

Ricerca di Materia Oscura in eventi con un fotone e momento mancante in ATLAS

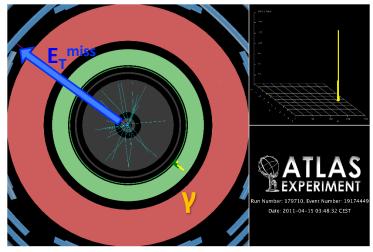
Maria Giulia Ratti Università di Milano e INFN Milano

IFAE, INCONTRI DI FISICA DELLE ALTE ENERGIE
UNIVERSITÀ DI ROMA TOR VERGATA
9 APRILE 2015

Outline

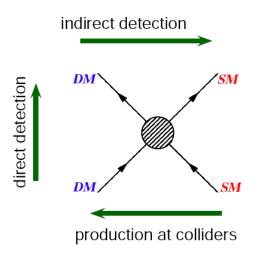
Motivazione per la ricerca γ + E_T^{miss}

Analisi e Risultati del Run 1

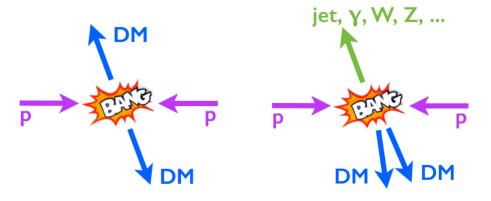

Sensibilità per il Run 2

Motivazione per la ricerca γ + E_Tmiss

Eventi da collisione pp con **E**_T^{miss} **e un fotone** possono esplorare diversi scenari oltre il Modello Standard: Materia Oscura (DM), SUSY, Large Extra Dimensions.

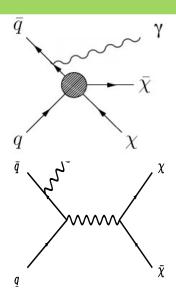

Un eccesso nel canale $\gamma + E_T^{miss}$ segnalerebbe la presenza di **nuove particelle non rivelate** in ATLAS in maniera indipendente dall'interpetazione teorica:

- Alto E_T^{miss} = momento mancante che segnala la presenza di particelle non rivelate
- Fotone di alto p_T = è un tagger estremente pulito



Display di un candidato evento $\gamma + E_t^{miss}$: un singolo fotone di $p_T = 449.7$ GeV $E_T^{miss} = 446.9$ GeV, $\Delta \phi (E_T^{miss}, \gamma) \approx \pi$

Complementarietà delle ricerche di DM



Produzione di DM a LHC

γ + E_T^{miss} nel Run 1: *Segnali e Fondi*

SEGNALE: Materia Oscura - coppie di WIMP χχ con fotone ISR

Che cosa cerchiamo: = Alto E_T^{miss} che rincula back-to-back contro un singolo fotone

Come è descritto:

Effective Field Theory (EFT)

Interazione tra WIMP e particelle SM è efficace, alla Fermi, introduce una scala di soppressione della teoria M*= $M_{med}/\sqrt{g_{SM}g_{DM}}$

PRO: la sezione d'urto di produzione dipende soltanto da m_{χ} e dalla massa del mediatore **CONTRO:** regime di validità limitato $Q_{TR} < M_{med}$

Modelli Semplificati

Integrazione esplicita del mediatore

PRO: non limitato da alcun regime di validità

CONTRO: la sezione d'urto dipende da più parametri (larghezza del mediatore, coupling)

Fondi da Standard Model

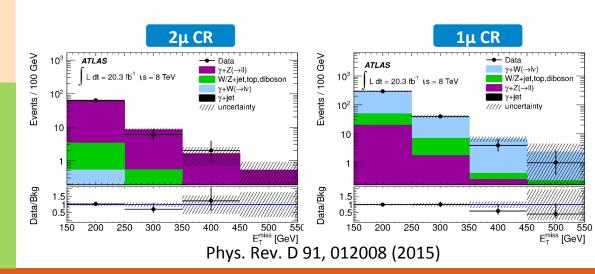
Quali processi di fondo ?		Come vengono stimati?
$Z(\rightarrow vv) + \gamma$ irriducibile	O(75%)	Pannarti DATI/MC in appartuna
$W(\rightarrow lv) + \gamma$ elettrone o muone non identificati	O(13%)	Rapporti DATI/MC in opportune regioni di controllo
$Z(\rightarrow II) + γ$ entrambi i leptoni non indentificati	O(<1%)	
W/Z + jet leptoni o jet ricostruiti come fotoni	O(10%)	Tecniche IN-SITU,
ttbar, single top, dibosone, multijet	O(1%)	interamente basate sui dati
γ + jet jet mal ricostruito causa E _T ^{miss}	O(<1%)	Pura simulazione MC

γ + E_Tmiss nel Run 1: *Analisi*

Regione di Segnale (SR)

- Preselezioni: GRLs, vertice buono, data quality, cleaning dei jet, Trigger E_T^{miss}>80 GeV
- E_Tmiss>150 GeV
- almeno un fotone con p_T > 125 GeV
- oggetti ben separati: Δφ(γ, E_T^{miss}) > 0.4
- Fotone ben identificato "tight", isolato,
 |η^γ|< 1.37
- al più un jet $p_T > 30 \text{GeV}$, $\Delta \phi (\text{jet}, E_T^{\text{miss}}) > 0.4$
- Veto su elettroni e muoni

Regioni di Controllo (CR)


- Stessi tagli della SR
- Invertiti uno o più tagli alla volta, per definire regioni arricchite di una particolare sorgente di fondo

$\begin{array}{c|c} & & & & & \\ SR & & & \\ Z+\gamma & & & \\ W+\gamma & & & \\ \end{array}$

Due fattori di scala $\mathbf{k}_{\mathbf{w}}$ e $\mathbf{k}_{\mathbf{z}}$ sono determinati dal rapporto dati/MC in ciascuna CR; si usano per normalizzare il MC nella SR:

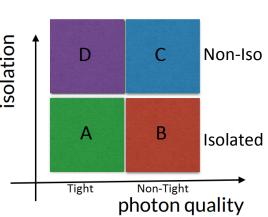
$$N_{SR} = N_{SR}^{MC} \cdot k$$

- → due CR sono designate per la stima del fondo primario Z+γ
- → una CR costruita per la stima del processo W+γ
- → Incertezze sistematiche possono essere correlate tra CR e SR

γ + E_Tmiss nel Run 1: Analisi

Regione di Segnale (SR)

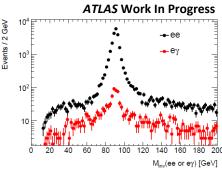
- Preselezioni: GRLs, vertice buono, data quality, cleaning dei jet, Trigger E_T^{miss}>80 GeV
- E_Tmiss>150 GeV
- almeno un fotone con p_T > 125 GeV
- oggetti ben separati: Δφ(γ, E_T^{miss}) > 0.4
- Fotone ben identificato "tight", isolato |η^γ|< 1.37
- al più un jet $p_T > 30 \text{GeV}$, $\Delta \phi (\text{jet}, E_T^{\text{miss}}) > 0.4$
- Veto su elettroni e muoni


Regioni di Controllo (CR)

- Stessi tagli della SR
- Invertiti uno o più tagli alla volta, per definire regioni arricchite di una particolare sorgente di fondo

Jet ricostruiti come Fotoni

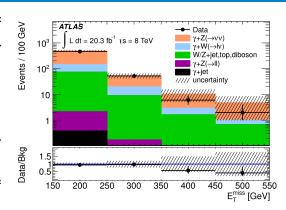
Stima del contributo dei **fotoni originati da jet adronici** che passano
i tagli di identificazione e isolamento
del fotone con un metodo ABCD:


$$N_A^{bkg} = N_B \frac{N_D}{N_C}$$

Elettroni ricostruiti come Fotoni

Stima del contributo degli **elettroni** ricostruiti come fotoni nella SR:

- **1. CR mono-elettrone:** richesto un elettrone isolato di $p_T > 125$ GeV anziché un fotone
- 2.EFR = probabilità che un elettrone sia identificato come fotone, con un metodo tag&probe:
 - Elettrone tag (pT>20 GeV) e fotone/ elettrone probe (pT>125 GeV)
 - massa invariante dei due compatibile con la massa della Z
 - EFR = rapporto del numero di fotoni probe ed elettroni probe

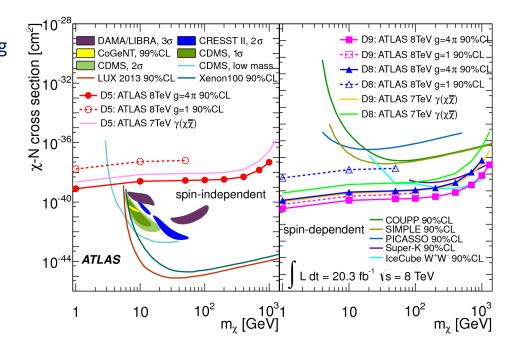

γ + E_T^{miss} nel Run 1: *Risultati*

Fit simultaneo nelle CR e in SR:

$$\begin{split} L[\mu \mid N_{obs}] &= \prod_{reg} Poiss(N_{reg}^{obs} \mid \mu \cdot N_{reg}^{sig} + \\ &+ k_Z \cdot N_{reg}^{Z\gamma} + k_W \cdot N_{reg}^{W\gamma} + N_{reg}^{other}) \end{split}$$

Non è stata osservata deviazione da SM

ield (SR)
36 ± 10
5.3 ± 3.4
$\pm 2 \pm 28$
0.2 ± 0.6
$0.4^{+0.3}_{-0.4}$
$= 36 \pm 27$
521


Limiti di esclusione sulla scala M*

Tradotti in limiti della sezione d'urto di scattering WIMP-nucleone vs massa WIMP m_{ν}

- ⇒ comparabili con ricerche dirette e indirette di Materia Oscura
- ⇒ diverse sensibilità per interazioni Spin-Dipendenti, SD (operatore D9)/ Spin-Independenti, SI (operatore D5)

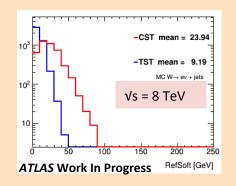
Buona sensibilità a bassa massa delle WIMP

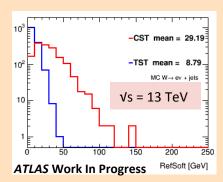
Altri risultati in Modelli Semplificati di DM e interpretazioni SUSY e LED in back-up

Phys. Rev. D 91, 012008 (2015)

Verso il Run 2: Sfide e Strategie

Sfide: condizioni sperimentali a 13 TeV


- Maggiore **energia del centro di massa** → migliora la significanza del segnale sui fondi
- **PILE-UP** più alto → **ricostruzione** degli oggetti fisici più difficile


Ricostruzione dei Fotoni

- La ricostruzione si basa su un algoritmo sliding-window con cella di dimensione fissa
- La nuova calibrazione sarà basata su tecniche di analisi multivariata
- L'identificazione dei fotoni sarà cut-based come in Run 1
- L'isolamento sarà basato sia su tracce, sia su topocluster (è la grandezza più sensibile al pile-up)
- Attese performance simili a quelle del Run 1

Ricostruzione di E_Tmiss

- E_T^{miss} è ricostruita a partire dagli oggetti fisici selezionati e dall'energia 'soffice' della collisione
- · Il pile-Up impatterà sui jet e sul termine soffice
 - Termine Soffice Calorimetrico peggiora a 13 TeV
 - Termine Soffice basato sulle tracce ha performance migliori e più stabili rispetto a 8 TeV

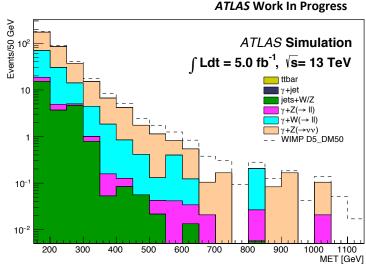
Strategie

- Analisi Cut&Count: partire con la strategia d'analisi del Run 1
- Mantenere l'analisi model-independent per i primi dati
- Ottimizzare SR multiple per i diversi modelli interpretativi con maggiore statistica

γ + E_T^{miss} nel Run 2: *Sensibilità*

Studi di sensibilità dell'analisi a 13 TeV

Si ripete l'analisi a 8 TeV, scalando gli yields con il rapporto $\sigma_{13\text{TeV}}/\sigma_{8\text{TeV}}$


- ⇒ Fondi SM: tutti riscalati dal rapporto di sezioni d'urto per il processo dominante $Z(\to vv) + γ$ $\sigma_{13TeV}/\sigma_{8TeV} \approx 2$,
- ⇒ Segnali: EFT Dark Matter $\sigma_{13\text{TeV}}/\sigma_{8\text{TeV}} \approx 4-6$

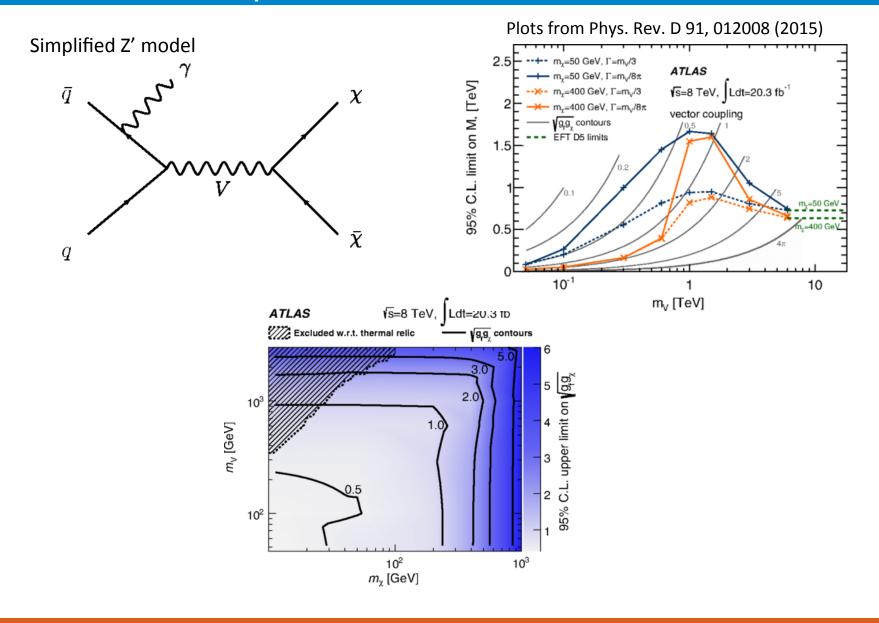
Yields nella SR per i fondi SM totali e per due punti di segnale di benchmark, stessi tagli 8 TeV, stesse incertezze sistematiche

Processo	8 TeV, 20.3 fb ⁻¹	13 TeV, 5 fb ⁻¹	13 TeV, 10 fb ⁻¹
Fondi SM totali	557	290	581
± stat ± syst	± 36 ± 27	± 26 ± 14	± 36 ± 28
SI, m _x =50 GeV	20.7	26.7	53.3
SI, m_{χ} =400 GeV	12.3	21.2	42.4

Limiti inferiori su M_{*} (=scala di soppressione della teoria) per due punti di segnale

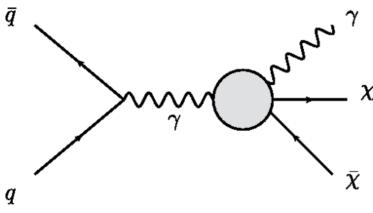
Process	8 TeV, 20.3 fb ⁻¹	13 TeV, 5 fb ⁻¹	13 TeV, 10 fb ⁻¹
SI, m _χ =50 GeV	700 GeV	800 GeV	854 GeV
SI, m_{χ} =400 GeV	614 GeV	755 GeV	806 GeV

ATLAS MC Full Simulation at 13 TeV, DC14, for the most important backgrounds in SR

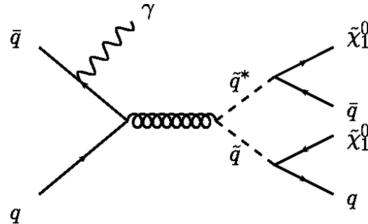

Con 1-2 fb⁻¹ l'analisi può competere con quella a 8 TeV, ma in maniera dipendente dal modello Luminosità integrata richiesta è 1.72 fb⁻¹ per D5 50 GeV, 0.96 fb⁻¹ per D5 400 GeV

Conclusioni

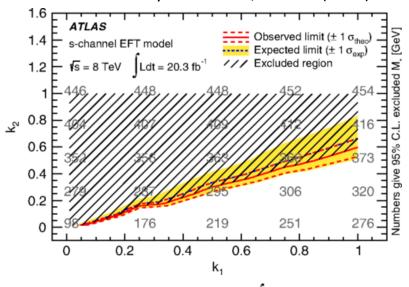
- La ricerca nel canale γ + E_T^{miss} può gettare luce su diversi scenari di fisica oltre il Modello Standard e sulla Materia Oscura in particolare
- L'analisi γ + E_T^{miss} ha prodotto interessanti risultati nel Run 1, anche se non sono stati osservati eccessi
- L'analisi γ + E_T^{miss} ha una buona sensibilità di scoperta o esclusione per la Materia
 Oscura a 13 TeV
- Il lavoro per il Run 2 è in corso!

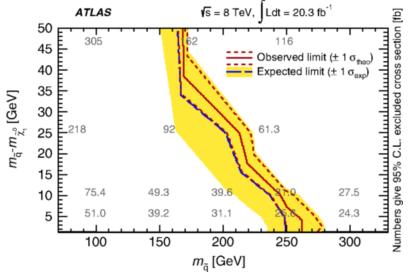

BACK-UP

γ + E_T^{miss} nel Run 1: *Risultati (2)*

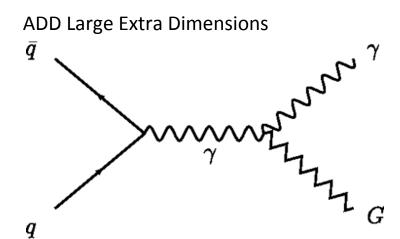


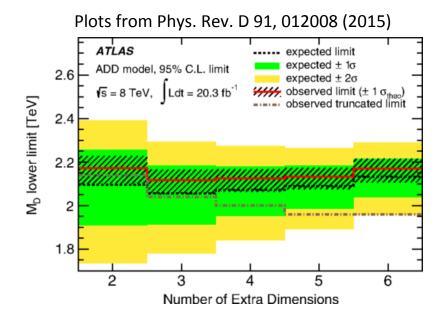
γ + E_Tmiss nel Run 1: Risultati (3)


EFT, WIMP coupling to SM gauge bosons



Compressed S-quark



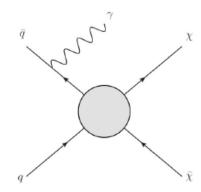

Plots from Phys. Rev. D 91, 012008 (2015)

γ + E_T^{miss} nel Run 1: Risultati (4)

Produzione di WIMP => Scattering WIMP-nucleone

EFT (Effective Field Theory): l'interazione tra WIMP e particelle SM attraverso lo scambio di un mediatore pesante L'interazione è descritta da diversi operatori che possono dipendere o meno dallo spin delle particelle:

$$\bar{\chi}\gamma^{\mu}\chi\bar{q}\gamma_{\mu}q$$


 $-\bar{\chi}\gamma^{\mu}\chi\bar{q}\gamma_{\mu}q$ D5, vettoriale, spin-independent

$$\bar{\chi}\sigma^{\mu\nu}\chi\bar{q}\sigma_{\mu\nu}q$$

 $\bar{\chi}\sigma^{\mu\nu}\chi\bar{q}\sigma_{\mu\nu}q$ D9, tensoriale, spin-dependent

La sezione d'urto di produzione WIMP+y:

$$\sigma(pp \to \chi \bar{\chi}) \propto \frac{g_{SM}^2 g_{DM}^2}{(q_{tr}^2 - m_V^2)^2 + m_V^2 \Gamma^2} E^2 \approx \frac{g_{SM}^2 g_{DM}^2}{m_V^4} E^2 \Rightarrow \frac{E^2}{M^{*4}}$$

 $g_{SM} g_{DM}$ accoppiamenti , Γ larghezza del mediatore

nel limite $q_{tr} < m_{V}$, il mediatore non viene calcolato nel propagatore

=>~a fissata massa della WIMP m $_\chi$ la sezione d'urto dipende soltanto dalla scala di soppressione della teoria M *

=> Ricavo limiti inferiori su M*

Limiti su M* possono essere tradotti in limiti sulla sezione d'urto WIMP-nucleone:

$$\sigma^{D5} = 1.38 \times 10^{-37} \text{cm}^2 \left(\frac{\mu_{\chi}}{1 \text{GeV}}\right)^2 \left(\frac{300 \text{GeV}}{\text{M*}}\right)^4$$
$$\sigma^{D9,D8} = 4.7 \times 10^{-39} \text{cm}^2 \left(\frac{\mu_{\chi}}{1 \text{GeV}}\right)^2 \left(\frac{300 \text{GeV}}{\text{M*}}\right)^4$$