

"Ricerca di particelle a lunga vita media nell'esperimento ATLAS"

Monica Verducci INFN Roma & CERN

Le Particelle a Lunga Vita Media

- L'esistenza di particelle a lunga vita media (LLP) e' predetta da una vasta gamma di modelli e teorie di nuova fisica:
 - * Hidden Sectors, RPV violating decays, Split-SUSY, AMSB, GMSB, etc.
- Numerose analisi in Run1, per sondare tutte le possibili segnature sperimentali, utilizzando tecniche di analisi innovative e il più possibile indipendenti dai modelli teorici.
- * In generale, i fondi dovuti a eventi di Modello Standard (MS) sono trascurabili, mentre i fondi strumentali sono dominanti.
- * Tutte le ricerche richiedono una **profonda comprensione del rivelatore**:
 - materiale inerte
 - allineamento
 - calibrazione temporale
 - fondi da eventi di non-collisione

Topologie vs. Modelli

Hidden Sector & Valley

Effetti o particelle di nuova fisica potrebbero non essere ancora state osservate a LHC sia perché ad una scala di energia non ancora accessibile, oppure perché nascoste in settori separati dal Modello Standard e solo debolmente accoppiati con quest'ultimo.

- I Modelli con "Hidden Sectors" rappresentano una classe di teorie che predicono l'esistenza di particelle neutre sotto MS a lunga vita media.
 - Queste sono accoppiate con il MS attraverso dei comunicatori (Higgs, Z'...),
 - * Lightest Stable Particle (LSP) può decadere nel MS.
 - caratteristiche comuni nei diversi modelli:
 - * lunghe vite medie
 - segnature complicate e non standard.

Hidden Valley LLP neutre → Jets

- Ricerca di decadimenti di particelle "Hidden" in jets adronici.
 - Previsti in modelli Hidden Valley con comunicatori tipo Higgs, Z', ... e da modelli stealth-SUSY.
 - Diversi stati finali corrispondo a differenti metodologie di analisi:
 - Analisi MS-ID: specializzata per decadimenti nel tracciatore interno o nello spettrometro a muoni.
 - Analisi CaloRatio: specializzata per decadimenti all'interno dei calorimetri

5

JINST 8 (2013) P07015 JINST 9 (2014) P02001

MS-ID: Selezione

Decadimenti di particelle "hidden" nello spettrometro a muoni o nel tracciatore interno.

- Selezione degli eventi via identificazione di coppie di vertici nello spettrometro, nell'ID o in entrambi:
 - Due triggers dedicati:
 - **MS: Muon RoI.** Cluster di muoni di L1 in un cono 0.4, assenza di tracce e attività calorimetrica.
 - **ID: Jet+MET (Energia mancante trasversa).** Ottimizzato per attività multijets con mediatore Z'.
 - Algoritmi di ricostruzione vertici lontani dal vertice primario (displaced) nell'ID e nello spettrometro a muoni.

Channel	Channel Applicable topologies	
Muon Cluster	IDVx+MSVx, 2MSVx	Scalar boson Stealth SUSY
$\text{Jet}+E_{\text{T}}^{\text{miss}}$	2IDVx, IDVx+MSVx, 2MSVx	Z'

MS-ID: Sistematiche e Fondi

- La sistematica dovuta alla ricostruzione di vertici nell'ID e nello spettrometro a muoni costituisce la sistematica dominante.
 - * ID: decadimenti di K_s^0 in regioni di controllo multijets.
 - * MS: Jets nel calorimetro che creano showers nello spettrometro.
 - * JES, ISR, pile-up, PDF sono state inoltre considerate.
- Fondi dominanti: multijets, cosmici e fondi di macchina.

Fondi stimati

Table VIII. Number of events predicted for different finalstate topologies.

Channel	Topology	Predicted
$Jet + E_T^{miss}$	2IDVx	$(1.8 \pm 0.4) \cdot 10^{-4}$
$Jet + E_T^{miss}$	IDVx+MSVx	$(5.5 \pm 0.9) \cdot 10^{-4}$
$Jet + E_T^{miss}$	2MSVx	$(0.0^{+1.4}_{-0.0}) \times 10^{-5}$
Muon Cluster	IDVx+MSVx	2.0 ± 0.4
Muon Cluster	2MSVx	$0.436^{+0.052}_{-0.002}$

Table VI. Summary of the systematic uncertainties on displaced vertex reconstruction efficiencies in the ID and MS.

ma [CaV]	IDV#	M	SVx	
<i>m</i> _⊉ [Gev]	$m_{\pi_{\mathbf{v}}} [\text{Gev}]$	IDvx	barrel	endcaps
100	10	2.7%	6.8%	11.2%
100	25	2.1%	6.4%	10.4%
125	10	2.5%	7.0%	9.9%
125	25	2.5%	6.8%	9.7%
125	40	2.4%	6.5%	8.0%
140	10	2.7%	7.0%	9.6%
140	20	2.7%	6.6%	9.6%
140	40	1.6%	6.6%	7.9%
300	50	2.7%	6.9%	6.3%
600	50	2.9%	6.8%	5.4%
600	150	3.1%	6.6%	4.0%
900	50	3.5%	6.6%	5.7%
900	150	3.0%	5.9%	3.8%
]	$C_{2}V$	IDV	M	SVx
$m_{\tilde{g}}$ [Gev	IDvx	barrel	endcaps
1	10	3.8%	5.6%	4.0%
2	50	2.3%	5.8%	3.8%
5	00	2.4%	6.3%	3.8%
8	00	2.7%	6.5%	3.5%
12	200	1.5%	6.6%	3.8%
		IDV-	M	SVx
$m_{Z'}$ [IeV]	m_{π_v} [GeV]	IDvx	barrel	endcaps
1	50	2.5%	6.8%	6.3%
2	50	2.6%	7.0%	6.6%
2	120	2.2%	6.6%	5.2%

7

MS-ID: Risultati

arXiv:1501.04020

CaloRatio: Selezione

Decadimenti di due particelle "hidden" all'interno del calorimetro adronico.

Selezione degli eventi via:

- **Un trigger dedicato** per selezionare un jet isolato (assenza di tracce nel tracciatore interno) con poca energia nel calorimetro elettromagnetico.
- * A livello offline si richiede per ogni evento:
 - * MET< 50 GeV

esattamente due jets con:

- Il jet selezionato dal trigger deve avere ET>60 GeV l'altro ET >40 GeV
- * no tracce > 1.0 GeV in un cono di 0.2 intorno al jet

* log10 (Eh/Eem) >1.2

* |eta| <2.5 e -1 ns <t< 5 ns

arXiv:1501.04020

CalRatio: Fondi dell'analisi

10

* Eventi di SM multijet

- * Fondo dominante
- Studiato con il metodo tag-and-probe su un campione selezionato con un trigger indipendente

*Eventi di raggi cosmici

- * Piccolo contributo
- Ridotto dal taglio su ETmiss e il timing del jet

Eventi di Beam halo

- * Piccolo contributo
- Ridotto dagli stessi tagli utilizzati per i cosmici, in aggiunta ad un trigger dedicato e a tagli di Data Quality.

arXiv:1501.04020

CalRatio: Sistematiche considerate

- La sistematica dominante proviene dalla incertezza sulla sezione d'urto di produzione dell'Higgs.
- * Le sistematiche di Pile-up e Trigger sono state estratte dal confronto diretto dati vs MC usando campioni di multi-jets.
- * La sistematica di JES (Jet energy scale) e' stata calcolata in funzione della EMF (Frazione di energia elettromagnetica del jet) ed eta del jet, confrontando campioni di multi-jets in dati e MC.
- * (*) Systematic errors that have common values across samples are not listed (Pile-up at 10%, ISR at (+2.9, -1.2)%, and PDF at 2.1%). The last column reports the overall systematic uncertainty (including the luminosity and common systematic errors).

Sample m_H, m_{π_v} [GeV]	Η σ [%]	JES [%]	Trigger [%]	$\begin{bmatrix} E_{\rm T}^{\rm miss} \\ [\%] \end{bmatrix}$	TimeCut[%]	Total [%] (*)
$ 126, 10 \\ 126, 25 \\ 126, 40 $	$ \begin{array}{r} +10.4 \\ -10.4 \\ +10.4 \\ -10.4 \\ +10.4 \\ -10.4 \\ \end{array} $	$ \begin{array}{r} +2.2 \\ -2.7 \\ +1.5 \\ -1.6 \\ +2.6 \\ -6.2 \\ \end{array} $	$ \begin{array}{c c} \pm 1.1 \\ \pm 1.3 \\ \pm 1.1 \end{array} $	$ \begin{array}{r} +5.5 \\ -2.4 \\ +3.1 \\ -1.8 \\ +7.7 \\ -4.6 \end{array} $	$ \begin{array}{r} +1.6 \\ -6.6 \\ +0.8 \\ -3.3 \\ +1.9 \\ -5.9 \\ \end{array} $	$ \begin{array}{r} +16.4 \\ -16.7 \\ +15.6 \\ -15.5 \\ +18.2 \\ -16.9 \\ \end{array} $
Sample $m_{\Phi}, m_{\pi_{v}}$ [GeV]	$\Phi \sigma$ [%]	JES [%]	Trigger [%]	$\begin{array}{c} E_{\rm T}^{\rm miss} \\ [\%] \end{array}$	Time Cut [%]	Total [%]
$ \begin{array}{c} 100, 10 \\ 100, 25 \end{array} $	$+11.1 \\ -10.6 \\ +11.1 \\ -10.6$	$+2.3 \\ -4.0 \\ +5.5 \\ -3.7$	$\pm 0.1 \\ \pm 1.2$	$+4.6 \\ -3.4 \\ +3.4 \\ -2.5$	$+2.7 \\ -9.5 \\ +1.7 \\ -0.7$	$+16.7 \\ -18.5 \\ +17.0 \\ -15.8$
$ \begin{array}{c} 140, 10 \\ 140, 20 \\ 140, 40 \end{array} $	$+10.1 \\ -10.3 \\ +10.1 \\ -10.3 \\ +10.1 \\ -10.3$	$+0.6 \\ -1.1 \\ +1.2 \\ -1.6 \\ +1.3 \\ -1.6$	$\pm 0.5 \\ \pm 1.0 \\ \pm 1.5$	$+4.0 \\ -5.6 \\ +4.0 \\ -3.9 \\ +6.3 \\ -4.6$	$+1.9 \\ -6.6 \\ +0.4 \\ -5.0 \\ +1.8 \\ -2.4$	$+15.6 \\ -17.2 \\ +15.5 \\ -16.2 \\ +16.5 \\ -15.8$
300, 50	$+9.6 \\ -10.0$	$^{+0.1}_{-0.3}$	± 0.3	$+9.0 \\ -7.4$	$^{+0.5}_{-3.0}$	$+13.9 \\ -13.3$
600, 50 600, 150	$+11.2 \\ -10.1 \\ +11.2 \\ -10.1$	$+0.0 \\ -0.1 \\ +0.2 \\ -0.2$	$\pm 0.2 \\ \pm 0.3$	$+11.7 \\ -11.3 \\ +11.5 \\ -10.2$	$+2.2 \\ -4.4 \\ +2.7 \\ -5.3$	$+17.0 \\ -16.2 \\ +17.5 \\ -15.1$
900, 50 900, 150	$+12.8 \\ -11.5 \\ +12.8 \\ -11.5$	$+0.0 \\ -0.1 \\ +0.2 \\ -0.3$	$\pm 0.1 \\ \pm 0.2$	$+12.6 \\ -9.7 \\ +11.8 \\ -10.9$	$+1.0 \\ -3.7 \\ +0.9 \\ -2.5$	$+18.5 \\ -15.9 \\ +18.1 \\ -16.3$

11

CalRatio: Risultati ottenuti con 20.3 fb⁻¹

arXiv:1501.04020

MC sample	Excluded range	Excluded range
m_H, m_{π_v}	$30\% \text{ BR } H \to \pi_{v}\pi_{v}$	$10\% \text{ BR } H \to \pi_{\rm v} \pi_{\rm v}$
[GeV]	[m]	[m]
126, 10	0.10 - 6.08	0.14 - 3.13
126, 25	0.30 - 14.99	0.41 - 7.57
126, 40	0.68 - 18.50	1.03 - 8.32

Hidden Sector: i Dark Photons

I Modelli con "dark photon" sono estremamente interessanti in ATLAS:

- parte dei parametri accessibile ancora inesplorata,
- connessione con la materia oscura: la materia oscura può nascondersi nell'Hidden Sector?

Il modello teorico più semplice, rinormalizzabile, e accoppiabile con il Modello Standard, prevede:

- nuova simmetria di gauge Gd = Ud(1)
- principale connessione via mixing cinetico, controllato dal parametro ε che fissa intensità dell'interazione.

arXiv:1409.0746

Lepton-Jets: "displaced vertex"

- LJ e' definito come un "cluster" di particelle molto collimate: elettroni, muoni e pioni originate da N "dark photons" prodotti con un grande boosts → coppie di leptoni/adroni in un cono con ΔR molto stretto.
- * LJs sono predetti in modelli con presenza di particelle leggere instabili (masse dell'ordine del MeV fino a qualche GeV: dark photon) che decadono nel MS.

 Strategia di analisi indipendente dal modello teorico. Risultati interpretati all'interno di modelli teorici semplificati.

Selezione dei LJs

- Selezione di non prompt-LJs
 - Due configurazioni di trigger, in funzione delle topologia finale ricercata:
 - muon-LJ: 3MU6 standalone: basso pT, richiede solo informazioni nello spettrometro
 - e/had-LJ: trigger per jet con soglia ridotta in ET (35 GeV)+ poca energia EM → sensibile a decadimenti nella parte finale del calorimetro EM e all'interno del calorimetro adronico.
- * Fondi Possibili: multi-jets e cosmici

TYPE 1: selezione di non-prompt LJs di muoni ed elettroni/pioni. Richiesta di \geq 2 muons + jets in un cono di $\Delta R=0.5$

TYPE 2: selezione di non-promt LJs di elettroni/pioni. Richiesta di jets stretti con poca energia EM , assenza di muoni intorno al jet.

Risultati di Run1

	All LJ pair types	TYPE2-TYPE2 LJs excluded			
Data	119	29			
Cosmic rays	$40\pm11\pm9$	$29\pm9\pm29$			
Multi-jets (ABCD)	$70 \pm 58 \pm 11$	$12\pm9\pm2$			
Total background	$110\pm59\pm14$	$41\pm12\pm29$			

Nessun eccesso di eventi osservati rispetto al fondo stimato → Limiti di esclusione

Interpretazione all'interno del Modello Semplificato di Falkowski-Ruderman-Volansky-Zupan

 Dark photon nell'intervallo di masse 400 MeV fino a 2 GeV: BR in muon-jets accettabili (@400MeV BR~45% e, 45% μ), Higgs MS σ =19.2 pb.

arXiv:1409.0746

I Lepton-Jets e la Materia Oscura

Confronto con altri esperimenti dedicati alla ricerca di Materia Oscura.

$$\mathcal{L} \supset \frac{\epsilon}{2} F^{\mu\nu} b_{\mu\nu} + m_{\gamma_d}^2 b^2$$

termine di mixing cinetico
 (ϵ, m_{γ_d})
Determina
composizione dei
decadimenti e vita
media.
$$\Gamma = \frac{1}{3} \alpha \, \epsilon^2 \, m_{\gamma_d} \sqrt{1 - \frac{4m_l^2}{m_{\gamma_d}^2}} \left(1 + \frac{2m_l^2}{m_{\gamma_d}}\right)$$

Conclusioni

• Numerose analisi su segnature di particelle a lunga vita media sono state condotte in ATLAS.

• Nessuna indicazione di nuova fisica dai dati di Run 1 a 8 TeV!

• Strategie dedicate, sfruttando estensivamente tutte le proprietà dei rivelatori.

- L'esperienza e i risultati forniti da Run1 costituiscono un'ottima premessa per le future analisi, strategie, metodi e strumenti.
 - Grande partecipazione di gruppi italiani nelle analisi presentate.

La luminosita' prevista per Run2 e' di 1.3 x 10³⁴ cm⁻² s⁻¹ con un "bunch spacing" di 25 ns (2800 bunches), fornira' un pile-up di 40 eventi per bunch crossing. La luminosita' integrata auspicata: 10 fb⁻¹ in 2015

Risultati di Run1

*Only a selection of the available lifetime limits on new states is shown.

Identificazione Vertici

Search and reconstruction algorithm in the MS:

Construction of segments in single MultiLayers (ML), via chi2 minimisation, if P>0.05; merging segments (ML1 and ML2) in tracklets on the basis of specific criteria on Δb and $\Delta \alpha$ (barrel and endcap).

Search and reconstruction in the ID:

Tracking algorithm developed for use in a SUSY search for displaced vertices in the ID. The signatures studied in this analysis will produce many unassociated hits in the default tracking, because the larger impact parameters. Displaced tracks are reconstructed by making a second iteration of track finding using only unassociated hits, with loosened requirements on the track impact parameter and number of hits shared between tracks.

21

Table V. Summary of good MS	vertex criteria	requirements
in barrel and endcap regions.		

Description	Barrel criteria	Endcap criteria
MDT hits	$300 \le n_{\rm MDT} < 3000$	$300 \le n_{\rm MDT} < 3000$
RPC/TGC hits	$n_{\rm RPC} \ge 250$	$n_{\rm TGC} \ge 250$
Track isolation	$\Delta R < 0.3$	$\Delta R < 0.6$
Track $\Sigma p_{\rm T}$	$\Sigma p_{\rm T} < 10 { m GeV}$	$\Sigma p_{\rm T} < 10 { m ~GeV}$
Jet isolation	$\Delta R < 0.3$	$\Delta R < 0.6$

Table IV. Good vertex criteria for vertices reconstructed in the ID.

JINST 9 (2014) P02001

Requirement	Scalar boson	Stealth SUSY	Z'
d/σ from material	≥ 6	≥ 6	≥ 6
vertex χ^2 prob.	> 0.001	> 0.001	> 0.001
$\Delta R(vtx, jet)$	< 0.4	< 0.4	< 0.6
nTracks	≥ 5	≥ 5	≥ 7

MS Vertexing

Efficiency

0.5

0.4

0.3

ATLAS Simulation

JINST 9 (2014) P02001

Barre

r [m]

0.5

0.4

Ricostruzione di vertici nello spettrometro a muoni. L'algoritmo identifica i vertici utilizzando gli hits del solo spettrometro.

Trigger di CalRatio

- * CalRatio trigger dedicato alla selezione di almeno un jet (πv) nel calorimetro adronico:
 - * Log10(EHad/EEm) > 1.2
 - * |eta| < 2.5
 - * nessuna traccia ID > 1 GeV in $\Delta R=0.2$
 - * ET > 35 GeV
 - * Line of Fire jets removal: fake jets prodotti da muoni di beam-halo muon che emettono radiazione di bremmstrahlung

6

JINST 8 (2013) P07015

arXiv:1409.0746

Sistematiche nei LJs

Cosmic-ray bg estimation	22%
Multi-jet bg estimation	15%
p_T resolution for γ_d	10%
Higgs production σ	8%
Trigger	5.8% (multi-muon), >11% (CalRatio)
Muon reco efficiency	5.4%
Pile-up effect on isolation	4.1%
Luminosity	2.8%
JES	0.9% - 1.7%

arXiv:1409.0746

Selezione nel segnale (LJs)

LJ pair types	0-0	0-1	0-2	1-1	1-2	2-2	All
Total number of events	39730 ± 100						
Trigger selection			1	1330 ± 3	80		
Good primary vertex		1330 ± 30					
Two reconstructed LJs	86	9	40	0	1	39	175 ± 7
η range (TYPE1/TYPE2)	86	8	27	0	1	23	145 ± 6
EM fraction (TYPE2)	86 8 23 0 1 12					130 ± 6	
Jet width W (TYPE2)	86	8	23	0	1	12	130 ± 6
Jet timing (TYPE1/TYPE2)	86	6	23	0	1	11	128 ± 6
NC muons (TYPE0/TYPE1)	50	4	17	0	0	11	82 ± 5
ID isolation	37 2 13 0 0 10					63 ± 4	
$ \Delta \phi $	35 ± 3	2 ± 1	12 ± 2	$0^{+0.6}_{-0}$	$0^{+0.6}_{-0}$	10 ± 2	60 ± 4

Model	Events	$m_{ m h}$	$m_{\mathrm{f}_{\mathrm{d}_2}}$	m_{HLSP}	$m_{s_{d_1}}$	$m_{\gamma_{ m d}}$	$c \tau_{\gamma_{\rm d}}$	BR	BR	BR
		[GeV]	[]	[]		[]	[mm]	$\gamma_{\rm d} \rightarrow ee$	$\gamma_{\rm d} ightarrow \mu \mu$	$\gamma_{\rm d} \to \pi \pi$
Two dark photons	150k	125	5.0	2.0	-	0.4	47	0.45	0.45	0.10
Four dark photons	150k	125	5.0	2.0	2.0	0.4	47	0.45	0.45	0.10

Selezione (LJs)

Requirement	Description				
Two reconstructed LJs	select events with at least two reconstructed LJs				
η range (TYPE1)	remove jets with $ \eta > 2.5$				
η range (TYPE2)	remove jets with $ \eta > 2.5$ and $1.0 < \eta < 1.4$				
EM fraction (TYPE2)	require EM fraction of the jet < 0.1				
Jet width W (TYPE2)	require width of the jet < 0.1				
Jet timing (TYPE1/TYPE2)	require jets with timing $-1 \text{ ns} < t < 5 \text{ ns}$				
NC muons (TYPE0/TYPE1)	require muons without ID track match				
ID isolation	require $\max\{\Sigma p_{\rm T}\} \leq 3 {\rm GeV}$				
$\Delta \phi$	require $ \Delta \phi \ge 1$ rad between the two LJs				

arXiv:1409.0746

Selezione nei Dati (LJs)

LJ pair types	0-0	0-1	0-2	1-1	1-2	2-2	All	
Trigger selection	9.226×10^{6}							
Good primary vertex	9.212×10^{6}							
Two reconstructed LJs	946	1771	16676	1382	19629	82653	123057	
η range (TYPE1/TYPE2)	946	1269	5063	701	3838	25885	37702	
EM fraction (TYPE2)	946	1269	393	701	172	4713	8194	
Jet width W (TYPE2)	946	1269	350	701	148	3740	7154	
Jet timing (TYPE1/TYPE2)	946	1054	216	547	92	578	3433	
NC muons (TYPE0/TYPE1)	27	3	42	5	5	578	660	
ID isolation	12	0	19	4	3	160	198	
$ \Delta \phi $	11	0	11	4	3	90	119	

Dark photon via hypercharge portal

One way to explain PAMELA is to introduce "dark photon" z_{μ} that mixes kinetically with the SM hypercharge, Arkani-Hamed, Finkbeiner, Slatyer, Weiner [0810.0713]

 $\mathcal{L} \sim -z_{\mu\nu}^2 + m_z^2 z_\mu^2 + \epsilon z_{\mu\nu} B_{\mu\nu} \qquad \epsilon \leq 10^{-3}$

After field redefinition, $A_{\mu} \rightarrow A_{\mu} + \epsilon z_{\mu}$, dark photon mili-couples to the electromagnetic current, $\epsilon z_{\mu} Q_i \overline{\psi}_i \gamma^{\mu} \psi_i$

Dark matter could annihilate into dark photons

Dark photon then decay into a pair of charged kinematically available SM states

Roughly the same coupling to electrons, muons, pions (except at threshold or rho-resonance) so roughly democratic decay

Dark Photon via Higgs portal

Another simple possibility: mediator is a scalar mixing with the Higgs

 $\mathcal{L} \sim \lambda |\Phi|^2 |H|^2 \sim \lambda V_d v h \phi$

Mixing angle of order $\theta \sim \lambda V_d / V$.

 ϕ couples to mass, so decays to the heaviest SM particle kinematically available,

In and Out

• Collider processes produce the lightest SM superpartner \tilde{N}_1 Z^0/γ^* ...who decays into hidden sector \tilde{n}_d \tilde{n}_d \hat{N}_1 z_d Hidden cascade follows Dark photons decay to visible leptons, while lightest hidden neutralino carries off missing energy

20