

1

Misure di violazione di CP time-integrated nei B a LHCb

R. Cardinale per la collaborazione LHCb

Università di Genova e INFN Genova

IFAE 2015

R. Cardinale per la collaborazione LHCb IFAE 2015

Indice

- Violazione di CP nel Modello Standard
- L'esperimento LHCb
- Selezione di misure di violazione di CP time-integrated a LHCb
 - Misure di violazione di CP nei decadimenti a tre corpi senza charm
 - $B^{\pm} \to K^{\pm} h^+ h^-$, $B^{\pm} \to \pi^{\pm} h^+ h^-$ con $h = \pi, K$ [PRD 90 (2014) 112004]
 - $B^{\pm} \to p\bar{p}h^{\pm}$ con $h = \pi, K$ [PRL 113 (2014) 141801]
 - Misura dell'angolo γ del triangolo unitario
 - Combinatione misure γ da $B \rightarrow Dh$ [LHCb-CONF-2014-004]
 - γ da loops usando decadimenti $B \rightarrow hh$ [PLB 741 (2015) 1]
 - Nuova misura nel decadimento $B^{\pm} \rightarrow [hh\pi^0]_D h^{\pm}$ [LHCb-PAPER-2015-014 in preparazione]

Violazione di CP nel Modello Standard

- Sorgente di violazione di CP nel MS: fase complessa nella matrice CKM
- La matrice CKM descrive il miscelamento degli autostati di massa e di sapore dei quark
- Misura degli angoli e dei lati del UT permette di verificare la consistenza del MS

$$\begin{pmatrix} d'\\s'\\b' \end{pmatrix} \equiv \mathbf{V_{CKM}} \begin{pmatrix} d\\s\\b \end{pmatrix} = \begin{pmatrix} V_{ud} & V_{us} & V_{ub}\\V_{cd} & V_{cs} & V_{cb}\\V_{td} & V_{ts} & V_{tb} \end{pmatrix} \begin{pmatrix} d\\s\\b \end{pmatrix}$$

$$\mathbf{V}_{\mathbf{CKM}}^{(3)} = \begin{pmatrix} 1 - \frac{1}{2}\lambda^2 & \lambda & A\lambda^3(\rho - i\eta) \\ -\lambda & 1 - \frac{1}{2}\lambda^2 & A\lambda^2 \\ A\lambda^3(1 - \rho - i\eta) & -A\lambda^2 & 1 \end{pmatrix}$$

Il rivelatore LHCb

- Buona risoluzione temporale: 45 fs
- Risoluzione sul parametro di impatto per identificare vertici secondari: 20 µm
- Risoluzione sull'impulso: $\Delta p/p = 0.4\%$ a $5~{\rm GeV}/c$ fino a 0.6% a $100~{\rm GeV}/c$
- Risoluzione sulla massa invariante: $\sim 18 \div 25 \,\mathrm{MeV}/c^2$

 Eccellente identificazione di particelle: separazione K-π

Trigger adronico efficiente

CPV in decadimenti di B a tre corpi senza charm

- Decadimenti di B^{\pm} in tre corpi senza charm sono un ottimo laboratorio per studi di violazione di CP grazie alla loro ricca struttura di risonanze negli stati finali
- Opportunità di cercare diverse sorgenti di violazione di CP attraverso lo studio delle asimmetrie nel Dalitz plot
- Violazione diretta di CP nasce dall'interferenza di due ampiezze (albero e pinguino) con diverse fasi deboli e forti
- L'interferenza tra diversi stati intermedi può introdurre una grande differenza di fasi forti che potrebbe originare asimmetrie locali
- Asimmetrie locali derivanti anche dall'interazione di stato finale (FSI) prodotta dal rescattering tra due stati finali
- A LHCb è stata misurata evidenza di violazione di CP in regioni non risonanti nei decadimenti B[±] → K[±]h⁺h[−], B[±] → π[±]h⁺h[−] con h = π, K [PRL 11 (2013) 101810, PRL 112 (2014) 011801], necessario capire meglio le sorgenti di queste asimmetrie
- $\bullet~$ Update delle analisi con $3~{\rm fb}^{-1}$ con miglioramento della procedura di selezione utilizzando metodo multivariato

•
$$B^{\pm} \to K^{\pm}h^{+}h^{-}$$
, $B^{\pm} \to \pi^{\pm}h^{+}h^{-}$ con $h = \pi, K$ [PRD 90 (2014) 112004]
• $B^{\pm} \to p\bar{p}h^{\pm}$ con $h = \pi, K$ [PRL 113 (2014) 141801]

 $B^{\pm} \rightarrow K^{\pm}h^{+}h^{-} \mathbf{e} B^{\pm} \rightarrow \pi^{\pm}h^{+}h^{-}$

Asimmetria CP integrata

- Asimmetria globale (integrata su tutto lo spazio delle fasi) si ottiene da $A_{raw} = \frac{N_{B} N_{B} + N_{B}}{N_{B} N_{B} + N_{B} + N_{B}}$
- Correzione per asimmetrie di rivelazione e di produzione del mesone B $A_{CP}(Khh) = A_{raw} - A_{prod}^B - A_{det}^K = A_{raw} - A_{\Delta}$ $A_{CP}(\pi hh) = A_{raw} - A_{prod}^B - A_{det}^{\pi} = A_{raw} - A_{\Delta} + A_D^K - A_D^{\pi}$
- A_{Δ} stimata usando il canale di controllo $B^{\pm} \rightarrow J/\psi K^{\pm}$ con $A_{\Delta} = A_{\text{raw}}(J/\psi K^{\pm}) A_{CP}(J/\psi K^{\pm})$
- $A^{\pi}_D = (0.00 \pm 0.25\%)$ da studi dei decadimenti prompt dei D^{\pm} [PLB 713 (2012) 186]
- $A_{L}^{K} = (-1.26 \pm 0.18)\%$ dal rapporto tra decadimenti completamente ricostruiti e parzialmente ricostruiti di D^0 [PLB 713 (2012) 186]
- Applicata correzione di accettanza per non uniformità delle efficienze

$$\begin{aligned} \mathcal{A}_{CP}(B^{\pm} \to K^{\pm}\pi^{+}\pi^{-}) &= +0.025 \pm 0.004 \pm 0.004 \pm 0.007 \quad (2.8\sigma) \\ \mathcal{A}_{CP}(B^{\pm} \to K^{\pm}K^{+}K^{-}) &= -0.036 \pm 0.004 \pm 0.002 \pm 0.007 \quad (4.3\sigma) \\ \mathcal{A}_{CP}(B^{\pm} \to \pi^{\pm}\pi^{+}\pi^{-}) &= +0.058 \pm 0.008 \pm 0.009 \pm 0.007 \quad (4.2\sigma) \\ \mathcal{A}_{CP}(B^{\pm} \to \pi^{\pm}K^{+}K^{-}) &= -0.123 \pm 0.017 \pm 0.012 \pm 0.007 \quad (5.6\sigma) \end{aligned}$$

Errori indicati sono statistici, sistematici e dovuti all'incertezza di $A_{CP}(B^{\pm} \rightarrow J/\psi K^{\pm})$ R. Cardinale per la collaborazione LHCb. IFAE 2015 7

Asimmetria CP nel Dalitz plot

- Binning adattato in modo da avere lo stesso numero di eventi per bin
- Sottrazione del background con tecnica degli sPlot e corretti per accettanza
- Elevate asimmetrie raw in certe regioni dello spazio delle fasi

Asimmetrie nella regione di rescattering

- ${\, \bullet \, }$ Violazione di CP prodotta da fase forte attraverso rescattering $KK \leftrightarrow \pi\pi$
- $\bullet~$ Osservata da altri esperimenti nella regione $[1.0\div1.5]\,{\rm GeV}/c^2~_{\rm [PRD~22~(1980)~2595,~Nucl.Phys.B158~(1979)~520]}$
- Per la simmetria CPT somma delle ampiezze parziali per una famiglia di stati finali collegati tra loro da rescattering sono uguali per particella e antiparticella
- Per cui un'asimmetria CP positiva in alcuni canali implica un'asimmetria negativa in altri canali della stessa famiglia

9

Asimmetrie nella regione di rescattering

- Fit di massa per eventi nella regione $1 < m_{h^+h^-}^2 < 2.2 \,\mathrm{GeV}^2/c^4$
- KK ↔ ππ rescattering può giocare un ruolo importante per la violazione di CP nei decadimenti a 3 corpi

R. Cardinale per la collaborazione LHCb IFAE 2015

Asimmetrie nel Dalitz: $B^{\pm} \rightarrow \pi^{\pm}\pi^{+}\pi^{-}$

• Proiezioni sulla massa $m(\pi^+\pi^-)_{low}$ divise a seconda del valore del coseno dell'angolo tra l'impulso dell'adrone non accoppiato e del figlio della risonanza con la stessa carica $(\cos \theta > 0, \cos \theta < 0).$

• L'asimmetria cambia segno intorno al valore di massa della risonanza osservata ho(770)

- presenza non significativa di violazione di CP a breve distanza in $B
 ightarrow
 ho \pi$
- indica un'asimmetria legata alla parte reale dell'interazione a lunga distanza tra i contributi di onda-S e onda-P

R. Cardinale per la collaborazione LHCb IFAE 2015 11

Asimmetrie nel Dalitz: $B^{\pm} \rightarrow K^{\pm}\pi^{+}\pi^{-}$

• Proiezioni sulla massa $m(\pi^+\pi^-)$ divise a seconda del valore del coseno dell'angolo tra l'impulso dell'adrone non accoppiato e del figlio della risonanza con la stessa carica.

- Violazione di CP dovuta all'interferenza tra onda S e P intorno alla massa $\rho(770)$ solo nella bassa massa invariante $K\pi \ [\cos \theta > 0]$
- Per $\cos \theta < 0$, inversione di segno solo nella regione associata alla risonanza $f_0(980)$
- Necessario un'analisi ad ampiezze per capire il comportamento

R. Cardinale per la collaborazione LHCb IFAE 2015 12

Violazione di CP in $B^{\pm} \rightarrow p\bar{p}h^{\pm}$

- Studi simili nei decadimenti con barioni $B^\pm\to p\bar{p}K^\pm$ e $B^\pm\to p\bar{p}\pi^\pm$
- Rescattering $p\bar{p} \leftrightarrow h^+h^-$ è atteso più piccolo che in $\pi^+\pi^- \leftrightarrow K^+K^-$, violazioni di CP più piccole
- Threshold enhancement a bassa massa $m_{p\bar{p}}$ è stata osservato in diversi decadimenti in una coppia di barioni: necessario studiare meglio la dinamica
- Analisi basata su $3\,{
 m fb}^{-1}$ di dati (2011+2012)
- Studio della CPV nel piano di Dalitz
- Misura di ${\cal B}(B^+\to \bar{\Lambda}(1520)(\to \bar{p}K^+)p)$
- Misura dell'asimmetria avanti-indietro, $A_{\rm FB}$, del mesone π , K

$B^{\pm} \rightarrow n\bar{n}h^{\pm}$ $B^{\pm} \rightarrow p\bar{p}\pi^{\pm}$ $B^{\pm} \rightarrow p\bar{p}K^{\pm}$ 700 LHCb LHCb 600 500 400

പ്പ 4500 ല

Dalitz plot con sottrazione del fondo utilizzando sPlot e corretti per efficienza ٢

Studio della dinamica $B^{\pm} \rightarrow p\bar{p}h^{\pm}$

- Studio della dinamica nella regione senza risonanze di charmonio $m_{p\bar{p}} < 2.85 \, {\rm GeV}/c^2$
- Distribuzione del coseno di elicità θ_P corretto per accettanza

- Comportamento opposto per i due modi (scattering non risonante)
- Asimmetria avanti-indietro

$$A_{\rm FB} = \frac{N(\cos\theta > 0) - N(\cos\theta < 0)}{N(\cos\theta > 0) + N(\cos\theta < 0)}$$

$$A_{\rm FB}(p\bar{p}K^{z}, m_{p\bar{p}} < 2.85 GeV/c^{2}) = 0.495 \pm 0.012(stat.) \pm 0.007(syst.)$$

$$A_{\rm FB}(p\bar{p}\pi^{z}, m_{p\bar{p}} < 2.85 GeV/c^{2}) = -0.409 \pm 0.033(stat.) \pm 0.006(syst.)$$

 Miglioramento rispetto al risultato di Belle [PLB 659 (2008) 80]

Asimmetrie CP nel Dalitz $B^{\pm} \rightarrow p\bar{p}K^{\pm}$

- Asimmetria raw corretta per asimmetria di produzione e rivelazione $A_{\rm CP} = A_{\rm raw} A_{\rm prod} A_{\rm det}^K$
- $A_{
 m prod}$ e $A_{
 m det}^K$ stimate da $B^\pm \to J/\psi(\to p\bar{p})K^\pm$
- L'asimmetria di rivelazione del π: A_{det}(K) A_{det}(π) = (-1.2 ± 0.1)% stimata da studi di decadimenti di D⁺ prompt

mode	\mathcal{A}_{CP}
$\eta_c [p\bar{p}]K^+$	$+0.040 \pm 0.034$
$\psi(2S)[p\bar{p}]K^+$	$+0.092 \pm 0.058$
$p\bar{p}K^+, m_{p\bar{p}} < 2.85 \text{GeV}/c^2$	$+0.021 \pm 0.020$
$p\bar{p}K^+$, $m_{p\bar{p}} < 2.85 \text{ GeV}/c^2$, $m_{pK}^2 < 10 \text{ GeV}^2/c^4$	-0.036 ± 0.023
$p\bar{p}K^+, m_{p\bar{p}} < 2.85 \text{ GeV}/c^2, m_{pK}^2 > 10 \text{ GeV}^2/c^4$	$+0.096 \pm 0.024$
$p\bar{p}\pi^+, m_{p\bar{p}} < 2.85 \text{ GeV}/c^2)$	-0.041 ± 0.039

Prima evidenza di CPV in decadimenti barionici

L'angolo γ del triangolo unitario

- ${\, {\rm o} \,}$ L'angolo γ può essere determinato interamente da decadimenti ad albero
- Diversi canali da studiare: $B \to Dh$
 - Interferenza tra le transizioni $b \to u$ e $b \to c$ dove $D^0 \to f$ e $\bar{D}^0 \to f$ decadono nello stesso stato finale

 - Le asimmetrie di CP e i rate di decadimento nei canali $B \rightarrow Dh$ sensibili a γ
 - La determinazione di γ tramite questi decadimenti ha piccole incertezze teoriche $\Delta\gamma/\gamma\sim 10^{-7}$ [JHEP 1401 (2014) 051]
 - Rappresenta uno dei controlli più efficaci che si possano fare sulla consistenza del MS

L'angolo γ

Canale	Dati $[fb^{-1}]$	
$B^{\pm} \rightarrow [hh]_D h^{\pm}$	1	GLW/ADS PLB 712 (2012) 203
$B^{\pm} \rightarrow [K\pi\pi\pi]_D h^{\pm}$	1	ADS PLB 723 (2013) 44
$B^{\pm} \rightarrow [K^0_s hh]_D K^{\pm}$	3	GGSZ JHEP 10 (2014) 097
$B^{\pm} \rightarrow [K^0_s K \pi]_D K^{\pm}$	3	GLS PLB 733C (2014) 36
$B^0 \rightarrow [hh]_D K^{*0}$	3	GLW/ADS Phys. Rev. D90 (2014) 112002
$B^0_s \to D^{\mp}_s K^{\pm}$	1	Time-dependent JHEP 11 (2014) 060

+ informazioni supplementari da altri esperimenti

L'angolo γ

Combinazione robusta

۰ Solo decadimenti $B \rightarrow DK$, usando un approcio frequentista

Combinazione totale

- Usa anche i decadimenti $B \rightarrow D\pi$
- Massimo corrisponde ad un inatteso valore elevato di r_B^{π}

L'angolo γ

- Miglior fit con 68% CL: $\gamma = (73^{+9}_{-10})^{\circ}$
- Cross-check con approcio bayesiano: $\gamma = 71.9^{+9.9}_{-10.0}$
- Misura più precisa al mondo: miglioramento del 30% rispetto a pre-LHCb
- Confronto con la misura di γ da loop usando $B \rightarrow hh$ $\gamma = (63.5^{+7.2}_{-6.7})$ [PLB 741 (2015) 1]
- Necessaria migliore precisione per trovare nuova fisica

γ da loops [PLB 741 (2015) 1]

- Utilizza misure di violazione di CP time-dependent nei decadimenti $B^0 \rightarrow \pi^+\pi^-$, e $B_s \rightarrow K^+K^-$ per estrarre l'angolo γ usando simmetria di U-spin [PLB 459 (1999) 306]
- Combinati con misure di $B^0 \rightarrow \pi^0 \pi^0 e B^{\pm} \rightarrow \pi^{\pm} \pi^0$ effettuati a BaBar combinando insieme i metodi di Fleisher e Gronau-London [PRL 65 (1990) 3381] basandosi sulle simmetrie di isospin e U-spin e utilizzando un approcio bayesiano
- Considerando un U-spin symmetry breaking fino al 50% si ottiene

$$\gamma = (63.5^{+7.2}_{-6.7})^{\circ}$$

- Valore compatibile e competitivo con γ determinato da processi a tree
- L'impatto delle correzioni dovute a U-spin breaking è non trascurabile

- $B^{\pm} \rightarrow [K^{\pm}\pi^{\mp}\pi^{0}]K^{\pm}$: favorito, piccola sensibilità a γ , utilizzato come canale di controllo
- $B^{\pm} \rightarrow [K^{\mp}\pi^{\pm}\pi^{0}]K^{\pm}$: ADS, soppresso, grande sensibilità a γ , non osservato prima (Evidenza di Belle, PRD88 (2013) 091104)

- $B^{\pm} \rightarrow [\pi^{\pm}\pi^{\mp}\pi^{0}]K^{\pm}$: quasi-GLW, mai analizzato in maniera inclusiva (BaBar ha eseguito uno studio ad ampiezze PRL 99 (2007) 251801)
- $B^{\pm} \rightarrow [K^{\pm}K^{\mp}\pi^{0}]K^{\pm}$: quasi-GLW, mai osservato prima

• Per ogni decadimento sono studiati anche i corrispondenti decadimenti $B^\pm\to D\pi^\pm$

- Gli effetti di interferenza sensibili a γ nel caso di decadimenti di D in 3 o più corpi variano nello spazio delle fasi del decadimento del D a causa delle risonanze intermedie che decadono forte
- Diluiscono la sensibilità a γ

$$\begin{split} R_{\text{ADS}(K)}^{K\pi\pi^{0}} &\cong (r_{B})^{2} + (r_{D}^{K\pi\pi^{0}})^{2} + 2\kappa_{D}^{K\pi\pi^{0}}r_{B}r_{D}^{K\pi\pi^{0}}\cos(\delta_{B} + \delta_{D}^{K\pi\pi^{0}})\cos\gamma \\ A_{\text{ADS}(K)}^{K\pi\pi^{0}} &\cong \left[2\kappa_{D}^{K\pi\pi^{0}}r_{B}r_{D}^{K\pi\pi^{0}}\sin(\delta_{B} + \delta_{D}^{K\pi\pi^{0}})\sin\gamma\right]/R_{\text{ADS}(K)}^{K\pi\pi^{0}} \\ R_{\text{qCIW}}^{h'h'\pi^{0}} &= 1 + (r_{B})^{2} + (2F_{+}^{h'h'\pi^{0}} - 1) \cdot 2r_{B}\cos\delta_{B}\cos\gamma \\ R_{\text{qCIW}}^{h'h'\pi^{0}} &= (2F_{+}^{h'h'\pi^{0}} - 1) \cdot 2r_{B}\sin\delta_{B}\sin\gamma/R_{\text{qCIW}}^{h'h'\pi^{0}} \\ \end{split}$$

- Misurati a CLEO-c [PLB 731 (2014) 197, PLB 740 (2015) 1]
 - Fattore di coerenza $\kappa_D^{K\pi\pi^0}=0.82\pm0.07$ misurato usando coppie coerenti di $D\bar{D}$ prodotte alla $\psi(3770)$
 - $F_+^{\pi\pi\pi^0}$ and $F_+^{KK\pi^0}$ indicano quanto questi due modi approssimano autostati di CP (frazione CP-dispari)
 - $F_{+}^{\pi\pi\pi^{0}}=0.97\pm0.02$ e $F_{+}^{KK\pi^{0}}=0.73\pm0.06$
 - Il valore grande indica che l'effetto di diluizione è molto piccolo

R. Cardinale per la collaborazione LHCb IFAE 2015 23

- Fit simultaneo degli 8 decadimenti divisi per carica
- Modo di decadimento favorito ADS $K\pi\pi^0$

• Modo di decadimento soppresso ADS $K\pi\pi^0$

$$\begin{split} R^{K\pi\pi^0}_{\text{ADS}(K)} &= 0.0140 \pm 0.0047 \pm 0.0019 \\ R^{K\pi\pi^0}_{\text{ADS}(\pi)} &= 0.00235 \pm 0.00049 \pm 0.00004 \\ A^{K\pi\pi^0}_{\text{ADS}(K)} &= -0.20 \pm 0.27 \pm 0.03 \\ A^{K\pi\pi^0}_{\text{ADS}(\pi)} &= 0.438 \pm 0.190 \pm 0.009 \end{split}$$

- Osservabili consistenti con Belle [PRD88 (2013) 091104] ma più precisi
- Principale sistematica: incertezze sui parametri fissi delle PDF usate nel fit
- No significativa violazione di CP

• Modo di decadimento quasi GLW $\pi\pi\pi^0$

• Prima misura di $A_{\alpha GLW(\pi)}^{\pi\pi\pi^{0}}!$

• Per $A^{\pi\pi\pi^0}_{\mathrm{qGLW}(\pi)}$: la principale sistematica è data dalle asimmetrie di rivelazione e interazione

• Modo di decadimento quasi GLW $KK\pi^0$

$$\begin{split} A^{KK\pi^0}_{\rm qGLW(K)} &= 0.30 \pm 0.20 \pm 0.02 \\ A^{KK\pi^0}_{\rm qGLW(\pi)} &= -0.030 \pm 0.040 \pm 0.003 \\ R^{KK\pi^0}_{\rm qGLW} &= 0.95 \pm 0.22 \pm 0.04 \end{split}$$

- Principali sistematiche: incertezze sui parametri fissi delle PDF usate nel fit e stima delle efficienze relative usando il MC
- Per $A_{\rm qGLW(\pi)}^{KK\pi^0}$: la principale sistematica è data dalle asimmetrie di rivelazione e interazione

- ullet Combinando gli osservabili misurati si ottengono vincoli su r_B , δ_B e γ
- Input esterni: $\kappa_D^{K\pi\pi^0}$, $F_+^{\pi\pi\pi^0}$ e $F_+^{KK\pi^0}$ e i BR dei decadimenti dei D

- Compatibili con il valore ottenuto dalla combinazione globale di LHCb
- Si ottiene $r_B = 0.11 \pm 0.03$, no limiti significativi su γ e δ_B
- $\bullet\,$ Ma le misure ottenute miglioreranno la precisione di γ quando incluse nel fit globale

Conclusioni

- Sono state misurate le asimmetrie CP nei decadimenti in 3 corpi $B^{\pm} \to h^{\pm} h^{+} h^{-}$
 - Asimmetrie di CP non uniformi nello spazio delle fasi
 - Contributo dovuto a rescattering $KK \leftrightarrow \pi\pi$
- Studio delle asimmetrie CP e della dinamica del decadimento barionico $B^\pm \to p \bar{p} K^\pm$
 - ${\scriptstyle \bullet }$ Prima evidenza di CPV in decadimenti barionici di B
 - Comportamento opposto nella distribuzione di elicità per gli stati finali $p\bar{p}\pi^+$ e $p\bar{p}K^+$
- $\bullet\,$ La combinazione della misura di γ fornisce il valore più preciso disponibile
- Nuovi decadimenti studiati come $B^{\pm} \rightarrow [hh\pi^0]_D h^{\pm}$ verranno inclusi nella combinazione migliorando la precisione
- $\bullet\,$ Nuovi e più precisi risultati verranno dai dati del Run II con $5\,{\rm fb}^{-1}$ attesi

Spare slides

Diversi metodi per determinare γ

- Diversi metodi a seconda dei decadimenti del D^0
 - ADS: D^0 può decadere in entrambi gli stati f e barf
 - $D^0 \rightarrow K^- \pi^+$, $D^0 \rightarrow K \pi \pi \pi$
 - GLW, D^0 decade in autostati di CP

• $D^0 \rightarrow K^+ K^-$, $D^0 \rightarrow \pi^+ \pi^-$

 $\bullet\,$ GGSZ, analisi delle asimmetrie in regioni diverse del piano di Dalitz dei decadimenti D^0

• $D^0 \rightarrow K^0_s \pi \pi$, $D^0 \rightarrow K^0_s K K$

• GLS, analisi tipo ADS che utilizza un decadimento di D^0 singolo Cabibbo soppresso (SCS)

• $D^0 \rightarrow K^0_s K \pi$