

Studio della produzione di particelle "light-flavoured" e delle loro correlazioni in eventi ad alta molteplicità a LHC

Roberto Preghenella per la Collaborazione ALICE Istituto Nazionale di Fisica Nucleare CERN

Incontri di Fisica della Alte Energie (IFAE 2015) Roma, Università di Roma Tor Vergata 8-10 Aprile 2015

Il rivelatore ALICE

un esperimento dedicato alla fisica "heavy-ion" a LHC disegnato per studi ad altissima molteplicità Pixel Strip Drift ACORDE $dN_{ch}/d\eta \le 8000$ tracciamento 3D (TPC) ITS FMD EMCAL T0 & V0 V0 TRD TO HMPID TRACKING FMD CHAMBERS PMD MUON FILTER VO TO TRIGGER TPC CHAMBERS ZDC 116m from I.P. TOF DIPOLE MAGNET PHOS ABSORBER

utilizza tutte le tecniche di PID conosciute

Uno zoo di particelle

ALICE ha misurato la produzione di un gran numero di particelle, risonanze e nuclei e anti-particelle/nuclei

Fenomeni collettivi

la materia creata in collisioni di ioni pesanti ad alta energia può essere descritta tramite modelli idrodinamici

- fase partonica calda e densa in rapida espansione
- si sviluppano flussi collettivi e il sistema si raffredda
- transizione di fase (adronizzazione) quando è raggiunta la T_{critica}

che comporta

- time Freeze Ou Beam Rapidi Mixed Phi QGP Pre-Equilibrium Phase ($< \tau_0$)
- <u>dipendenza della forma degli spettri in p_T dalla massa della particella</u>
 caratteristica anisotropia azimutale (anisotropia spaziale iniziale)

Produzione di particelle in Pb-Pb

chiara evoluzione degli spettri in p_T → "hardening" maggiormente pronunciato per i protoni dipendenza dalla massa come previsto in espansione idrodinamica collettiva

Roberto Preghenella

ALICE, PRC 88 (2013) 044910

Fenomeni collettivi

la materia creata in collisioni di ioni pesanti ad alta energia può essere descritta tramite modelli idrodinamici

- fase partonica calda e densa in rapida espansione
- si sviluppano flussi collettivi e il sistema si raffredda
- transizione di fase (adronizzazione) quando è raggiunta la T_{critica}

che comporta

- dipendenza della forma degli spettri in p_T dalla massa della particella
- caratteristica anisotropia azimutale (anisotropia spaziale iniziale)

Flusso anisotropo in Pb-Pb

anisotropia spaziale (geometria collisione) \rightarrow anisotropia nello spazio degli impulsi: V_2

 v₂ connesso alle proprietà della fase partonica deconfinata viscosity over entropy-density (η/s) del mezzo caldo e denso

*v*₂ misurato per π[±], K[±], K⁰_S, p, φ, Λ, Ξ, Ω

"mass ordering" attribuito alla velocità di espansione radiale comune

7

Fenomeni collettivi

la materia creata in collisioni di ioni pesanti ad alta energia può essere descritta tramite modelli idrodinamici

- fase partonica calda e densa in rapida espansione
- si sviluppano flussi collettivi e il sistema si raffredda
- transizione di fase (adronizzazione) quando è raggiunta la T_{critica}

che comporta

- dipendenza della forma degli spettri in p_T dalla massa della particella
- caratteristica anisotropia azimutale (anisotropia spaziale iniziale)

esistono effetti simili anche in piccoli sistemi ?

Roberto Preghenella

e sa

х

Correlazioni a due particelle

osservazione di una struttura

long-range $(2 < |\Delta \eta| < 4)$, **near-side** $(\Delta \varphi \approx 0)$

nelle correlazioni angolari in eventi p-Pb ad alta molteplicità

ll "ridge"

long-range $(2 < |\Delta \eta| < 4)$, **near-side** $(\Delta \varphi \approx 0)$

simile alla struttura denominata "ridge" osservata in Au-Au interpretazione: dovuto a presenza di fenomeni collettivi

Roberto Preghenella

STAR, PRC 80 (2010) 064912

ll "ridge"

long-range $(2 < |\Delta \eta| < 4)$, **near-side** $(\Delta \varphi \approx 0)$

struttura osservata anche in eventi pp ad alta molteplicità in realtà è stata osservata prima in pp che in p-Pb

CMS, JHEP 09 (2010) 091

Il "double ridge"

l'osservazione del ridge in p-Pb ha stimolato **ulteriori idee** <u>rimozione del contributo da jet:</u> sottrazione degli eventi a bassa molteplicità rivelata la presenza di una struttura **"double ridge"**

Roberto Preghenella

ALICE, PLB 719 (2013) 29

Un vero fenomeno collettivo

 v_2 rimane grande anche quando calcolato con più particelle $v_2{4} = v_2{6} = v_2{8} = v_2{LYZ}$ differente sensibilità ad effetti non collettivi c'è della reale collettività in p-Pb

v₂ di particelle identificate in p-Pb

Roberto Preghenella

ALICE, arXiv:1405.4632 [nucl-ex]

v₂ di particelle identificate in p-Pb

Produzione di particelle in p-Pb

Blast-Wave

hydro-motivated fit thermal sources expanding with common velocity

EPOS LHC

full event generator with hydro evolution

Krakow

3+1 viscous hydro

DPMJET pQCD based

migliore descrizione fornita dai modelli che includono effetti idrodinamici collettivi

Roberto Preghenella

ALICE, PLB 728 (2014) 25

16

Rapporti barione-mesone in p-Pb

significativa dipendenza dalla molteplicità: arricchimento a *p*_T intermedio con l'aumentare della molteplicità corrispondente svuotamento nella regione a basso *p*_T reminiscente dei fenomeni osservati in A-A

generalmente compresi in termini di moti collettivi / ricombinazione di quark

Roberto Preghenella

ALICE, PLB 728 (2014) 25

Rapporto p/ф

rapporto barione/mesone:

p: 938 MeV/c² φ: 1018 MeV/c²

qqq $q\bar{q}$

le forme degli spettri sono molto simili se particelle hanno masse simili rapporto p/φ è costante

i dati sembrano indicare che sia la massa della particella il parametro principale che definisce la forma dello spettro

(come previsto da idrodinamica)

ALICE, arXiv:1404.0495 [nucl-ex]

Flusso radiale collettivo in p-Pb

modello "Blast-Wave"

ispirato da idrodinamica caratterizzare spettri in $p_{\rm T}$ e testare ipotesi flusso radiale

spettri da sorgenti termiche T_{kin} espansione con velocità comune $\langle \beta_T \rangle$ *Schnedermann et al., PRC 48 (1993) 2462*

> fit coerente su tutti gli adroni stabili $\pi K K^0_S p \Lambda \Xi \Omega$

buona descrizione dei dati

Blast-Wave fit parameters

p-Pb mostra caratteristiche simili a Pb-Pb parametri evolvono con la molteplicità: $\langle \beta_T \rangle$ aumenta, T_{kin} diminuisce

Blast-Wave fit parameters

anche le collisioni pp mostrano caratteristiche simili analisi Blast-Wave non conclusiva, necessaria ulteriore investigazione

Produzione di stranezza in Pb-Pb

Roberto Preghenella

arricchimento della stranezza

una delle prime caratteristiche distintive proposte per l'osservazione del QGP *Rafelski, PRL 48 (1982) 1066*

chiaro aumento della produzione di stranezza in funzione di N_{part} (ovvero 〈N_{ch}〉) in collisioni Pb-Pb rispetto a collisioni pp

saturazione per N_{part} > 150 **in accordo con le previsioni dei modelli di produzione statistica (insieme Gran Canonico)** GSI-Heidelberg: T_{ch} = 164 MeV THERMUS: T_{ch} = 170 MeV

ALICE, PLB 728 (2014) 216

Produzione di stranezza in p-Pb

anche in p-Pb i rapporti $\Xi/\pi e \Omega/\pi$ aumentano con $\langle N_{ch} \rangle$

bassa molteplicità $\Xi \in \Omega \rightarrow \text{consistenti with pp}$ alta molteplicità $\Xi \rightarrow \text{compatibile con Pb-Pb centrale}$ $\Omega \rightarrow \text{compatibile con Pb-Pb periferico}$

evoluzione con la dimensione / molteplicità del sistema

evoluzione con la dimensione / molteplicità del sistema

da sistemi di collisione piccoli (pp), intermedi (p-Pb) a grandi (Pb-Pb)

Conclusione

studio dettagliato delle proprietà della materia QCD calda

caratteristiche distintive di effetti dovuti a fenomeni collettivi in Pb-Pb

la produzione di particelle in collisioni p-Pb mostra caratteristiche simili a quelle osservate in Pb-Pb

flusso ellittico non nullo, dipendenza dalla massa negli spettri in p_T necessarie ulteriori investigazioni per stabilire la presenza di fenomeni collettivi in piccoli sistemi di collisione

la produzione di particelle evolve aumentando la dimensione / molteplicità del sistema di collisione

aumento della produzione di stranezza e di deutoni soppressione di barioni e risonanze K*

molti altri risultati dal Run-1 e un futuro promettente

nuovi dati in arrivo e ulteriori idee da testare con il Run-2 di LHC

Bologna, sala Ulisse, Accademia delle Scienze 26 - 27 maggio, 2015

INCONTRO SULLA FISICA CON IONI PESANTI A LHC

I risultati del Run1 a LHC hanno permesso di studiare le caratteristiche del plasma prodotto in collisioni tra nuclei pesanti usando diverse variabili. Lo studio delle collisioni protone-nucleo e protone-protone hanno inaspettatamente messo in evidenza possibili effetti collettivi . Le collisioni ultra-periferiche hanno rappresentato una sfida per gli esperimenti ed hanno fornito informazioni sulle PDF dei nuclei. Con il Run2 e con l'aumento di luminosità previsto per i Run3 e Run4 si aprono nuove possibilità di misura per meglio comprendere la QCD in condizioni estreme. Questo incontro vuole rafforzare e stimolare la discussione fra fisici teorici e sperimentali impegnati in questa fisica per definire meglio gli obiettivi delle analisi e degli sviluppi teorici per i prossimi anni.

Comitato organizzatore:

- P. Antonioli
- S. Arcelli
- R. Nania (chair)
- E. Scapparone
- B. Simoni (scientific secretariat)

http://www.bo.infn.it/incontroionipesanti/

Identificazione di particelle

Identificazione di particelle

Roberto Preghenella

ALICE, arXiv:1404.0495 [nucl-ex]

Rapporti barione-mesone in Pb-Pb

Rapporti Λ/K⁰_S and p/π sono arricchiti rispetto a pp già osservato a energie inferiori

pp / Pb-Pb periferico \rightarrow Pb-Pb centrale: il massimo aumenta e si sposta verso p_T maggiori

Da dove vengono i barioni extra?

i barioni extra non sono prodotti nei jet

Roberto Preghenella

Zhang, arXiv:1408.2672 [hep-ex]

Flusso anisotropo: protone e φ

anisotropia spaziale (geometria collisione) \rightarrow anisotropia nello spazio impulsi: V₂

il mesone φ si comporta come un protone

la massa determina sia v_2 che lo spettro in p_T

ALICE, arXiv:1405.4632 [nucl-ex]

rapporti di produzione di particelle in collisioni pp

non mostrano una significativa dipendenza dall'energia nel c.m.

