LH

"Fisica elettrodebole nella regione in avanti e ricerca di risonanze b b a LHCb"

Lorenzo Sestini (Università di Padova e INFN), on behalf of the LHCb collaboration

IFAE, Università di Roma Tor Vergata, 9-4-2015

Motivation

- LHCb offers a complementary phase space region for electroweak and jets measurements respect to ATLAS and CMS.
- It relies on several specific features:
 - Unique acceptance: 2 < η < 5</p>
 - Cleanest LHC events: <Pile-Up> ~ 2
 - Very large bandwith trigger for events with b jets and displaced vertices, efficient even at very low pT.
- If New Physics produces events with no high p_T leptons but only events with low p_T jets, only LHCb could fill this gap!
- Examples of New Physics searches:
 - bb resonances.
 - 4 b final states.

Motivation

- Within the Standard Model there are measurements unique to LHCb:
 - Precision measurements of σ_{W(Z)} in the forward region are important tests of perturbative QCD and EWK theory.
 - **bb** cross section and multiple b cross section in the forward region.
 - bb correlations and asymmetries.
 - Measurement in the forward region provide unique access to PDFs (x,Q²). Two different region are available: one well understood and the other unexplored (at low x and large Q²).

LHCb detector

Muon Chambers

Vertex Locator and tracking system: B and D vertex position and track momenta

IP resolution: 20 µm

 Δ p / p = 0.4 % at 5 GeV/c to 0.6 % at 100 GeV/c

Particle ID performances

kaon ID efficiency:

~ 95 % for ~ 5 % $\pi \rightarrow K$ mis-id probability muon ID efficiency:

~ 97 % for 1-3 % $\pi \rightarrow \mu$ mis-id probability

Calorimeters performances

ECAL resolution: 1 % + 10 % / $\sqrt{(E[GeV])}$ HCAL resolution: 9 % + 69 % / $\sqrt{(E[GeV])}$

Not the best for jets physics...

Forward W production at 7 TeV JHEP (1412) 2014 079

Forward W production at 7 TeV

- Measurement: inclusive W → μν production cross section
- Motivations: Test theoretical predictions at low Bjorken-x values, where the uncertainties of PDFs are large.
- Data: 1 fb⁻¹ from pp collisions at 7 TeV
- Muon final state: $p_T > 20$ GeV, $2 < \eta < 5$
- Selection requirements:
- Muon isolation from jets
- Second high p_T muon vetoed (pT > 2 GeV)
- muon IP < 40 µm, to reduce µ from τ decay or from heavy flavour semileptonic decay
- Remove hadronic punch through: $E_{calo}/p < 0.4\%$
- **Yield extraction**: p_T(μ) distribution fit

Backgrounds and signal templates:

- $W \rightarrow \mu v$ signal: Pythia+ResBos
- K/π decay on flight: data
- → Z → μμ, W → τν, Z → ττ: simulation
- Heavy flavour decays: data

Forward W production at 7 TeV

• The integrated cross section ($p_T(\mu) > 20 \text{ GeV}$, $2 < \eta < 5$) is:

$$\sigma_{W^+ \to \mu^+ \nu} = 861.0 \pm 2.0 \pm 11.2 \pm 14.7 \,\mathrm{pb},$$

$$\sigma_{W^- \to \mu^- \overline{\nu}} = 675.8 \pm 1.9 \pm 8.8 \pm 11.6 \,\mathrm{pb},$$

$$R_W = \frac{\sigma_{W^+ \to \mu^+ \nu}}{\sigma_{W^- \to \mu^- \overline{\nu}}} = 1.274 \pm 0.005 \pm 0.009,$$

where the first error is statistical, the second systematic and the third is due to the luminosity determination.

- The systematic uncertainty is dominated by the limited knowledge of the reconstruction efficiency.
- The measurements agree well with the SM predictions, calculated at NNLO in perturbative QCD. Several parametrizations of PDFs are used.

7

Forward Z → e⁺e⁻ production at 8 TeV arXiv: 1503.00963

- Motivations: Measurement sensitive to knowledge of PDFs at very low Bjorken-x.
- Data: 2 fb⁻¹ from pp collisions at 8 TeV
- Acceptance: electrons with $p_T > 20$ GeV, $2 < \eta < 5$
- Electrons pass through a significant amount of material:
 - Large amount of **bremsstrahlung** before magnet.
 - This effect is partially recovered using calorimeter.
 - Momenta degraded by ~ 25%, but well known direction
- Selection:
 - Momentum uncertainties < 10%
 - Significative HCAL and ECAL deposits
 - ✤ 60 < M_{ee} < 120 GeV</p>
- Background contributions:
 - hadron mis-ID: subtract e[±]e[±] from data.
 - 0.2% contribution from $Z \rightarrow \tau \tau$ evaluated in MC.

65,552 candidates

- The main source of systematic uncertainty is in the evaluation of the tracking efficiency (1.0 %).
- Integrated cross section:

 $\sigma(pp \to Z \to e^+e^-) = 93.81 \pm 0.41(stat) \pm 1.48(syst) \pm 1.14(lumi) \text{ pb}$

Results are compared to NNLO QCD predictions using different PDFs.

Predictions agree well with data down to x = 10⁻⁶.

Forward Z + b-jet production at 7 TeV JHEP 1501 (2015) 064

Forward Z + b-jet production at 7 TeV

- Measurement: Z ($\rightarrow \mu\mu$) production cross section in association with a bottom quark.
- Motivations: Test perturbative QCD predictions. Probe the capability of LHCb to jets physics.
- **Data**: 1 fb⁻¹ from pp collisions at 7 TeV.
- Fiducial region:
 muons and jet with 2 < η < 4.5</p>
 - muon P_T > 20 GeV
 - ✤ two different jet energy thresholds are considered: 10 and 20 GeV
- Benchmark measurement:
- Sensitive to proton PDF.
- Constraints SM Higgs and BSM background.
- Complementary with ATLAS and CMS measurements (jet P_T > 25 GeV, |η|<2.1).
- Jet reconstruction and tagging:
 - Particle flow: charged track and calo clusters.
 - Anti K_t clustering algorithm, R = 0.5.
 - Jet isolated from muons: $\Delta R(jet,\mu) > 0.4$.
 - b-tagging: secondary vertices using 2,3,4 tracks in the jet.

Forward Z + b-jet production at 7 TeV

• Fit strategy:

- → Fit to the corrected SV mass: $M_{\rm corr} \equiv \sqrt{M^2 + p^2 \sin^2 \theta} + p \sin \theta$
- Background templates taken from MC.

• **Systematic uncertainties** dominated by b-tag efficiency and purity determination (15%).

Results:

→ p_T(jet) > 10 GeV:

 $\sigma(Z/\gamma^*(\mu^+\mu^-)+b\text{-jet}) = 295 \pm 60 \text{ (stat)} \pm 51 \text{ (syst)} \pm 10 \text{ (lumi) fb}$

→ p_T(jet) > 20 GeV:

 $\sigma(Z/\gamma^*(\mu^+\mu^-) + b\text{-jet}) = 128 \pm 36 \text{ (stat)} \pm 22 \text{ (syst)} \pm 5 \text{ (lumi) fb}$

 Results are compared to MCFM calculation with massless (LO, NLO) or massive (LO) bquarks. Predictions are corrected for hadronization and fragmentation using Pythia 8. Results are consistent with the predictions.

Moving on: search for b b resonances

- Jet-capability at LHCb demostrated: Z + b-jets, forward-central bb asymmetry (LHCb-CONF-2012-014), bb cross section (LHCb-CONF-2013-002).
- $H \rightarrow b\overline{b}$ decay not yet "discovered" at ATLAS and CMS (significance < 3 σ)
- We can search for the $H \rightarrow b\overline{b}$ production in the forward region:
 - Higgs production associated to a vector boson in order to reduce the background
- Backgrounds study needed:
 - → W[±] b b
 - 🛥 Z b b
 - QCD combinatorial
- Hadronic trigger lines for these analysis are currently under studying.
- Several **New Physics searches** will be possibile:
 - ✤ bb̄ resonances
 - 4 b final states

Dijets resonances: $Z \rightarrow b \overline{b}$

- If we want to understand our data samples to look for New Physics, we have to start with something we already know it exists.
- The purpose of this study is to understand if we can reconstruct and identify the Z → b b decay. In this way we can:
 - Measure the $Z \rightarrow b \overline{b}$ cross section.
 - Determine the best R parameter for the jet cone.
 - Test and validate the background modeling.
 - Validate the jet energy scale and improve if necessary.
- Peak resolution estimated on LHCb simulation (~ 14 GeV with R=0.7 and both jets b-tagged).
- S/B estimated using selection efficiencies (not optimized) and Z → b b NNLO cross section: S/B ≃ 0.03
- We are using the tag-and-probe technique to evaluate the jet tagging probability, in order to modeling the background.

Conclusions

- LHCb is continuing with success its electroweak program.
- LHCb is able to complement with ATLAS and CMS for EW and QCD measurements.
- We are successfully branching into jets physics.
- In the next months several preliminary measurements needed for bb resonances searches are expected.

Backup Slides

Course	Δ - [07]	Δ - [07]	ΛD [07]		Average value	Uncorrelated	Correlated
Source	$\Delta \sigma_{W^+ \to \mu^+ \nu} [70]$	$\Delta \sigma_{W^- \to \mu^- \overline{\nu}} [70]$	Δh_W [70]	$\epsilon_{ m track}$	0.912	0.001	0.010
Template shape	0.28	0.39	0.59	$\epsilon_{\rm kin}$	0.507	0.002	0.006
Template normalisation	0.10	0.10	0.06	$\epsilon_{ ext{PID}}$	0.838	0.001	0.007
Reconstruction efficiency	1.21	1.20	0.12	$\epsilon_{ m GEC}$	0.916		0.006
Selection efficiency	0.33	0.32	0.18	$\epsilon_{ m trig}$	0.892	0.001	
Acceptance and ESP	0.19	0.19	0.91	ϵ	0.319	0.002	0.016
Acceptance and FSN	0.10	0.12	0.21	f_{MZ}	0.969	0.001	
Luminosity	1.71	1.71		Background estimation			0.004
				$\int \mathcal{L} \mathrm{d} t$ / pb ⁻¹	1976		0.012

Relative uncertainty $(\%)$
3.5
1.5
7.8
0.2
3.5
15.0
2.0
17.8

Fractional uncertainty

Forward W production at 7 TeV

Cross section measured in 8 bin of η:

$$\sigma_{W^{\pm} \to \mu^{\pm} \nu}(\eta_i) = \frac{1}{\mathcal{L}} \cdot \frac{N_W \cdot \rho^{\pm}(\eta_i)}{\mathcal{A}^{\pm}(\eta_i) \cdot \varepsilon_{\rm rec}(\eta_i) \cdot \varepsilon_{\rm sel}(\eta_i)} \cdot \frac{1}{1 - f_{\rm FSR}^{\pm}(\eta_i)},$$

- Acceptance A[±] for reduced p_T range obtained from MC (>99%)
- ϵ_{rec} evaluated in Z $\rightarrow \mu\mu$ data via tag-and-probe (60-75%)
- ϵ_{sel} evaluated in Z $\rightarrow \mu\mu$ and corrected for harder pT (30-70%)
- → **f**_{FSR} final state radiation correction evaluated from MC (1-2%)

- Motivations: Measurement sensitive to knowledge of PDFs at very low Bjorken-x.
- Data: 2 fb⁻¹ from pp collisions at 8 TeV
- Acceptance: electrons with $p_T > 20$ GeV, $2 < \eta < 5$
- Electrons pass through a significant amount of material:
 - Large amount of **bremsstrahlung** before magnet.
 - This effect is partially recovered using calorimeter.
 - Momenta degraded by ~ 25%, but well known direction

Cross section measured in:

- → bins of y_Z
- bins of Φ*:

$$\phi^* \equiv \frac{\tan(\phi_{\mathrm{acop}}/2)}{\cosh(\Delta\eta/2)} \approx \frac{p_{\mathrm{T}}}{M}$$

- Selection:
 - Momentum uncertainties < 10%</p>
 - Significative HCAL and ECAL deposits
 - ✤ 60 < M_{ee} < 120 GeV</p>

Background contributions:

- hadron mis-ID: subtract e[±]e[±] from data.
- 0.2% contribution from $Z \to \tau \, \tau \,$ evaluated in MC.
- Cross section:

$$\sigma = \frac{N(e^+e^-) - N(e^\pm e^\pm) - N_{\rm bg}}{\epsilon \cdot \int \mathcal{L} dt} \cdot f_{\rm MZ}$$

- The efficiency ε takes into account:
 - inefficiency due to bremsstrahlung causing failure of kinematic requirements (51%).
 - Tracking (94%), PID (84%) and trigger (89%) efficiencies evaluated in simulation and validated on data.
- The factor f_{MZ} takes into account of the limited invariant mass range (97%).
- The main source of systematic uncertainty is in the evaluation of the tracking efficiency (1.0 %).

Integrated cross section:

 $\sigma(pp \to Z \to e^+e^-) = 93.81 \pm 0.41(stat) \pm 1.48(syst) \pm 1.14(lumi) \text{ pb}$

Results are compared to NNLO QCD predictions using different PDFs.

 Predictions agree well with data down to x = 10^{-6.}