



#### Il quark top a CMS

#### IFAE 2015 Università di Roma Tor Vergata, 08/04/2015

<u>Alberto Orso Maria Iorio</u>, Per la collaborazione CMS

## Che possiamo chiedere al top?

- Per le interazioni fondamentali:
  - Forza delle interazioni via le sezioni d'urto: alpha\_s e Vtb
  - Via i decadimenti in entrambi ttbar and single top
  - Ricerca inclusiva di deviazioni con accoppiamenti anomali/FCNC

• Proprietà del quark top e delle sue interazioni:

- vertice tWb in produzione e/o decadimento: polarizzazione del top, elicità della W, violazione di CP...

- asimmetrie nella produzione di quark top





# Che possiamo chiedere al top?



#### • Massa del quark top:

- Parametro fondamentale del modello standard

- Run2 ci dà la possibilità di misurarlo con la massima precisione che raggiungeremo per molti anni...

#### • SM modeling:



- input per le misure di PDF e i parametri del PS

 distribuzioni differenziali permettono confronti precisi con i vari generatori ME

• Non dimentichiamo che il primo passo per scoprire segnali di fisica BSM è misurare con precisione lo SM!!!

### Meccanismi di produzione



### Decadimenti del top

• Meccanismo elettrodebole:



Sezioni d'urto ttbar:  $\alpha_s$ , mt, pdf...

### Sezione d'urto tt @7,8 TeV

#### Sezione d'urto tt:

- Fondi principali: W/Z+jets,QCD
- Contributo dominante gg : rapporto S/B migliora con l'energia!





- Precisione delle misure : maggiore delle previsioni NLO, comparabile cona la previsione NNLO
- Misura più precisa a 7 ed 8 TeV nel canale e+mu: quasi background free!

Vedi anche:

CMS Top summary page

### Sezione d'urto differenziale tt



### Misure differenziali di tt + jets

#### Top + jets aggiuntivi :

Cap fraction 6.0 6.0 6.0 6.0

0.85

0.75

0.65

Theory/Data

0.8

0.7

0.6

1.05

0.95 0.9

- Sensibile alla presenza di vertici dovuti ad 0 interazione forte
- b-jets aggiuntivi: difficili da riprodurre nella ο simulazione
- "Gap fraction": molteplicità di eventi con 0 ο jets aggiuntivi in funzione del pt del leading jet

CMS Preliminary, 19.6 fb<sup>-1</sup> at vs=8 TeV

Data

200

Syst+Stat error

MadGraph 4\*Q<sup>2</sup> MadGraph Q<sup>2</sup>/4

MadGraph+Pythia

MadGraph matching up

MadGraph matching down

) 250 300 350 40 1<sup>st</sup> additional jet p<sub>+</sub> [GeV]

Dilepton Combined

100

150

CMS PAS TOP-12-041



Alberto Orso Maria Iorio

400

Sezioni d'urto single-top : Vtb, ratio, differenziali...

# Single top *t*-channel: sezione d'urto inclusiva e per carica

#### Canale t:

- Sezione d'urto include vertice tWb: spazio a molte possibili interpretazioni della misura (Vtb), bsm physics...
- Paper @8TeV misura inclusiva → attualmente
  Vtb più precisa nel vertice di produzione (i.e. assumendo Vtb ~1 nel decadimento)

 $|f_{\rm Lv}V_{\rm tb}| = 0.998 \pm 0.038 \,({\rm exp.}) \pm 0.016 \,({\rm theo.})$ 





- Forte asimmetria di carica in pp: legata a quark di valenza coinvolti (simile ad asimmetria della W)
- Ad alte energie: più constraints sulle pdf da misure combinate, possibile combinare misure per aumentare potere di esclusione

#### JHEP 06(2014)090

## Single top canali tW ed s:

700

CMS, √s = 8 TeV, L=12.2 fb<sup>-1</sup>, 1j1t

Data

#### **Canale tW:**



## Sezione d'urto differenziale *t*-channel





#### Nel canale t: dipendenza dal modello

#### • 4FS o 5FS

- Metodo di matching NLO ME-PS (powheg vs eMC@NLO/CompHEP)
- Per ora misurata solo nella regione arricchita di segnale, in principio interessante anche in altre regioni, anche se sarà necessaria più statistica.

### Proprietà del top e dei decadimenti

### La misura di R

- Frazione R = BR(t $\rightarrow$ Wb)/BR(t $\rightarrow$ Wq)
- Permette misura di |Vtb|
- Limite di unitarietà  $|V_{tb}| = 0.999146$





### Vtb in diverse assunzioni:





### Elicità della W nei decadimenti del top

- Frazioni di W polarizzate left  $(F_L)$ , right  $(F_R)$  e longitudinalmente  $(F_0)$
- Distribuzione angolare del leptone e del bosone W nel sistema di riferimento del top

$$\rho(\cos\theta_l^*) \equiv \frac{1}{\Gamma} \frac{d\Gamma}{d\cos\theta_l^*} = \frac{3}{8} (1 - \cos\theta_l^*)^2 F_L + \frac{3}{8} (1 + \cos\theta_l^*)^2 F_R + \frac{3}{4} \sin^2\theta_l^* F_0$$

 Proprietà del decadimento: può essere misurata sia nei canali ttbar che di top singolo con precisione comparabile



### Polarizzazione del top: produzione di coppie ttbar e single-top



# Asimmetria di carica: inclusiva e differenziale





- Buon accordo con SM, anche con misure differenziali

 permette di escludere modelli con accoppiamenti anomali, per esempio Effective Axial-vector Gluon couplings (in figura PRD 85 (2012) 074021, Gabrielli et al.)

- Asimmetria in produzione top-antitop:
- distribuzioni a mggiore o minore rapidità

$$A_{\rm C} = \frac{N(\Delta|y_{\rm t}| > 0) - N(\Delta|y_{\rm t}| < 0)}{N(\Delta|y_{\rm t}| > 0) + N(\Delta|y_{\rm t}| < 0)}$$



### Massa del top

## Misure a 7/8 TeV:

#### Massa del top:

- Precisione arrivata a ~0.8 GeV!
- Combinazione di più misure (possibile anche a diverse energie)

#### Diversità genetica è la chiave per il miglioramento!

- Misure di diversa specie e con diverse sistematiche
- Più statistica darà accesso a tecniche alternative!

CMS PAS TOP-14-015



## Highlights @ CMS: misure più precise

#### Canale semileptonico:

- Fit simultaneo a mt e JES
- Fit cinematico per ottenere migliore permutazione: eventi pesati





#### **Canale full-hadronic:**

- Anche qui fit cinematico: riduce anche la contaminazione da fondo
- Misura competitiva con il semileptonico!

### Highlights @ CMS: altre idee!

#### Massa "differenziale":

- Massa in diversi bin di pt/rapidità dei tops
- Permette di controllare effetti di color reconnection e dovuti ai modelli di ISR/FSR





#### Variabili alternative:

- Misura che sfrutta massa di leptone + jet b
- Endpoint cinematico in caso di permutazione giusta
- Si può sfruttare la dipendenza della shape dalla massa del top!

### Canali rari/FCNC

### ttbar + W/Z/gamma



### Accoppiamenti non-SM: FCNC in decadimento e produzione

#### • top decays:

- FCNC danno decadimenti t->u/c + g/z/ $\gamma$ : eventi con 2 tops:

 $= \frac{u/c}{\sqrt{Z/\gamma}} = \frac{u/c}{\sqrt{Q}}$   $= \frac{U/c}{\sqrt{Q}} = \frac{U/c}{\sqrt{Q}}$ 

- single-top + Z/gamma production:
- Bassa cross section ad LHC nel modello standard ( $\sim$ 0.2 pb).







### Conclusioni

#### • Studi a 7-8 TeV:

- Le misure sui quark top a CMS si sono rivelate un banco di prova per lo SM ed un utile strumento per

- In molti campi si è raggiunto già il "regime sistematico" in cui le incertezze di modellizzazione e strumentali superano di gran lunga quelle statistiche --> il modello diventa oggetto di misura!

#### • ... e a 13 TeV?

- Misure di precisione, anche in ambito differenziale: più armi per individuare deviazioni dallo SM, migliori limiti sui modelli!

- Misure in regimi di top "boosted", dove il momento del top è molto maggiore della sua massa!



# Backup

### Cosa ne ricaviamo?

#### Constraints a alpha\_s, mt:

- mt dalla sez. d'urto complementare a quella "diretta"
- α<sub>s</sub> è solo uno dei parametri da cui la sez. d'urto dipende





- PDF: miglioramento dei gluoni ad alto x
- Fondamentale per andare ad alte energie!

### top mass: 13 TeV ed oltre!

#### Utimate precision: O(200 GeV)!

- Studio di JES/Adronizzazione
- Profiling delle incertezze

#### Necessita miglioramento del modello:

- produzione @NLO di ttbar + tW single top, includendo l'interferenza
- Studi di adronizzazione dedicati

#### Nota Bene:

- → Non include re tutte le nuove idee!
- → Le previsioni hanno già superato le aspettative!



Alberto Orso Maria Iorio

# Perspectives for SM measurements: ttZ and single-top

#### Signal and background cross section variation, 8 vs 13 TeV:

| Single top t-channel    | 8TeV  | 13 TeV  | Ratio 13/8 |
|-------------------------|-------|---------|------------|
| t-channel(signal)       | 85    | 210     | 2.4        |
| tt(background)          | 246   | 810     | 3.2        |
| W+Jets (backg.)         | ~ 34k | ~63k    | ~1.8       |
| Single top W-assoc.     | 8TeV  | 13 TeV  | Ratio 13/8 |
| tW (signal)             | 22    | 71      | 3.2        |
| tt(background)          | 246   | 810     | 3.3        |
| Z+Jets (backg.)(1)      | 1.2k  | ~2k     | 1.7        |
| top pair + Z            | 8TeV  | 13 TeV  | Ratio 13/8 |
| ttZ (signal)            | 0.2   | ~0.7(3) | 3.2        |
| ttW (signal/bkg to ttZ) | 0.2   | ~0.6(3) | 3          |
| WZ (background)(2)      | 34    | 66      | 2.0        |
|                         |       |         |            |

tation with

ation with

Campbell, Ellis: 5678v1f

• Main uncertainties:

- t-channel single top: theory modeling --> NLO matching procedure + flavour scheme

- tW : signal and background modeling

- For ttZ / ttW : statistics, lepton mis-id, background control

### NLO tW + ttbar: WWbb

#### • WWbb : new theory framework for single top-W + tt production



# Search for non-SM couplings single-top production



## W-helicity in top-quark decays

