

XIV IFAE Incontri di Fisica delle Alte Energie Università Roma Tor Vergata Roma 8 - 10 Aprile 2015

ATLAS ITK E NUOVE TECNOLOGIE DI SENSORI A PIXEL

A. GAUDIELLO

INFN e Università degli Studi di Genova a nome della **COLLABORAZIONE ATLAS**

OUTLINE

- High-Luminosity LHC e Upgrade di ATLAS di Fase II
- ATLAS Inner Tracker (ITk)
 - Panoramica e Performance
 - Layout in Studio
- Nuovi Sensori in Sviluppo per il Rivelatore a Pixel

HIGH-LUMINOSITY LHC

HL-LHC inizierà ad operare nel 2025 con l'obiettivo di raccogliere una luminosità integrata di 3000 fb⁻¹ Tra le principali motivazioni di fisica troviamo:

Avere misure più precise sul bosone di Higgs

Ad esempio: Massa, Ampiezza, Numeri Quantici, Accoppiamenti con i fermioni, decadimenti rari SM, ...

🔰 Investigare la simmetria elettrodebole

Ricerche dirette di SUSY o altre particelle oltre SM

**** ...

↘Magneti dei dipoli a 11 T

Cavita risonati rinnovate

****...

Si prevede una luminosità istantanea fino a 7 x 10³⁴ cm⁻² s⁻¹

Fino a 200 collisioni protone-protone per Bunch Crossing (BC)

Per fronteggiare l'alta luminosità istantanea ed integrata e per avere le stesse perfomance dell'attuale rivelatore fino a < μ > = 200, diversi sottosistemi di ATLAS

Alta Luminosità Istantanea:

dovranno essere aggiornati.

- Aumento dell'occupanza degli attuali rivelatori e conseguente saturazione della bandapassante
 - **Y** Fino a 10⁴ tracce per evento
 - Necessaria maggiore granularità dei sensori nel tracciatore
- Essenziale ridefinire il trigger (hardware e software) per mantenere sensitività nella fisica

Alta Luminosità Integrata:

- 🔰 Aumento del danno da radiazione in particolar modo vicino alla beam pipe
 - Fluenze fino a 10¹⁶ n_{eq}/cm²

Per fronteggiare l'alta luminosità istantanea ed integrata e per avere le stesse perfomance dell'attuale rivelatore fino a <μ> = 200, diversi sottosistemi di ATLAS dovranno essere aggiornati.

- Inner Detector completamente rinnovato
 Inner Tracker (ITk)
- Nuovi calorimetri in avanti
- Aggiornamento dei sistemi di Trigger e DAQ
- Nuova elettronica per il calorimetro ad Argon Liquido
- Possibile aggiornamento del sistema dei Muoni

INNER TRACKER (ITK)

Sostituzione completa di tutto l'Inner Detector

Il layout preliminare proposto nella Letter of Intent prevede un Inner Detector completamente in silicio con 14 punti/traccia e una copertura fino $|\eta| < 2.7$

~10 m² di Pixel, ~200 m² di Strip 650 Milioni di canali (Pixel), 75 Milioni canali (Strip) 3200 10 Gb/s connessioni di readout.

Sistema a Pixel: 4 layer + 5 dischi, 25x150 (in)/ 50x150 (out) μm²
 Eventuale 5° layer di pixel ed estensione ad alto η
 Sistema a Strip: 5 layer + 7 dischi stereo

Per fronteggiare l'alta luminosità istantanea ed integrata e per avere le stesse perfomance dell'attuale rivelatore fino a <μ> = 200, diversi sottosistemi di ATLAS dovranno essere aggiornati.

- Inner Detector completamente rinnovato
 Inner Tracker (ITk)
- Nuovi calorimetri in avanti
- Aggiornamento dei sistemi di Trigger e DAQ
- Nuova elettronica per il calorimetro ad Argon Liquido
- Possibile aggiornamento del sistema dei Muoni

INNER DETECTOR E ITK

Per fronteggiare l'alta luminosità istantanea ed integrata e per avere le stesse perfomance dell'attuale rivelatore fino a <μ> = 200, diversi sottosistemi di ATLAS dovranno essere aggiornati.

- Inner Detector completamente rinnovato
 Inner Tracker (ITk)
- Nuovi calorimetri in avanti
- Aggiornamento dei sistemi di Trigger e DAQ
- Nuova elettronica per il calorimetro ad Argon Liquido
- Possibile aggiornamento del sistema dei Muoni

ITK PERFORMANCE

A. Gaudiello - ATLAS ITk e Nuove Tecnologie di Sensori a Pixel - IFAE 2015

INNER TRACKER LAYOUT IN STUDIO

Il design ottimale per ITk sarà un compromesso tra performance di tracking, ottimizzazione dei costi, semplicità di costruzione e installazione

- Attualmente sono in studio diverse tipologie di layout
 - Aumento volume dei pixel
 - Transizione Barrel-EndCap ridotta
 - Estensione alto η
- I layout possono essere tra loro combinati.
- Il layout dovrà essere pronto prima del TDR delle Strip (2016).

ENDCAP RING LAYOUT

- 3 tipologie di anelli con differenti raggi, ciascuno dei quali monta un anello di moduli con 4 Front-End (Quad).
- Almeno 16 ring per EndCap sono necessari per ottenere una copertura fino a η= 2.7

ALPINE LAYOUT

L'alpine layout parte con l'idea che i sensori dovrebbero essere idealmente perpendicolari alla traccia che arriva dal centro del fascio.

- Non ci sono gap tra Barrel ed EndCap, quindi nessun materiale, questo riduce l'eventuale perdita di hits
- I sensori sono orientati in modo ottimale rispetto al fascio
 - **Pro:** L'orientazione dei moduli è ottimizzata per ciascun layer
 - <u>Contro</u>: Raffreddamento problematico e accesso ai sensori difficoltoso in caso di problemi durante il montaggio degli stave

LAYOUT AD ΑLTO η

- Attualmente in corso diversi studi per l'estensione del tracker ad alti valori di n (fino a 3-4).
- Questo porterebbe beneficio ad alcuni canali di fisica in avanti (ad esempio la produzione di Higgs per Vector Boson Fusion).
 - Questo potrebbe essere fatto con più dischi che coprono le regioni ad alta rapidità o con un lungo layer molto vicino alla beam pipe.

RIVELATORE A PIXEL

SENSORI, ELETTRONICA DI FRONT-END E MODULI IN SVILUPPO

ELETTRONICA DI FRONT-END

Quando e'stata scritta la Letter of Intent nel 2013 lo schema di trigger previsto era di 500 kHz a L0, seguito da 200 kHz a L1

- In questo contesto l'esistente chip di Front-End (FE-I4 a 130 nm) usato per l'Insertable B-Layer (4° strato di pixel installato in ATLAS nel 2014) poteva essere una buona soluzione per i layer piu esterni
 - Attualmente si sta considerando un nuovo readout a 1 MHz supportato anche dal futuro non chiaro del processo a 130 nm fatto da IBM

L'idea è quella di adottare chip a 65 nm in tutti layer

NUOVO FE A 65 NM IN STUDIO DALLA COLLABORAZIONE RD53

- Cell size: 50x50 μm²
 - Compatibile con sensore pixel di 50x50 e 25x100 μm^2
- Soglia a 1000 e-
- Alimentazione costante, può operare solo una frazione dei canali
- Algoritmi di clustering on-chip
 (per ridurre l'occupanza di banda passante)
- 2 Gb/s serial output
- Primo Prototipo in 2 anni

SENSORI PLANARI

- Bulk material (n-in-n e n-in-p, potenzialmente economici)
- Spessore dei sensori (150, 100 μm o meno): meno materiale, veloce e più efficiente raccolta di carica, dimensione dei cluster più piccola
- Pixel più piccoli (25 x 500 μm² invece degli attuali 50 x 250 μm²)
- In studio sensori con bordi sottili.
- Completa efficienza dopo irraggiamento.
 - Dimostrata fino a 2 x 10^{16} n_{eq}/cm² a 1-1.5 kV.

SENSORI PLANARI

A PARITÀ DI BIAS, MINORE CARICA RACCOLTA AL DIMINUIRE DELLO SPESSORE

SENSORI 3D

Sono costituiti da un array di colonne di entrambi i drogaggi che hanno la funzione di elettrodi. Quest'ultimi attraversano il substrato di silicio perpendicolarmente alla superficie.

Utilizzati per la prima volta in un esperimento di fisica delle alte energie nell'Insertable B-Layer (IBL) che ha confermato con successo tutte le potenzialità di

questa tecnologia.

IBL 3D: PANORAMICA

- Bassa tensione di svuotamento a fine vita
 - 🕯 🔰 150 V Vs 1000 V Planari
- Minore distanza tra gli elettrodi
 - Raccolta carica piu' efficiente e veloce (~1 ns Vs ~ 10 ns dei Planari)
- Il bordo e'un elettrodo: bordi attivi

SENSORI 3D

Sono costituiti da un array di colonne di entrambi i drogaggi che hanno la funzione di elettrodi. Quest'ultimi attraversano il substrato di silicio perpendicolarmente alla superficie.

Utilizzati per la prima volta in un esperimento di fisica delle alte energie nell'Insertable B-Layer (IBL) che ha confermato con successo tutte le potenzialità di

questa tecnologia.

IBL 3D: ANGOLO DI LORENTZ

- **IBL** OPERA IN UN CAMPO MAGNETICO COSTANTE DI **2** T GENERATO DAL MAGNETE SOLENOIDALE DI **ATLAS**
- Il percorso della carica all'interno del sensore è diretto lungo la direzione r – φ del rivelatore per i planari e lungo le colonne per i sensori 3D
- Per i planari la dimensione minima dei cluster è raggiunta quando l'angolo d'incidenza della particella coincide con quello di drift
- Il valore dell' angolo di Lorentz dei sensori 3D di IBL è compatibile con 0 come aspettato

SENSORI 3D

Sono costituiti da un *array* di colonne di entrambi i drogaggi che hanno la funzione di elettrodi. Quest'ultimi attraversano il substrato di silicio perpendicolarmente alla superficie.

Utilizzati per la prima volta in un esperimento di fisica delle alte energie nell'Insertable B-Layer (IBL) che ha confermato con successo tutte le potenzialità di

questa tecnologia.

100 µm Attualmente in fase di studio e di test: Pixel piu piccoli (preferibilmente 50 x 50 μm²) Sensori piu sottili (Tecniche differenti: DWB, SOI, EPI) Bordi sottili o attivi 50 µm – P[°]col. 50 µm N col. Sim P col. **50 x 50 μm² B**ump N col. pad

25 x 100 μm²

25 µm

Bump pad

BRIDIZZAZIONE

- Per IBL sono stati usati moduli a singolo e doppio chip di FE
- Per abbattere i costi dovuti alle ampie superfici da coprire nei layer più esterni sono in sviluppo 4 (6) chip di FE collegati tramite bump ad un sensore di ~ 4×4 cm² (6×4 cm²). Questi dovrebbero essere usati anche negli anelli (Ring Layout)
- Differenti soluzioni sono attualmente in studio per coprire le zone tra i chip (pixel lunghi) e il possibile bow generato dal processo di bump-bonding

VERSO NUOVE FORME D'IBRIDIZZAZIONE

HV-CMOS

Idea:

- Usare la tecnologia standard (HV-) CMOS per costruire rivelatori di particelle
- Alto voltaggio per svuotare il volume del sensore (50-100 V)
 - La carica è raccolta per drift
- Diodo "Smart"
 - Pre-Amplificazione già a livello di sensore
 - Gli HV-CMOS possono essere accoppiati capacitavamente al FE attraverso resine o colle
- Radiation hard fino a 10¹⁵ n_{eq}/cm²

PRIMI PROTOTIPI (864 PIXEL DI $33 \times 125 \ \mu m^2$) IN TEST HANNO OTTENUTO RISULTATI INCORAGGIANTI.

PROTOTIPI FULL SCALE (FE-I4) IN 8-12 MESI

- ITk sarà una sfida tecnologica e produttiva
- La comunità italiana ITk è molto attiva su diversi fronti:
 - Sviluppo di sensori (CMOS e 3D)
 - **N** Bump-Bonding (Selex)
 - 🔰 🛛 Elettronica e DAQ
 - Meccanica
 - N Simulazione

RIVELATORE ATLAS IN RUN 1

TRIGGER IN LOI

ESEMPI DI LAYOUT IN STUDIO

