Studio del rivelatore GEM per l'upgrade dell'esperimento LHCb

Marco Santimaria (INFN-LNF e Università Roma3) Davide Pinci (INFN-Roma1)

IFAE 2015

09/04/2015

Perché studiare il b a LHC?

- $\begin{array}{l} \bullet \quad \sigma_{b\overline{b}}\sim 500\mu b \ \mbox{0} \ \sqrt{s}=14 \ \mbox{TeV}, \\ {\rm se} \ \mathcal{L}=4\times 10^{32} {\rm cm}^{-2} {\rm s}^{-1} \\ \rightarrow 10^{12} \ \mbox{coppie/anno} \end{array}$
- Produzione di tutti gli adroni b: B_d/B_u/B_s/B_c/Barioni – b
- Boost: $\langle p_B \rangle = 100 \text{ GeV/c}$, $\beta \gamma c \tau = 8 \text{ mm permette una}$ misura migliore del vertice di decadimento.

ma:

• $\frac{\sigma_{b\bar{b}}}{\sigma_{inelastica}} \simeq 0.6\%$. Necessità di un trigger robusto e veloce per selezionare gli eventi.

LHCb: Il rivelatore di muoni

L'importanza dei muoni

I muoni sono presenti negli stati finali di molti decadimenti del B sensibili alla simmetria CP:

- $B^0_d \rightarrow J/\psi(\mu^+\mu^-)K_S$,
- $B_s^0 \rightarrow J/\psi(\mu^+\mu^-)\Phi$.
- $B^0_s
 ightarrow \mu^+ \mu^-
 ightarrow$ ricerca di nuova fisica.

Il rivelatore:

- Informazione per il trigger di livello 0 → risposta rapida e identificazione dei muoni in tutte e 5 le stazioni.
- Stazioni rettangolari: M1-M5 divise in 4 regioni dall'interno (R1) all'esterno (R4)
- 1368 camere proporzionali a multifilo (MWPC) + 12 GEM in M1R1

Gas Electron Multiplier

- Una GEM è una lamina isolante di kapton da 50 μm rivestita da 5 μm di rame e microscopicamente perforata.
 I fori biconici hanno un diametro interno di 50 μm ed esterno di 70 μm, distanziati di 140 μm.
- L'applicazione di un'alta tensione tra i fogli di rame genera un forte campo elettrico all'interno dei fori, rendendoli canali indipendenti di moltiplicazione degli elettroni.

GEM

Rivelatore a tripla GEM

Figura : 3 fogli GEM racchiusi tra un catodo e un anodo. Una particella carica che attraversa il rivelatore ionizza il gas e genera un certo numero di coppie elettrone/ione nella gap di deriva.

- Gli elettroni vengono trasportati dal campo di deriva (*E*_d) all'interno dei fori della prima GEM.
- Nei fori si instaura un processo di moltiplicazione a valanga degli elettroni sotto il forte campo elettrico.
- Le nuvole elettroniche vengono trasferite da E_{t1} e E_{t2} nelle due gap di trasferimento e ulteriormente moltiplicate nel passaggio attraverso G2 e G3.
- Il campo di induzione (*E_i*) trasporta gli elettroni verso le pad anodiche, sulle quali si induce un segnale elettrico.

GEM

GEM

L'upgrade di LHCb 2018

Luminosità $4\times 10^{32} \rightarrow 2\times 10^{33}~\text{cm}^{-2}\text{s}^{-1}.$

Rimozione della stazione per muoni M1: studi per la stazione M2 e scelta di un gas adeguato.

• Le GEM hanno operato con successo in M1R1. Proposte per M2 dopo l'aggiornamento.

Scelta della miscela gassosa:

- Solution Miscela delle MWPC: $Ar/CO_2/CF_4$ 40:55:5 (\rightarrow omogeneità)
- **3** Miscela delle GEM: $Ar/CO_2/CF_4$ 45:15:40 (\rightarrow apposito sistema di gas)

La stazione per raggi cosmici

Trigger per muoni: 3 scintillatori in coincidenza (5 PMT). Due camere a fili di M1 per misure di posizione. Un modulo TDC registra il tempo di arrivo dei segnali delle camere rispetto al trigger.

Simulazione del gas con GARFIELD

Simulazione con il software GARFIELD delle proprietà delle 2 miscele gassose impiegate nelle misure:

- Velocità di deriva degli elettroni
- Ionizzazione: numero di coppie elettrone/ione prodotte da muoni per unità di cammino
- La miscela delle GEM (40% CF₄) permette più alte velocità di deriva nella regione 3 4 kV/cm, valori tipici per E_d.
- La ionizzazione specifica media è maggiore: 57 contro 46 coppie/cm prodotte nella miscela delle MWPC (5% CF₄).
- Entrambi i risultati lasciano prevedere una migliore risoluzione temporale nella miscela al 40% di CF₄.

Miscela al 5% di CF₄: Prestazioni

Dopo aver ottimizzato i campi elettrici (E_d, E_t, E_i) si è eseguito uno studio in funzione della tensione applicata sui fogli GEM. Maggiore è la somma delle tensioni

 $(V_{gem} = V_{gem1} + V_{gem2} + V_{gem3})$, maggiore sarà l'amplificazione del segnale nel gas, ovvero maggiore sarà il guadagno del rivelatore.

- Raggiunta efficienza di rivelazione di $\simeq 100\%$.
- Alla massima tensione $\epsilon_{25} \simeq 86\%$.

Confronto con la miscela al 40% di CF₄

Si sono ripetuti gli stessi studi utilizzando la miscela al 40% di CF₄. Il miglioramento delle prestazioni è evidente.

 Alte efficienze di rivelazione raggiunte a basse tensioni: ε > 90% a 1200 V (contro ε = 70% con la miscela al 5% di CF₄).

• Si raggiungono $\epsilon_{25} > 90\%$.

Conclusioni

- Viste le ottime prestazioni fornite nella prima fase di LHCb, le camere GEM sono le naturali candidate da installare nella zona ad alto flusso di particelle dopo l'upgrade.
- Le misure con raggi cosmici effettuate con la miscela al 40% di CF₄ riproducono le prestazioni della GEM in LHCb. Utilizzare una miscela a minor contenuto di CF₄ permette ancora la piena efficienza di rivelazione ma riduce la risoluzione temporale, come atteso dalle simulazioni con GARFIELD.
- I risultati di questo lavoro saranno utilizzati in una simulazione completa dell'esperimento, per una valutazione complessiva delle prestazioni del sistema per muoni in progetto per il 2018.

FINE