

Standard Model Physics at CMS

Piergiulio Lenzi – INFN for the CMS collaboration

8 Aprile 2015 Università di Roma Tor Vergata

• Impressive agreement

QCD at the TeV scale

- PDFs and scale uncertainties are among the main systematics for Higgs cross section measurement
- QCD is ubiquitous source of background for any new physics signal
- The LHC has done a great deal of work during Run 1 to understand QCD at the energy frontier
 - Important input for PDF fits
 - Put into light the importance of state of the art theoretical predictions

Gluon PDF

Central rapidities are particularly relevant for gluon PDF Forward rapidities and high pT are expected to have an impact on quark PDFs

4

W+charm

- Probes the strange quark pdf
- Different PDFs predict different suppressions of s quark w.r.t. d quark

JHEP02(2014)013

Hard QCD probes

- Associated production of vector bosons plus jets has been extensively used to test the predictions of pQCD
 - Several models compared to data

CMS-PAS-SMP-13-007

Hard QCD probes

- Complex observables!
- The Run 1 statistics already allows

exploration of extreme phase space

corners

• Relevant for searches

Z+heavy flavor

- Large theoretical uncertainties
- Important for searches
- Two main approaches
 - 4-flavor scheme: use PDFs without a b quark and produce all b quarks via matrix element
 - 5-flavor scheme: b quarks allowed in the initial state

- 5-F scheme gives the best description of Z+>=1b jet
 - Unclear why, for Z+1b both 4F and 5F should correspond to the same order
- 4-F scheme gives good description of Z+>=2b jets

Electroweak Z production

- $O(a^4_{_{EWK}})$ production of di-leptons has been investigated
- Tiny cross section, the VBF like diagram interferes destructively with the others
- Main background is $O(a_{EWK}^2 a_s^2) Z+2jets_{\underline{\alpha}}$
- Analysis is based both on an MVA approach and a data drive approach to estimate Z+2 jet from γ+2jets
- 5 sigma observation of this process!
 - Due to the large VBF destructive interference, this could be regarded as the first observation of VBF in CMS

$$\sigma = 226 \pm 26(stat.) \pm 35(syst.) \ f$$

Diboson production

- Important test of the gauge sector of the SM
- Irreducible background for Higgs and searches
- Test of triple gauge couplings
 - Charged TGC (WWZ, WW $\!\gamma\!$) allowed in SM
 - Neutral TGC (ZZZ, ZZγ) forbidden in SM
- Anomalous couplings generally lead to larger cross sections, especially in the high transverse momentum tails

Coupling	Parameters	Channel
WWY	λγ, Δκγ	ww;wy
wwz	$\lambda Z, \Delta \kappa z, \Delta g_1^Z$	ww,wz
ZZγ	h₃ ^z , h₄ ^z	Zγ
Zyy	h₃Y, h₄Y	Zγ
ZZZ	f ₄ z, f ₅ z	ZZ
ZγZ	f4 ^Y , f5 ^Y	ZZ

Diboson production

WW production

CMS-PAS-SMP-14-016

- Recently updated with full 8 TeV statistics
- Requiring two charged leptons and MET
- Inclusive cross section

 $\sigma_{CMS} = 60.1 \pm 0.9(stat.) \pm 3.2(exp.) \pm 3.1(th.) \pm 1.6(lum.)$ pb

In good agreement with SM NNLO predictions $59.8^{+1.3}_{-1.1}~{
m pb}$ • Also in a fiducial phase space Gehrmann, Grazzini et al

$p_{\rm T}^{\rm jet}$ threshold (GeV)	σ_{0jet} measured (pb)	σ_{0jet} predicted (pb)
20	$36.2 \pm 0.6 (\text{stat.}) \pm 2.1 (\text{exp.}) \pm 1.1 (\text{th.}) \pm 0.9 (\text{lum.})$	36.7 ± 0.1 (stat.)
25	$40.8 \pm 0.7 \text{ (stat.)} \pm 2.3 \text{ (exp.)} \pm 1.3 \text{ (th.)} \pm 1.1 \text{ (lum.)}$	40.9 ± 0.1 (stat.)
30	$44.0 \pm 0.7 \text{ (stat.)} \pm 2.5 \text{ (exp.)} \pm 1.4 \text{ (th.)} \pm 1.1 \text{ (lum.)}$	43.9 ± 0.1 (stat.)

$p_{\rm T}^{\rm jet}$ threshold (GeV)	$\sigma_{0jet,W \rightarrow \ell \nu}$ measured (pb)	$\sigma_{0jet,W \rightarrow \ell \nu}$ predicted (pb)
20	0.223 ± 0.004 (stat.) ± 0.013 (exp.) ± 0.007 (th.) ± 0.006 (lum.)	0.228 ± 0.001 (stat.)
25	0.253 ± 0.005 (stat.) ± 0.014 (exp.) ± 0.008 (th.) ± 0.007 (lum.)	0.254 ± 0.001 (stat.)
30	$0.273 \pm 0.005 (\text{stat.}) \pm 0.015 (\text{exp.}) \pm 0.009 (\text{th.}) \pm 0.007 (\text{lum.})$	0.274 ± 0.001 (stat.)

WW production

CMS-PAS-SMP-14-016

WW production

CMS-PAS-SMP-14-016

- This measurement is sensitive to aTGC for WWZ and WW $\!\gamma$
 - No deviations from SM have been observed and limits have been set

Neutral aTGC

No deviation from SM observed so far...

Feb 2015				Mar 2	2015			
			ATLAS Limits CMS Prel. Limits CDF Limit CDF Limit				ATLAS Limits CMS Prel. Limits	
~		7.	0.015 0.016 4.045-1	٤Ŷ	H	ZZ	-0.015 - 0.015	4.6 fb ⁻¹
$ \mathbf{h}_{a}^{\prime} $		2 i		¹ 4	⊢ −−1	ZZ	-0.005 - 0.005	19.6 fb ⁻¹
- 3	H	Ζγ	-0.003 - 0.003 5.0 fb ⁻¹		H	ZZ (2l2v)	-0.004 - 0.003	24 7 fb ⁻¹
	⊢	Zγ	-0.005 - 0.005 19.5 fb ⁻¹		H	ZZ (comb)	-0.003 - 0.003	24.7 fb ⁻¹
	H	Zγ	-0.022 - 0.020 5.1 fb ⁻¹	-7		77	-0.013 - 0.013	4.6 fb ⁻¹
. 7	⊢i	Zγ	-0.013 - 0.014 4 6 fb ⁻¹	$ t_{\Delta}^{2}$	H	77	-0 004 - 0 004	19.6 fb ⁻¹
n ₃	H	Ζγ	-0.003 - 0.003 5.0 fb ⁻¹		H	ZZ (2 2v)	-0.003 - 0.003	24 7 fb ⁻¹
		_, 7∨	-0.004 - 0.004 10 5 fb ⁻¹		H	ZZ (comb)	-0.002 - 0.003	24.7 fb ⁻¹
		-, 7√	-0.004 - 0.004 - 19.5 fb	cγ	⊢ I	ZZ	-0.016 - 0.015	4.6 fb ⁻¹
		7.		$ I_5'$	⊢	77	-0.005 - 0.005	19.6 fb ⁻¹
h_{x100}^{γ}	⊢−−−− 1	Ζγ	-0.009 - 0.009 4.6 fb		H	ZZ(2 2v)	-0.003 - 0.004	24 7 fb ⁻¹
14/100	н	Ζγ	-0.001 - 0.001 5.0 fb ⁻¹			ZZ(comb)	-0.003 - 0.003	24.7 fb^{-1}
	H	Zγ	-0.004 - 0.004 19.5 fb ⁻¹	7		77		24.7 IU 1 C fb ⁻¹
17 100	⊢−−−− 1	Zγ	-0.009 - 0.009 4 6 fb ⁻¹	f ^z	· · ·	77	-0.013 - 0.013	4.0 10
h ₄ x100		Z∿	0.001 + 0.001 = 0.001	5	E-1		-0.004 - 0.004	19.6 fb '
1 7		~ 7			⊢I	ZZ (212V)	-0.003 - 0.003	24.7 fb ⁻
	<u> </u>	Ζγ	-0.003 - 0.003 19.5 fb ⁻¹		H	∠∠ (comb)	-0.002 - 0.002	24.7 fb⁻¹
		0.5				0.5	1 15	×10 ⁻¹
-0.5	U	0.5	aTGC Limits @95% C.L.	-1	0.0 0	aTG	aC Limits @95	% C.L.

Vector boson scattering

- Important process to probe EWSB
- The role of the Higgs in EWSB is essential to preserve unitarity of VBS cross section
- Same sign WW scattering provides the best S/B

VBS in WWjj same sign

Events / bin

- Look into the high di-jet mass tail of events with two same sign leptons
- Backgrounds
 - Non-prompt leptons (75%)
 - WZ
 - Wong sign, DPS, VVV
- Result in agreement with SM
 - 2σ observed, 3.1σ expected
- Limits put on alternative models, such as H⁺⁺ and aQGC

 $\sigma_{fid}(W^{\pm}W^{\pm}jj) = 4.0^{+2.4}_{-2.0}(stat)^{+1.1}_{-1.0}(syst)fb$

PhysRevLett.114.051801

Conclusion

Candidate VBS event in the di-muon channel

- An impressive amount of SM measurement has been carried out by CMS on LHC Run 1 data
- Next main goals for precision measurement will be
 - W mass, triple and quartic gauge couplings, VBS
 - And an ever improving precision on QCD measurements
- ...hoping to find hints of new physics

Jet reconstruction (CMS)

- Jets are reconstructed with the anti-kt algorithm, with radius of 0.5 or 0.7
- 3 available algorithms for jet reconstruction
 - Calo-Jets: use only the calorimeter towers
 - Jet-Plus-Track Jets: improve the calorimeter jets using the tracks in the jet cone
 - Particle-Flow jets: uses particle flow candidates as input to the clustering algorithm
 - Particle flow reconstruction:
 - global event reconstruction
 - Identifies muons, electrons, taus, photons, charged hadron, neutral hadrons
 - Combines the information from all detectors

Jet reconstruction (CMS)

Jets are reconstructed with the anti-kt algorithm, with radius of 0.5 or 0.7

3 available algorithms for jet reconstruction

Calo-Jets: use only the calorimeter towers

Jet-Plus-Track Jets: improve the calorimeter jets using the tracks in the jet cone

Particle-Flow jets: uses particle flow candidates as input

to the clustering algorithm

Particle flow reconstruction:

- global event reconstruction
- Identifies muons, electrons, taus, photons, charged hadron, neutral hadrons
- Combines the information from all detectors

Jet energy scale (CMS)

We use a multi-step procedure to correct the energy of our jets

$$C_{\mu} p_{\mu}^{cor} = C \cdot p_{\mu}^{raw} \cdot \mathsf{nts} f C = C_{offset}(p_T^{raw}) \cdot C_{MC}(p_T', \eta) \cdot C_{rel}(\eta) \cdot C_{abs}(p_T'')$$

The method uses correction factors extracted from the full simulation of CMS, $\rm C_{_{MC}}$

Residual differences with respect to data are accounted for as further scaling factors

- C_{rel} accounts for non-uniformity in eta. It is obtained applying on data and MC the di-jet balance method
- C_{abs} accounts for residual absolute scale differences between data and MC. It is obtained applying on data and MC the γ +jet and Z +jet pT balancing

In this MC + residual method effects like the presence of additional radiation spoiling dijet or γ +jet and Z +jet balancing enter only at second order

Jet energy scale (CMS)

Total systematic uncertainty on the energy scale for particleflow jets

Jet energy resolution (CMS)

Determined with di-jet and γ +jet pT balance Plots show two example regions in η Resolution is of the order of 10% around 50 GeV

Jet rates

Normalized to the inclusive cross section

n/(n-1) jets

The comparison to the predictions of multi-leg matrix element + parton shower (Madgraph) shows good agreement

> Pure parton shower (pythia) fails to predict multi-jet final states

Given the pT threshold the sensitivity to underlying event is negligible

W/Z+jets: rates

2

3

Δ

ale

ire

Inclusive jets

Measurement of inclusive jets at 8 TeV

• Data are compared with the predictions at NLO (NLOJet++), including nonperturbative (NP) corrections obtained with a shower MC

Phys.Rev. D86 (2012) 014022 (ATLAS) 3 orders of magnitude

Inclusive jets

Very interesting comparison between 7 TeV and 2.76 TeV

• Has power to constrain PDFs in the central region

 $\mathbb{C}N$

W+charm

- CMS tends to favor s suppression
 - Some tension between CMS and ATLAS on this measurement
 Alekhin et al

Isolated Photons

Useful for gluon constraint

Phys. Rev. D 89, 052004 (2014)

Impact of LHC on PDF

Impact of LHC data

NNLO, $\alpha_{s} = 0.118$, $Q^{2} = 10^{4} \text{ GeV}^{2}$ 1.25 1.25 1.25 1.15 No LHC data \tilde{v} 1.15 \tilde{v} 1.15 \tilde{v} 1.15 \tilde{v} 0.95 \tilde{v} General Compare global NNPDF3.0 fit with a fit without LHC data

PDF uncertainties on large-x gluon reduced due to top quark and jet data

PDF uncertainties on light quarks reduced from the Drell-Yan and W+charm data

The **description of all new LHC data**, already good in NNPDF2.3, is further improved in NNPDF3.0

Istituto Nazionale i Fisica Nucleare

a_s determination

Several measurements using different observables

- Inclusive jets, R32, 3-jet mass tī cross section
- Running probed up to the TeV scale

a determination

-Several measurements using different observables

- Inclusive jets, R32, 3-jet mass tī cross section
- Running probed up to the TeV scale

Photon + jets

- Jet pt > 30 GeV, |ŋ|<2.4
- Good agreement with NLO QCD
- Also good agreement with Sherpa
 - Including extended matrix element + parton shower approach to photons

Photon+jets

Differential in jet multiplicity and HT

- Interesting test for ME+PS
- Studied ratios also, reduced experimental (and theoretical) systematics

- ~30% discrepancy, not flat in proton discrepancy Nazionale
 - Better description of the 2j over 1 jet ratio

Event shapes in V+jets Phys. Lett. B 722 (201

- Central transverse thrust in Z+jets
- Built out of the Z and the jets with pT >50 GeV, |η|<2.4
- Both inclusively, and in a boosted topology where pt(Z)>150 GeV

CMS, $\sqrt{s} = 7$ CMS, $\sqrt{s} = 7$ TeV, L = 5.0 fb jets ≥ 1 /o do/dln1 \rightarrow I⁺I, p^Z > 150 GeV, N $/\sigma d\sigma/dln\tau$ $\rightarrow I^{\dagger}I$, $p_{\tau}^{z} > 0$ GeV, N ietr ≥ i 0.18 0.16 Data --- MAD G RAPH 0.16 0.14 MAD GRAPH SHERPA SHERPA 0.14 --- POWHEG (Z+1j) 0.12 POWHEG (Z+1j) 0.12 PYTHIA 6 (Z2) 0.1 0.1 0.08 0.08 0.06 0.06 (a) (b) 0.04 0.04 0.02 0.02 -12 -10 -8 -10 -12 -8 -6 -4 -2 $\ln \tau_{\tau}$ ratio to MAD GRAPH 1.4 CMS, Vs = 7 TeV, L = 5.0 fb ratio to MAD GRAPH 1.4 CMS, $\sqrt{s} = 7 \text{ TeV}, L = 5.0 \text{ fb}$ 1.3 ////, MAD GRAPH stat. uncertainty 1.3 MAD GRAPH stat. uncertainty 1.2 1.2 1.1 0.9 0.9 (c) 0.8 0.8 0.7 0.7 -12 -10 -8 -6 $\ln \tau_{\tau}$ -12 -10 -8 -4

τ**→**0.36

$$au_{\perp} \equiv 1 - \max_{ec{n}_T} rac{\sum_i |ec{p}_{\perp,i} \cdot ec{n}_T|}{\sum_i p_{\perp,i}}$$

The region dominated by multijet topologies shows agreement with LO+PS (Madgraph)

NLO +PS is also good, with a slight tendency to overshoot

Instead, in pencil-like topologies powheg shows best agreement

 $\ln \tau_{\tau}$

Several measurements, differential, up to 7-8 jets with full Run1 stat!

- Comparison with LO ME+PS and multi leg NLO +PS
- Nice agreement with ME+PS for multiplicity
- Some discrepancies in jet pT spectra below 300-400 GeV

CMS-SMP-13-007 NFN

Remarkable agreement also at very high multiplicity

• Data/Theory rather flat

1

Istituto Nazionale di Fisica Nucleare

Leading jet pT in Z+jets

• Differential in jet rapidity: some discrepancies begin to arise

42

- Madgraph+Pythia tends to predict harder spectra above ~100GeV
- Sherpa (NLO up to the second jet) shows a few single bin discrepancies

Leading jet p_ [GeV]

Leading jet p_ [GeV]

Leading jet p, [GeV]

| N F N

Istituto Nazionale di Fisica Nucleare

- ΔΦ between the Z and the leading jet
- Jet reconstruction: jet pT > $50 \text{ GeV}, |\eta| < 2.4$
- Good agreement with LO+PS
- Also very nice agreement with NLO+PS

Ratios pt(Z)/HT or pt(Z)/pt(j) are important for searches and are challenging to predict

• Large logarithms, missing higher orders

ΙΝΓΝ

Istituto Nazionale di Fisica Nucleare

- Important for searches
- At large momenta effects due to the Z mass can be neglected and ratios should flatten
- Measurement in 4 bins
 - >1,2,3 jets and HT>300 GeV
- Comparison with ME+PS is rather flat
 - ~20% off
 - It will be interesting to see how NLO+PS does

- Important for searches
- At large momenta effects due to the Z mass can be neglected and ratios should flatten
- Measurement in 4 bins
 - >1,2,3 jets and HT>300 GeV
- Comparison with ME+PS is rather flat
 - ~20% off
 - It will be interesting to see how NLO+PS does

- Important for searches
- At large momenta effects due to the Z mass can be neglected and ratios should flatten
- Measurement in 4 bins
 - >1,2,3 jets and HT>300 GeV
- Comparison with ME+PS is rather flat
 - ~20% off
 - It will be interesting to see how NLO+PS does

- Important for searches
- At large momenta effects due to the Z mass can be neglected and ratios should flatten
- Measurement in 4 bins
 - >1,2,3 jets and HT>300 GeV
- Comparison with ME+PS is rather flat
 - ~20% off
 - It will be interesting to see how NLO+PS does

CMS-PAS-SMP-13-005 Phys. Lett. B 740 (2015) 250

Signature

- Two lepton pairs peaking at M_z.
- l=e,μ l'=e,μ,τ

Selections

- Two same-flavor and oppositesign isolated leptons from each Z.
- Lepton pair retained if 60<M₁₁<120 GeV.
- At least one lepton with $p_T > 20$ GeV and one with $p_T > 10$ GeV.

Backgrounds

- Mostly rejected by isolation and identification criteria.
- The remnants are Z/WZ+jets.

Anomalous couplings effects simulated with SHERPA and used to set limits on ZZZ and ZZ γ couplings.

CMS-PAS-SMP-12-024

51

Phys. Lett. B 721 (2013) 190-211

Signature

• Two oppositely charged electrons or muons with $p_T > 20$ GeV plus MET.

Selections

- Jet veto and anti top-tagging to suppress top background.
- E_T^{miss}>45 GeV in same flavor final state to suppress DY.
- E_T^{miss}>20 GeV in opposite flavor.
- Extra lepton veto.

Backgrounds

- $t\bar{t}$ and tW
- VV
- Z/W + jets

 $\sigma = 69.9 \pm 2.8(stat) \pm 5.6(syst) \pm 3.1(lumi) pb$

Inclusive cross section slightly higher than the SM NLO expectation of 57.3^{+2.3}, pb.

ATLAS result

 $\sigma = 71.4 \pm 1.2(stat) \pm 5.0(syst) \pm 2.2(lumi) pb$

300

200 100F

Data/MC 1 0.8

0.6

• V detected through leptonic decay.

Selections

- Analysis divided into three lepton categories.
- $Z \rightarrow ll$: isolated and oppositely charged leptons with $60 < M_u < 120$ GeV.
- $W \rightarrow lv$: single isolated lepton + E_{T}^{miss} >45 GeV
- $Z \rightarrow \upsilon \upsilon$: $E_{T}^{miss} > 100$ GeV.
- $p_T^V > 100$ GeV in each channel.

MCFM NLO cross section = 22.3 ± 1.1 pb In agreement also with $WZ \rightarrow 3lv$ channel

 $\sigma(WZ) = 30.7 \pm 9.3(stat) \pm 7.1(syst) \pm 4.1(theo) \pm 1.0(lumi) pb$

Piboson cross sections results

Charged aTGCs described using the LEP parameterization.

arXiv:hep-ph/96012

In SM all neutral TGCs are zero at tree level. Limits are set on ZZZ and ZZ γ couplings using anomalous parameters f_4^V and f_5^V .

			ATLAS Limits H
εγ		ZZ	-0.015 - 0.015 4.6 fb ⁻¹
f_4	H	ZZ	-0.004 - 0.004 19.6 fb ⁻¹
	н	ZZ (2l2v)	-0.004 - 0.003 5.1, 19.6 fb ⁻¹
۴Z	⊢−−−−	ZZ	-0.013 - 0.013 4.6 fb ⁻¹
4	н	ZZ	-0.004 - 0.004 19.6 fb ⁻¹
	н	ZZ (2l2v)	-0.003 - 0.003 5.1, 19.6 fb ⁻¹
εŶ	⊢−−−−− 	ZZ	-0.016 - 0.015 4.6 fb ⁻¹
5	⊢I	ZZ	-0.005 - 0.005 19.6 fb ⁻¹
	Н	ZZ(2l2v)	-0.004 - 0.004 5.1, 19.6 fb ⁻¹
۶Z	⊢	ZZ	-0.013 - 0.013 4.6 fb ⁻¹
5	⊢I	ZZ	-0.005 - 0.005 19.6 fb ⁻¹
	H	ZZ (2l2v)	-0.004 - 0.003 5.1, 19.6 fb ⁻¹
-0.8	5 0	0.5	1 1.5 x10 ⁻¹
		aTO	GC Limits @95% C.L.

No evidence of anomalous triple gauge couplings is observed

• Important process to probe the EWSB mechanism.

- The role of the Higgs boson in EWSB is essential to preserve the unitarity of VBS cross section.
- Same sign VBS provides the best S/B.

ΙΝΓΝ

CMS-PAS-SMP-13-015

Signature & selections

- Similar to $H \rightarrow WW$ analysis in VBF channel.
- Two leptons with same charge.
- Two forward jets with $M_{jj} > 500 \text{ GeV}$ and $|\Delta \eta_{ij}| > 2.5$.
- M₁₁>50 GeV to reduce W+jets and top backgrounds.
- $E_{T}^{miss} > 40 \text{ GeV}.$
- Z/top veto. Backgrounds
- Nonprompt leptons (75%).
- *WZ→3lv* (15%).
- Wrong-sign, DPS and VVV (10%).

 $\sigma_{fid}(W^{\pm}W^{\pm}jj) = 4.0^{+2.4}_{-2.0}(stat)^{+1.1}_{-1.0}(syst)fb$

MadGraph+VBFNLO correction: 5.8 ± 1.2 fb

Results

 Results in agreement with SM with an observed (expected) significance of the W[±]W[±]jj process of 2.0σ (3.1σ).

Limits on alternative models

 An excess of events could be also interpreted in terms of aQGCs or models with doubly-charged Higgs boson.

$$\mathcal{O}_{WWW} = \frac{c_{WWW}}{\Lambda^2} \operatorname{Tr}[W_{\mu\nu}W^{\nu\rho}W_{\rho}^{\mu}],$$
$$\mathcal{O}_W = \frac{c_W}{\Lambda^2}(D^{\mu}\Phi)^{\dagger}W_{\mu\nu}(D^{\nu}\Phi),$$
$$\mathcal{O}_B = \frac{c_B}{\Lambda^2}(D^{\mu}\Phi)^{\dagger}B_{\mu\nu}(D^{\nu}\Phi).$$