * Jets R_{AA} suppression measured in Pb-Pb collisions is a medium effect

Di-jet energy imbalance: control experiment

- In p-Pb collisions no significant difference wrt pp collisions for di-jet events
- * No significant imbalance for high-pT di-jets in p-Pb collisions
- * Di-jet imbalance observed in Pb-Pb collisions is an effect of the medium

CMS, PLB712(2012) 176 CMS, PAS HIN 13-001

 Caveat: instead of A_j here the ratio of the two jets pT is considered

How to measure heavy quarks?

- Leptons (e, μ) from semileptonic decays of hadrons containing heavy quarks.
 - Inclusive measurement (i.e. cannot distinguish between charm and beauty decay)
 - * Larger BR for those chan exclusive reconstruction
 - Broad correlation betwe and hadron.

Fully reconstructed D mesons:
Exclusive measurement (charm only !)
Secondary vertex reconstruction important to reduce the background!
Vertex detector !!

Primary Vertex

D mesons in ALICE

* Displaced vertex topology used in the reconstruction.

* Inner Tracking System with 6 Si layers: two pixels layers at 3.9 and 7 cm

* Impact parameter resolution ~60µm for pT = 1 GeV/c

How to measure heavy quarks?

- * Non-prompt J/ψ from B hadron decays.
 - * First "direct" beauty measurement
 - * Exploit the displacement of J/ψ of -hundreds μm in the transverse plane.
 - *Simultaneous fit of pseudo-proper decay length (L_{xy}) and invariant mass.

- * Isolate the contribution of electrons coming for B hadrons using the larger impact parameter.
- * Fit of the different component in the impact parameter distributions.

HF electrons @ LHC

* Inclusive measurement (c+b) using electrons and muons

HF electrons @ LHC

Inclusive measurement (c+b) using electrons and muons
 Displaced electrons coming from B hadron decays

- * Clear suppression also for HF leptons at the LHC.
 - * Rise at high pT? Need more stat.

* Suppression also for HFe from B decays but systematics still large to conclude

Heavy flavour v₂

- * Low-pT: do heavy quarks take part in the collectivity?
 - * Due to their large mass they should "feel" less the collective expansion
- High-pT" probe the path length dependence of the heavy quarks energy loss

J. Aichelin et al. in arXiv:1201.4192

J. Uphoff et al. in arXiv:1205.4945

2

Heavy flavour v₂

- Z.Conesa (ALICE), NPA 904-905 (2013) 178c
- What is the origin of this v2? charm quark flow?
 Important precision measurement with future runs
 Do beauty quarks show similar pattern?

R_{AA vs} Event Plane

* Larger suppression if quarks has to travel in a larger "part" of matter.

Ds in PbPb collisions

- * Abundance of strange quarks in the QGP (strangeness enhancement)
- Large D_s enhancement expected if c quarks recombine in the QGP (recombination/coalesence models)

M. He et al. arXiv:1204.4442

Ds in PbPb collisions

- From the experimental point of view is quite difficult to measure the Ds
 - ***** ct ~ 150µm
 - very high combinatorial background
- * First measurement (ALICE):
 - Ds seems to be less suppressed than other D mesons but data are not conclusive.
 - * Need next LHC run!

D mesons observables: models comparisor

	P_{T} (Gev	ALI-PUB-70164			P_{T} (GeV/C)	
		HQ production	Medium Modeling	Heavy quarks interactions	Hadronization	
	WHDG (AIP Conf Proc. 1441 (2012) 889	FONLL, no shadowing	Glauber model collision geometry, no hydro evolution	radiative + collisional energy loss	fragmentation	
	POWLANG (J. Phys. G 38 (2011) 124144)	POWEG (NLO) + EPS09 shadowing	2+1d expanding medium with viscos hydro evolution	HQ transport (Langevin) + collisional energy loss	fragmentation	
	Cao, Quin, Bass (Phys Rev C 88 (2013) 044907)	LO pQCD + EPS09 shadowing	2+1d expanding medium with viscous hydro evolution	HQ transport (Langevin) + quasi elastic scattering + radiative energy loss	recombination + fragmentation	
n	MC@sHQ+EPOS2 (Phys Rev C 89 (2014) 014905)	FONLL, no shadowing	3+1d fluid dynamical expansion (EPOS)	HQ transport (Boltzmann) + radiative + collisional energy loss.	recombination + fragmentation	
	BAMPS (Phys Lett B 717 (2012) 430)	MC@NLO, no shadowing	3+1d fully dynamic parton transport model	HQ transport (Boltzmann) + collisional energy loss	fragmentation	
	TAMU elastic (arXiv:1401.3817)	FONLL + EPS09 shadowing	transport + 3+1d ideal hydro evolution	HQ transport (Langevin) + collisional energy loss + diffusion in hadronic phase	recombination + fragmentation	
	UrQMD (arXiv:1211.6912)	PYTHIA, no shadowing	3+1d ideal hydro evolution	HQ transport (Langevin) + collisional energy loss	recombination + fragmentation	

XXIV QUARK MA

Bottomonia at LHC

* Very good muon reconstruction and momentum resolution to allow Y states discrimination.

Bottomonia at LHC

- * Very good muon reconstruction and momentum resolution to allow Y states discrimination, in both pp and PbPb collisions.
- * Clear suppression of the excited Y states that are less bounded than the Y(1S) one.

CMS, arXiv:1208.2826 and PRL 109 (2012) 222301

-onia suppression at LHC

- * Putting all quarkonia results together from the CMS experiment:
 - Excited states are always more suppressed than the ground state.
 Is really binding energy driving the guarkonia suppression?
 - Important caveats:
 centrality and pT ranges
 - * regenerations
 - initial state effects (pA!!)

J/ψ in pA collisions

- J/ψ production in pA collisions measured by the ALICE and LHCb detectors.
 Both of them are "asymmetric" detector for what concerns J/ψ reconstruction.
- * Pata collected in two configurations:
 - * p-Pb:
 - * p going through the muon arm (forward direction)
 - * x investigated:
 - * Pb-p:
 - * Pb going though the muon arm (backward direction)
 - * x investigated:

J/ψ in pA collisions

- Pifferently from open HF, J/ψ production is sensitive to cold nuclear matter effects:
 - * at forward rapidity the J/ψ production is suppressed by about 20%
 - * models including shadowing and coherent energy loss

J/ψ in pA collisions

- Pifferently from open HF, J/ψ production is sensitive to cold nuclear matter effects:
 - * at forward rapidity the J/ψ production is suppressed by about 20%
 - * models including shadowing and coherent energy loss
 - * at forward rapidity the suppression seems to be driven by low-pT J/ ψ
 - * at backward rapidity the slight enhancement seems to be driven by high-pT J/ψ

When we consider all data together...

- * Evaluate CNM effects with pA data:
 - * $2 \rightarrow 1$ kinematics for J/ψ production
 - * CNM effects factorize in pA
 - CNM evaluated as R_{pA} x R_{Ap} since the x coverage is similar as PbPb
- * CNM effects don't explain the suppression observed at high-pT, that it is then coming from hot medium effects.
- * Clear pT trend observed when considering the ratio of the RAA in the two collisions system:
 - * suppression at high-pT
 - * enhancement at low-pT

Y production in p-Pb

- * Y production in p-Pb collisions measured by ALICE and LHCb at forward rapidity, by CMS at midrapidity.
 - * Similar suppression for Y(1S) at forward and backward rapidity, even if LHCb data systematically higher than ALICE ones
 - In p-Pb collisions excited Y states suppressed with respect to pp collisions.
 - Similar effects for the Y(2S) and Y(3S) with respect to the ground state.

$\psi(2S)$ in pPb

- R_{pPb} multiplicity and momentum integrated:
 - Both backward and forward rapidity clear suppression observed. Final state effect?

ψ(2S) measured in
forward rapidity region
2.03 < y_{CMS} < 3.53 (forward)
-4.46 < y_{CMS} < -2.96 (backward)
p_T > 0