

Stefano Roberto Soleti

INFN - Laboratori Nazionali di Frascati Mu2e Calorimeter Group

Caratterizzazione di un prototipo del calorimetro elettromagnetico per l'esperimento Mu2e

Conversione diretta di un muone in elettrone nel campo di un nucleo

 $\mu^- + A(Z, N) \to e^- + A(Z, N)^*$

IFAE 2015

Obiettivo di Mu2e

$$R_{\mu e} = \frac{\mu^{-} + A(Z, N) \to e^{-} + A(Z, N)}{\mu^{-} + A(Z, N) \to \nu_{\mu} + A(Z - 1, N)} < 6 \cdot 10^{-17} (90\% \text{ C.L.})$$

Previsione Modello Standard: $R_{\mu e} < 10^{-50}$ **Limite attuale:** $R_{\mu e} < 7 \cdot 10^{-13}$ W. Bertl et al. (SINDRUM II)

Segnatura sperimentale

- Elettrone isolato, monoenergetico.
- $E_e = m_\mu c^2 B_\mu(Z) C(A) = 104.97 \,\text{MeV}$ in un nucleo di Al.

Conversione diretta di un muone in elettrone nel campo di un nucleo

 $\mu^- + A(Z, N) \to e^- + A(Z, N)^*$

Obiettivo di Mu2e

$$R_{\mu e} = \frac{\mu^{-} + A(Z, N) \to e^{-} + A(Z, N)}{\mu^{-} + A(Z, N) \to \nu_{\mu} + A(Z - 1, N)} < 6 \cdot 10^{-17} (90\% \text{ C.L.})$$

Previsione Modello Standard: $R_{\mu e} < 10^{-50}$ **Limite attuale:** $R_{\mu e} < 7 \cdot 10^{-13}$ W. Bertl et al. (SINDRUM II)

Segnatura sperimentale

- Elettrone isolato, monoenergetico.
- $E_e = m_\mu c^2 B_\mu(Z) C(A) = 104.97 \,\text{MeV}$ in un nucleo di Al.

Conversione diretta di un muone in elettrone nel campo di un nucleo

 $\mu^- + A(Z, N) \to e^- + A(Z, N)^*$

Obiettivo di Mu2e

$$R_{\mu e} = \frac{\mu^{-} + A(Z, N) \to e^{-} + A(Z, N)}{\mu^{-} + A(Z, N) \to \nu_{\mu} + A(Z - 1, N)} < 6 \cdot 10^{-17} (90\% \text{ C.L.})$$

Previsione Modello Standard: $R_{\mu e} < 10^{-50}$ **Limite attuale:** $R_{\mu e} < 7 \cdot 10^{-13}$ W. Bertl et al. (SINDRUM II)

Segnatura sperimentale

- Elettrone isolato, monoenergetico.
- $E_e = m_\mu c^2 (B_\mu(Z)) C(A) = 104.97 \,\text{MeV}$ in un nucleo di Al.

Energia di legame atomica $Z^2 \alpha^2 m_{\mu}/2$

 $\rightarrow e\gamma$

Conversione diretta di un muone in elettrone nel campo di un nucleo

 $\mu^- + A(Z, N) \to e^- + A(Z, N)^*$

Obiettivo di Mu2e

$$R_{\mu e} = \frac{\mu^{-} + A(Z, N) \to e^{-} + A(Z, N)}{\mu^{-} + A(Z, N) \to \nu_{\mu} + A(Z - 1, N)} < 6 \cdot 10^{-17} (90\% \text{ C.L.})$$

Previsione Modello Standard: $R_{\mu e} < 10^{-50}$ **Limite attuale:** $R_{\mu e} < 7 \cdot 10^{-13}$ W. Bertl et al. (SINDRUM II)

Segnatura sperimentale

- Elettrone isolato, monoenergetico.
- $E_e = m_\mu c^2 B_\mu(Z) C(A) = 104.97 \,\text{MeV}$ in un nucleo di Al.

Energia di legame atomica Energia di rinculo del nucleo $Z^2 \alpha^2 m_{\mu}/2$ $m_{\mu}^2/(2m_N)$

Tecnica sperimentale

- 1. Generazione di un fascio pulsato di muoni a bassa energia.
- 2. I muoni vengono fermati su una targhetta sottile, dove formano atomi muonici.
- 3. Possono avvenire tre fenomeni:

L'esperimento Mu2e

3+2 Paesi, 35 istituzioni, 200 membri

Scelta del cristallo

	LYSO	BaF ₂	CsI
Lunghezza di radiazione X _o [cm]	1.14	2.03	1.86
Light Yield [% NaI(Tl)]	75	4 /36	3.6
Т (Тур. Та=25 °С)	40	0.9 /650	20
	APD	R&D APD	SiPM
L 500 0 58664-02K/-05K/-10K/ 40 58664-02K/-05K/-10K/ 40 20 58664-02K/-05K/-10K/ -20K/-30K/-50K 20 20 20 20 20 20 20 20 20 20 20 20 20 2	402	220 /300	310
	port, 2012), ma troppo costosa .		

eport, 2014):

n) e una molto lenta nell'UV vicino (300 nm);

WAVELENGTH (nm)

600

800

1000

1200

CsI scelta di backup: light yield paragonabile, R&D fotosensore UV esteso, economico, sensibile alle radiazioni, leggermente igroscopico.

UVE-SPL

Wavelength (nm)

- **Caltech**, **JPL** e **RMD** stanno sviluppando un nuovo modello di APD che incorpora un filtro antiriflesso che permette (col 90% di Q.E.) una trasmittanza del:
- •~70% @ 220 nm (lunghezza d'onda della componente veloce del BaF_2);
- •~0.1% @ 300 nm (lunghezza d'onda della componente lenta).

Scelta del cristallo

	DNGC	BaF ₂	CsI
Lunghezza di radiazione X _o [cm]	1.14	2.03	1.86
Light Yield [% NaI(Tl)]	75	4 /36	3.6
T F L o V O V O V O V O V O V O V O V O V O V	40	0.9 /650	20
	APD	R&D APD	SiPM
	402	220 /300	310
	port, 2012), ma troppo costosa.		

eport, 2014):

n) e una molto lenta nell'UV vicino (300 nm);

WAVELENGTH (nm)

800

600

1000

1200

CsI scelta di backup: light yield paragonabile, R&D fotosensore UV esteso, economico, sensibile alle radiazioni, leggermente igroscopico.

UVE-SPL

Wavelength (nm)

- Caltech, JPL e RMD stanno sviluppando un nuovo modello di APD che incorpora un filtro antiriflesso che permette (col 90% di Q.E.) una trasmittanza del:
- •~70% @ 220 nm (lunghezza d'onda della componente veloce del BaF_2);
- •~0.1% @ 300 nm (lunghezza d'onda della componente lenta).

Scelta del cristallo

	DNSO	BaF ₂	CsI
$\overset{9-14}{\text{Lunghezza}}$ di radiazione X _o [cm]	1.14	2.03	1.86
Light Yield [% NaI(Tl)]	75	4/36	3.6
T F L S8664-02K/-05K/-10K/ -20K/-30K/-50K	40	0.9 /650	20
	APD	R&D APD	SiPM
	402	220 /300	310
	port, 2012), ma troppo costosa .		

eport, 2014):

n) e una molto lenta nell'UV vicino (300 nm);

WAVELENGTH (nm)

800

600

1000

1200

CsI scelta di backup: light yield paragonabile, R&D fotosensore UV esteso, economico, sensibile alle radiazioni, leggermente igroscopico.

UVE-SPL

Wavelength (nm)

- Caltech, JPL e RMD stanno sviluppando un nuovo modello di APD che incorpora un filtro antiriflesso che permette (col 90% di Q.E.) una trasmittanza del:
- •~70% @ 220 nm (lunghezza d'onda della componente veloce del BaF_2);
- •~0.1% @ 300 nm (lunghezza d'onda della componente lenta).

Prototipo di matrice

Prototipo del calorimetro composto da una matrice 5x5 con:

- 25 cristalli di LYSO di forma quadrata con dimensioni 30x30x130 mm³;
- 25 fotosensori Hamamatsu APD S8664-1010 (10x10 mm²);
- 25 board Amp-HV, controllate da due processori ARM;
- 25 fibre ottiche collegate a un laser per il monitoraggio dei fotosensori.
- Cristalli rivestiti con un foglio di materiale riflettente (3M ESR) spesso 60 μ m.
- Cristalli connessi otticamente al fotosensore con grasso ottico Saint-Gobain BC-630.
- Simulata tramite GEANT4.

Test beam presso MAMI

Apparato sperimentale

- Il microtrone disponibile presso MAMI (MAinz MIcrotron) accelera un fascio di elettroni fino a 1.5 GeV, generando per *bremsstrahlung* un fascio secondario di fotoni di energia variabile ($\Delta E(FWHM) \sim 1 MeV$).
- Arrivo del fascio in sala segnalato da un odoscopio.
- Il fascio viaggia in aria per ~20 m prima di colpire la matrice.
- Trigger per i raggi cosmici costituito dalla coincidenza di due fototubi accoppiati ad una paletta di scintillatore plastico, sopra la matrice.
- Segnali acquisiti con sistema VME e letti da 2 digitizer CAEN-1720 a 250 Msps e risoluzione 12 bit.

Risoluzione energetica

- Calibrazione effettuata col fascio a 61.3 MeV, 92.5 MeV, 125.3 MeV, 155.7 MeV, 187.1 MeV.
- Fit lognormale dello spettro energetico.

Simulazione GEANT4 compatibile con lo spettro sperimentale solo con smearing gaussiano del 2.8% a causa di: non linearità di risposta, leakage e non uniformità dei cristalli.

Soddisfa il requisito del 5% attorno a 100 MeV.

Andamento della risoluzione energetica in funzione dell'energia depositata fittata con la funzione:

$$\frac{\sigma_E}{E} = \frac{a}{\sqrt{E}} \oplus b$$

- *a* termine stocastico;
- *b* termine costante.

Il termine di rumore 1/E è trascurabile.

Risoluzione spaziale

Media, pesata con l'energia, della posizione dell'evento (data dalla posizione del cristallo dove viene rivelato): ٠

$$\overline{x} = \frac{\sum_i x_i E_i}{\sum_i E_i}.$$

- x_i può assumere i valori 0 mm, ± 30 mm, ± 60 mm (centro dei vari cristalli rispetto al punto di impatto del fascio).
- L'asse z è dato dalla direzione del fascio.
- L'energia del fascio è 92.5 MeV.

Simulazione GEANT4 in buon accordo coi dati sperimentali: la σ intrinseca del fascio è ~2 mm.

Dati

- σ =4.0 mm sull'asse verticale.
- σ =4.1 mm sull'asse orizzontale.

Simulazione

- σ =4.5 mm sull'asse verticale.
- σ =4.1 mm sull'asse orizzontale.

Sia i dati che la simulazione soddisfano il requisito di 1x1 cm² a 100 MeV.

• Matrice ruotata di 90° (il fascio colpisce la matrice longitudinalmente).

- Il centro del cristallo è x=0, gli APD sono posizionati a x=65 mm.
- Il decremento ai lati è dovuto a effetti di leakage.
- La differenza tra dati e simulazione per x = -43.3 mm è dovuta a effetti di non uniformità di risposta, non ancora correttamente simulati.

Test beam presso BTF

Apparato sperimentale

- Il Linac del complesso DAΦNE presso Frascati accelera in un'area controllata pacchetti di elettroni lunghi 180-200 ps e di energia variabile.
- L'arrivo del fascio è segnalato da due scintillatori incrociati posti davanti alla matrice.
- Stesso sistema di acquisizione dati e lettura usato a MAMI.
- Il trigger per i raggi cosmici è composto dalla coincidenza di quattro fototubi accoppiati a due palette di scintillatore plastico, poste una sopra e una sotto la matrice.

Metodo finger-based

$$\Delta t = \frac{\sum_{i=1}^{25} t_i E_i}{\sum_{i=1}^{25} E_i} - \frac{t_{f_1} + t_{f_2}}{2},$$

- *t_i* è il tempo del picco del fit alla forma d'onda della cella *i*esima;
- *Ei* è l'energia depositata nella cella *i*-esima;
- $t_{f_1} e t_{f_2}$ sono i tempi dei picchi del fit alla forma d'onda dei due scintillatori.

Metodo calorimeter-based

- $\Delta t = t_1 t_2$
- Il fascio viene sparato esattamente tra due cristalli adiacenti;
- *t*¹ e *t*² sono i tempi dei picchi del fit alle forme d'onda dei due cristalli colpiti.

Conclusioni e prospettive

- Per soddisfare i requisiti richiesti dall'esperimento, il calorimetro elettromagnetico deve avere (a 100 MeV):
 - risoluzione energetica migliore del 5%;
 - risoluzione temporale migliore di 500 ps;
 - risoluzione spaziale migliore di 1x1 cm².
- I risultati ottenuti tramite i due test beam, a MAMI in settembre e presso la BTF in dicembre, dimostrano che il LYSO accoppiato con APD standard avrebbe soddisfatto i requisiti dell'esperimento.
- La scelta finale del cristallo e del relativo fotosensore avverrà entro ottobre 2015.
- R&D in corso con cristalli di BaF₂ accoppiati a APD UV-extended e con cristalli di CsI accoppiati a SiPM.
- La costruzione dell'apparato inizierà nel 2016, mentre la prima fase di presa dati è prevista per la fine del 2020.

Diapositive di backup

Fondo	Metodo di reiezione	
Elettroni dal decadimento in orbita del muone (DIO)	Buona risoluzione energetica e d'impulso	
Fondo da raggi cosmici	Cosmic Ray Veto e PID	
Fondo da antiprotoni	Antiproton absorber nel TS	
Cattura radiativa del pione e decadimento in volo del muone	Fascio pulsato e finestra temporale di segnale ritardata	

Lagrangiana esplicita

 L_{CLFV}

