

Ricerca di Materia Oscura in eventi con un fotone e momento mancante in ATLAS

Maria Giulia Ratti

Università di Milano e INFN Milano

IFAE, INCONTRI DI FISICA DELLE ALTE ENERGIE

UNIVERSITÀ DI ROMA TOR VERGATA

9 APRILE 2015

Outline

Motivazione per la ricerca γ + E_T^{miss} Analisi e Risultati del Run 1 Sensibilità per il Run 2

Motivazione per la ricerca γ + E_{T}^{miss}

Eventi da collisione pp con E_T^{miss} e un fotone possono esplorare diversi scenari oltre il Modello Standard: Materia Oscura (DM), SUSY, Large Extra Dimensions.

Un eccesso nel canale $\gamma + E_T^{miss}$ segnalerebbe la presenza di **nuove particelle non rivelate** in ATLAS in maniera indipendente dall'interpetazione teorica:

- Alto E_T^{miss} = momento mancante che segnala la presenza di particelle non rivelate
- Fotone di alto p_T = è un tagger estremente pulito

Display di un candidato evento γ +E_t^{miss}: un singolo fotone di p_T = 449.7 GeV E_T^{miss} = 446.9 GeV, $\Delta \phi$ (E_T^{miss}, γ) $\approx \pi$

Produzione di DM a LHC

Complementarietà delle ricerche di DM

γ + E_T^{miss} nel Run 1: Segnali e Fondi

SEGNALE: Materia Oscura - coppie di WIMP XX con fotone ISR

Che cosa cerchiamo: = Alto E_T^{miss} che rincula back-to-back contro un singolo fotone **Come è descritto:**

Effective Field Theory (EFT)

Interazione tra WIMP e particelle SM è efficace, alla Fermi, introduce una scala di soppressione della teoria M*= $M_{med}/\sqrt{g_{SM}g_{DM}}$

PRO: la sezione d'urto di produzione dipende soltanto da m_{χ} e dalla massa del mediatore **CONTRO:** regime di validità limitato $Q_{TR} < M_{med}$

Modelli Semplificati

Integrazione esplicita del mediatore

- PRO: non limitato da alcun regime di validità
- **CONTRO:** la sezione d'urto dipende da più parametri (larghezza del mediatore, coupling)

Fondi da Standard Model

γ + E_T^{miss} nel Run 1: *Analisi*

Regione di Segnale (SR)

- Preselezioni: GRLs, vertice buono, data quality, cleaning dei jet, Trigger E_T^{miss}>80 GeV
- E_T^{miss}>150 GeV
- almeno un fotone con p_T > 125 GeV
- oggetti ben separati: $\Delta \phi(\gamma, E_T^{miss}) > 0.4$
- Fotone ben identificato "tight", isolato, |η^γ|< 1.37
- al più un jet p_T>30GeV, Δφ(jet,E_T^{miss}) > 0.4
- Veto su elettroni e muoni

Regioni di Controllo (CR)

- Stessi tagli della SR
- Invertiti uno o più tagli alla volta, per definire regioni arricchite di una particolare sorgente di fondo

Due fattori di scala \mathbf{k}_{w} e \mathbf{k}_{z} sono determinati dal rapporto dati/MC in ciascuna CR; si usano per normalizzare il MC nella SR:

$$N_{SR} = N_{SR}^{MC} \cdot k$$

- \rightarrow due CR sono designate per la stima del fondo primario Z+ γ
- \rightarrow una CR costruita per la stima del processo W+ γ
- \rightarrow Incertezze sistematiche possono essere correlate tra CR e SR

γ + E_T^{miss} nel Run 1: *Analisi*

Regione di Segnale (SR)

- Preselezioni: GRLs, vertice buono, data quality, cleaning dei jet, Trigger E_T^{miss}>80 GeV
- E_T^{miss}>150 GeV
- almeno un fotone con p_T > 125 GeV
- oggetti ben separati: Δφ(γ, E_T^{miss}) > 0.4
- Fotone ben identificato "tight", isolato $|\eta^{\gamma}| < 1.37$
- al più **un jet** p_T >30GeV, $\Delta \phi$ (jet, E_T^{miss}) > 0.4
- Veto su elettroni e muoni

Regioni di Controllo (CR)

- Stessi tagli della SR
- Invertiti uno o più tagli alla volta, per definire regioni arricchite di una particolare sorgente di fondo

Jet ricostruiti come Fotoni

Stima del contributo dei **fotoni originati da jet adronici** che passano i tagli di identificazione e isolamento del fotone con un metodo ABCD:

Elettroni ricostruiti come Fotoni

Stima del contributo degli **elettroni** ricostruiti come fotoni nella SR:

- **1. CR mono-elettrone:** richesto un elettrone isolato di $p_T > 125$ GeV anziché un fotone
- 2. EFR = probabilità che un elettrone sia identificato come fotone, con un metodo tag&probe:
 - Elettrone tag (pT>20 GeV) e fotone/ elettrone probe (pT>125 GeV)
 - massa invariante dei due compatibile con la massa della Z
 - EFR = rapporto del numero di fotoni probe ed elettroni probe

γ + E_T^{miss} nel Run 1: *Risultati*

Fit simultaneo nelle CR e in SR: $L[\mu | N_{obs}] = \prod_{reg} Poiss(N_{reg}^{obs} | \mu \cdot N_{reg}^{sig} + k_Z \cdot N_{reg}^{Z\gamma} + k_W \cdot N_{reg}^{W\gamma} + N_{reg}^{other})$

Non è stata osservata deviazione da SM

Limiti di esclusione sulla scala M* Tradotti in limiti della sezione d'urto di scattering WIMP-nucleone vs massa WIMP m_x

- ⇒ comparabili con ricerche dirette e indirette di Materia Oscura
- ⇒ diverse sensibilità per interazioni Spin-Dipendenti, SD (operatore D9)/ Spin-Independenti, SI (operatore D5)

Buona sensibilità a bassa massa delle WIMP

Altri risultati in Modelli Semplificati di DM e interpretazioni SUSY e LED in back-up

Phys. Rev. D 91, 012008 (2015)

Verso il Run 2: Sfide e Strategie

Sfide: condizioni sperimentali a 13 TeV

- Maggiore energia del centro di massa → migliora la significanza del segnale sui fondi
- PILE-UP più alto→ ricostruzione degli oggetti fisici più difficile

Ricostruzione dei Fotoni

- La ricostruzione si basa su un algoritmo sliding-window con cella di dimensione fissa
- La nuova calibrazione sarà basata su tecniche di analisi multivariata
- L'identificazione dei fotoni sarà cut-based come in Run 1
- L'isolamento sarà basato sia su tracce, sia su topocluster (è la grandezza più sensibile al pile-up)
- Attese performance simili a quelle del Run 1

Ricostruzione di E_T^{miss}

- E_T^{miss} è ricostruita a partire dagli oggetti fisici selezionati e dall'energia 'soffice' della collisione
- Il pile-Up impatterà sui jet e sul termine soffice
 - Termine Soffice Calorimetrico peggiora a 13 TeV
 - Termine Soffice basato sulle tracce ha performance migliori e più stabili rispetto a 8 TeV

Strategie

- Analisi Cut&Count: partire con la strategia d'analisi del Run 1
- Mantenere l'analisi model-independent per i primi dati
- Ottimizzare SR multiple per i diversi modelli interpretativi con maggiore statistica

γ + E_T^{miss} nel Run 2: *Sensibilità*

Studi di sensibilità dell'analisi a 13 TeV

Si ripete l'analisi a 8 TeV, scalando gli yields con il rapporto $\sigma_{13TeV}/\sigma_{8TeV}$

- → Fondi SM: tutti riscalati dal rapporto di sezioni d'urto per il processo dominante Z(→VV) + γ $\sigma_{13TeV}/\sigma_{8TeV} \approx 2$, *ATLAS* Work In Progress
- → Segnali: EFT Dark Matter $\sigma_{13TeV}/\sigma_{8TeV} \approx 4-6$

、							
vents/50 Ge		ATLAS Simulation ∫ Ldt = 5.0 fb ⁻¹ , √s= 13 TeV					
10			1		ttbar γ+jet jets+) γ+Z(- γ+W(γ+Z(-	W/Z → II) → II) →vv)	50
10-1							
10 ⁻²							
200	300 400	500 6	00 700	800	900	1000 MET	1100 Г [GeV]
ATL	AS MC I	ull Sim	ulatio	n at 1	3 Te'	V, DC	214,
for	the mos	st impor	tant b	ackgr	oun	ds in	SR

Yields nella SR per i fondi SM totali e per due punti di segnale di benchmark, stessi tagli 8 TeV, stesse incertezze sistematiche

Processo	8 TeV, 20.3 fb ⁻¹	13 TeV,5 fb ⁻¹	13 TeV, 10 fb ⁻¹	
Fondi SM totali	557	290	581	
± stat ± syst	± 36 ± 27	± 26 ± 14	± 36 ± 28	
SI, m _x =50 GeV	20.7	26.7	53.3	
SI, m _x =400 GeV	12.3	21.2	42.4	

Limiti inferiori su M_{*} (=scala di soppressione della teoria) per due punti di segnale

Process	8 TeV, 20.3 fb ⁻¹	13 TeV, 5 fb ⁻¹	13 TeV, 10 fb ⁻¹
SI, m _x =50 GeV	700 GeV	800 GeV	854 GeV
SI, m _χ =400 GeV	614 GeV	755 GeV	806 GeV

Con 1-2 fb⁻¹ l'analisi può competere con quella a 8 TeV, ma in maniera dipendente dal modello Luminosità integrata richiesta è 1.72 fb⁻¹ per D5 50 GeV, 0.96 fb⁻¹ per D5 400 GeV

Conclusioni

- La ricerca nel canale γ + E_T^{miss} può gettare luce su diversi scenari di fisica oltre il Modello Standard e sulla Materia Oscura in particolare
- L'analisi γ + E_T^{miss} ha prodotto interessanti risultati nel Run 1, anche se non sono stati osservati eccessi
- L'analisi γ + E_T^{miss} ha una buona sensibilità di scoperta o esclusione per la Materia Oscura a 13 TeV
- Il lavoro per il Run 2 è in corso !

IFAE, 09/04/2015

M.G. RATTI – Ricerca di Materia Oscura nel canale γ + E_{T}^{miss} in ATLAS

$\gamma + E_{T}^{miss}$ nel Run 1: *Risultati (2)*

$\gamma + E_{T}^{miss}$ nel Run 1: *Risultati (3)*

Produzione di WIMP => Scattering WIMP-nucleone

EFT (Effective Field Theory): l'interazione tra WIMP e particelle SM attraverso lo scambio di un mediatore pesante L'interazione è descritta da diversi operatori che possono dipendere o meno dallo spin delle particelle:

 $\bar{\chi}\gamma^{\mu}\chi\bar{q}\gamma_{\mu}q$ D5, vettoriale, spin-independent $\bar{\chi}\sigma^{\mu\nu}\chi\bar{q}\sigma_{\mu\nu}q$ D9, tensoriale, spin-dependent

La sezione d'urto di produzione WIMP+ $\!\gamma$:

$$\sigma(pp \to \chi\bar{\chi}) \propto \frac{g_{SM}^2 g_{DM}^2}{(q_{tr}^2 - m_V^2)^2 + m_V^2 \Gamma^2} E^2 \approx \frac{g_{SM}^2 g_{DM}^2}{m_V^4} E^2 \Rightarrow \frac{E^2}{{M^*}^4}$$

 $g_{\text{SM}}\,g_{\text{DM}}$ accoppiamenti , Γ larghezza del mediatore

nel limite $q_{tr} < m_V$, il mediatore non viene calcolato nel propagatore

=> a fissata massa della WIMP m_{χ} la sezione d'urto dipende soltanto dalla scala di soppressione della teoria M*

=> Ricavo limiti inferiori su M*

Limiti su M* possono essere tradotti in limiti sulla sezione d'urto WIMP-nucleone:

$$\sigma^{D5} = 1.38 \times 10^{-37} \text{cm}^2 \left(\frac{\mu_{\chi}}{1 \text{GeV}}\right)^2 \left(\frac{300 \text{GeV}}{\text{M*}}\right)^4$$

$$\sigma^{D9,D8} = 4.7 \times 10^{-39} \text{cm}^2 \left(\frac{\mu_{\chi}}{1 \text{GeV}}\right)^2 \left(\frac{300 \text{GeV}}{\text{M*}}\right)^4$$

