Ricerca di nuova fisica nei decadimenti dei mesoni B (incl. $B^0_s \to \mu^+\mu^-)$ a CMS

Luca Martini per la collaborazione CMS

INFN Pisa & Università di Pisa

8 aprile 2015

Decadimenti rari del modello standard

- CMS
- I decadimenti $B^0_{(s)} \to \mu^+ \mu^-$ sono proibiti a livello albero nel Modello Standard (MS)
 - FCNC, procedono tramite diagrammi a pinguino e box, soppressi per l'elicità di un fattore $(m_\mu/m_B)^2$, soppressi per CKM
- Sono tra i più semplici da calcolare [arXiv:1311.0903v3]:

$$\begin{split} \mathcal{B}(B^0_s \to \mu^+ \mu^-)_{MS} &= (3.66 \pm 0.23) \times 10^{-9} \\ \mathcal{B}(B^0 \to \mu^+ \mu^-)_{MS} &= (1.06 \pm 0.09) \times 10^{-10} \end{split}$$

• Hanno valori piccoli ed incertezze molto piccole (dominate da CKM e f_B), molto sensibili a contributi di nuova fisica

Le correlazioni aumentano la sensibilità alla nuova fisica

• Modelli differenti di SUSY permettono diversi valori delle Frazioni di Decadimento (FD) (Straub):

• Per cui è fondamentale misurare sia ${\cal B}(B^0_s o \mu^+\mu^-)$ sia ${\cal B}(B^0 o \mu^+\mu^-)$

Stato sperimentale

- CMS
- Molte collaborazioni di fisica delle alte energie hanno pubblicato risultati su $B^0_s\to\mu^+\mu^-$ o $B^0\to\mu^+\mu^-$
- Negli ultimi 30 anni c'è stato un considerevole progresso
- ightarrow II fattore limitante è la statistica di dati acquisiti

• Collisioni protone-protone

- $\sqrt{s} = 7 \,\text{TeV}$ e $L = 5 \,\text{fb}^{-1}$ nel 2011
- $\sqrt{s} = 8 \,\text{TeV} \,\text{e} \, L = 20 \,\text{fb}^{-1}$ nel 2012
- LHC ha fornito una luminosità istantanea sempre crescente

• Al costo di un numero d'interazioni primarie per evento (*pile-up*) fino a 40: $<\mu>_{2011}=8$ PV, $<\mu>_{2012}=21$ PV

- Rivelatore cilindrico con copertura $|\eta|<5$
- Solenoide superconduttore che produce un campo magnetico pari a 3.8 T
- Tracciatore interno in silicone che ricostruisce le tracce delle particelle cariche ed i vertici in $|\eta|<2.5$
- Rivelatori per identificare e ricostruire muoni nell'intervallo $p_T pprox$ 4 GeV-1 TeV
- Calorimetri elettromagnetici ed adronici per misure d'energia dell'evento

- Altissime efficienza ($\approx 99\%)$ e risoluzione per la ricostruzione delle tracce e dei vertici
- È stata sviluppata inoltre un'analisi MVA per discriminare i muoni dal fondo di protoni, kaoni e pioni prodotti dai decadimenti degli adroni con b
- In questo modo è stato possibile ridurre ulteriormente la loro identificazione errata di un fattore 2, a discapito di una perdita minimale (10%) nell'efficienza d'identificazione dei muoni reali

CMS Simulation

Trigger

- CMS usa un trigger a due livelli per selezionare solo gli eventi più significativi
- Il tasso d'interazione di LHC è pari a 40 MHz
- Ø Algoritmi hardware L1 (tasso massimo < 100 kHz)</p>
- ${f 8}$ Algoritmi software HLT (tasso massimo \lesssim 500 Hz)
- Per eventi $B^0_{(s)} \rightarrow \mu^+ \mu^-$ sono stati scelti *trigger* ad alta efficienza di segnale
 - **1** B_s^0 L1: 2 muoni con $p_T > 3 \text{ GeV}$ e $|\eta| < 2.2$
 - **2** B_s^0 HLT: richieste su p_T e $|\eta|$ dei muoni e dei dimuoni, massa invariante, probabilità del vertice e lunghezza di decadimento
- \rightarrow *Trigger* ad alta efficienza, con tassi di pochi Hz

L'analisi

- CMS
- Data la sensibilità aspettata di CMS, i risultati sono stati ottenuti in due modi diversi
 - $\label{eq:B} {\cal B}(B^0\to\mu^+\mu^-): \mbox{ un esperimento di conteggio di eventi nella finestra di massa invariante del mesone <math display="inline">B^0$
 - **2** $\mathcal{B}(B_s^0 \to \mu^+ \mu^-)$: un fit unbinned di massima verosimiglianza in una finestra di massa invariante $M \in [4.9, 5.9] \,\text{GeV}$
- I risultati sono stati estratti normalizzando rispetto a $B^\pm\to J/\psi K^\pm\to \mu^+\mu^-K^\pm$
 - per evitare le incertezze sulla sezione d'urto di produzione $b\bar{b}$ e sulla luminosità
 - per cancellare al primo ordine molte incertezze sistematiche

$$\mathcal{B}(B_s^0 \to \mu^+ \mu^-) = \frac{N_{\rm obs}^{B_s^0}}{N_{\rm obs}^{B^\pm}} \times \frac{\epsilon_{B^\pm}}{\epsilon_{B_s^0}} \times \frac{f_{\rm u}}{f_{\rm s}} \times \mathcal{B}(B^\pm \to J/\psi K^\pm) \times \mathcal{B}(J/\psi \to \mu^+ \mu^-)$$

- Rapporto tra numero di eventi , efficienze e modi di produzione
- Un'analisi *cieca*: tutte le selezioni sono fissate senza usare eventi appartenenti alle regioni di segnale, per evitare errori sistematici
- Le distribuzioni del mesone B^0_s sono state validate nei dati usando il decadimento $B^0_s \to J/\psi\phi \to \mu^+\mu^-K^+K^-$

Luca Martini

- **()** Combinatorio, formato dai muoni provenienti da decadimenti deboli di b o c, $q \rightarrow X \mu \bar{\nu}$. Studiato sulle bande laterali
- **2** Raro semileptonico, come $B_s^0 \to K^- \mu^+ \nu_{\mu}$, dove un adrone è erroneamente identificato come un muone. Studiato su dati e MC
- ③ Raro a picco, come B⁰_s → K⁺K⁻, dove entrambi gli adroni sono identificati come muoni. Studiato su dati e MC
- **4** Eventi di segnale non risolti di $B_s^0 \rightarrow \mu^+ \mu^-$ e $B^0 \rightarrow \mu^+ \mu^-$, a causa della risoluzione sperimentale del rivelatore. Studiato su MC

- **1** Combinatorio, formato dai muoni provenienti da decadimenti deboli di b o c, $q \rightarrow X \mu \bar{\nu}$. Studiato sulle bande laterali
- **2** Raro semileptonico, come $B_s^0 \to K^- \mu^+ \nu_{\mu}$, dove un adrone è erroneamente identificato come un muone. Studiato su dati e MC
- ③ Raro a picco, come B⁰_s → K⁺K⁻, dove entrambi gli adroni sono identificati come muoni. Studiato su dati e MC
- ④ Eventi di segnale non risolti di B⁰_s → µ⁺µ⁻ e B⁰ → µ⁺µ⁻, a causa della risoluzione sperimentale del rivelatore. Studiato su MC

- **1** Combinatorio, formato dai muoni provenienti da decadimenti deboli di b o c, $q \rightarrow X \mu \bar{\nu}$. Studiato sulle bande laterali
- **2** Raro semileptonico, come $B_s^0 \to K^- \mu^+ \nu_{\mu}$, dove un adrone è erroneamente identificato come un muone. Studiato su dati e MC
- **③** Raro a picco, come $B_s^0 \to K^+K^-$, dove entrambi gli adroni sono identificati come muoni. Studiato su dati e MC
- ④ Eventi di segnale non risolti di B⁰_s → µ⁺µ⁻ e B⁰ → µ⁺µ⁻, a causa della risoluzione sperimentale del rivelatore. Studiato su MC

- **()** Combinatorio, formato dai muoni provenienti da decadimenti deboli di b o c, $q \rightarrow X \mu \bar{\nu}$. Studiato sulle bande laterali
- **2** Raro semileptonico, come $B_s^0 \to K^- \mu^+ \nu_{\mu}$, dove un adrone è erroneamente identificato come un muone. Studiato su dati e MC
- **③** Raro a picco, come $B_s^0 \to K^+K^-$, dove entrambi gli adroni sono identificati come muoni. Studiato su dati e MC
- **()** Eventi di segnale non risolti di $B_s^0 \rightarrow \mu^+ \mu^-$ e $B^0 \rightarrow \mu^+ \mu^-$, a causa della risoluzione sperimentale del rivelatore. Studiato su MC

- Il fondo combinatorio consiste di due muoni scorrelati
 - il loro vertice secondario è ricostruito malamente
 - non proveniente da uno dei vertici primari
 - ci sono altre particelle intorno (non sono muoni isolati)
- Queste caratteristiche sono tutte sfruttate per separare il segnale dal fondo, con un'analisi multivariata (BDT), in 10 variabili

Risultati del BDT

- Verificato che non ci sono effetti sistematici, né dipendenze da *pile-up* o massa invariante
- L'incertezza sistematica sull'efficienza dei tagli è stata presa dalle differenze tra dati e MC nei campioni di normalizzazione e controllo

Luca Martini

 $B(s) \rightarrow \mu^+ \mu^-$ a CMS

• I fondi rari sono stati normalizzati al canale $B^{\pm} \rightarrow J/\psi K^{\pm}$:

$$N(X) = \frac{\mathcal{B}(X)}{\mathcal{B}(B^{\pm} \to J/\psi K^{\pm}) \times \mathcal{B}(J/\psi \to \mu^{+}\mu^{-})} \frac{f_{X}}{f_{u}} \frac{\epsilon_{X}^{\mathrm{ana}}}{\epsilon_{B^{\pm}}^{\mathrm{ana}}} N_{\mathrm{obs}}^{B^{\pm}}$$

- Includono decadimenti a 2 e 3 corpi di B^0_s , B^0 , Λ^0_b
 - Le loro incertezze entrano come parametri di rumore della verosimiglianza

- I rapporti tra i numeri di eventi di segnale e controllo sono stabili nel tempo
- I meccanismi di produzione del $B^0_{(s)}$, che possono cambiare l'accettanza e l'isolamento, sono nelle giuste proporzioni nei MC
- Le scale di massa e le risoluzioni sono state studiate nei dati sui mesoni $J/\psi, \ \psi(2S), \ \Upsilon(nS)$
- Sommario delle incertezze sistematiche:

Categoria	Barrel (%)	Endcap (%)
$f_{\rm S}/f_{\rm u}$: rapporto di produzione dei $\mathit{quark}\;u$ e s	8.0	8.0
accettanza: processi di produzione	3.5	5.0
scala di massa e risoluzione	5.0	5.0
efficienza (segnale): dati/MC efficienza (normalizzazione): dati/MC efficienza (normalizzazione): traccia kaone efficienza <i>trigger</i> efficienza identificazione	9.5 - 3.3 0.5 - 2.3 4.0 3.0 2.0	7.9 - 2.3 0.5 - 1.1 4.0 3.0 2.0
normalizzazione: fit	5.0	5.0

Tutti i contributi sono sotto il 10%

- Il fit è usato per l'estrazione della FD e per misurarne la significatività
- Fit simultaneo in 12 categorie:
 - 1 muoni centrali ($|\eta| < 1.4$) o in avanti
 - 2 condizioni dei dati 2011 o 2012
 - **(3)** bin della variabile del BDT B_s^0
- La verosimiglianza (estesa) è formata da 5 contributi:

$$L = N_{B_s^0} F_{B_s^0} + N_{B^0} F_{B^0} + N_{\text{comb}} F_{\text{comb}} + N_{\text{peak}} F_{\text{peak}} + N_{\text{semi}} F_{\text{semi}}$$

- Le incertezze sistematiche sono state aggiunte come parametri di rumore gaussiani
- La verosimiglianza totale è il prodotto di tutte le categorie indipendenti e di tutti i vincoli: $L_{\rm tot} = \prod^{11} L_i L_i^{\rm constr}$
- La significatività è misurata con il test del rapporto delle verosimiglianze profilate:
- \rightarrow **Ipotesi nulla** $\mathcal{L}_0: \mathcal{B}(B^0_s \rightarrow \mu^+_{}\mu^-) = 0.$
- $\rightarrow\,$ Ipotesi alternativa $\mathcal{L}_1 \colon \mathcal{B}(B^0_s \to \mu^+ \mu^-)$ lasciato libero
 - Significatività mediana aspettata = $4.8\,\sigma$

$\mathcal{B}(B^0_s \to \mu^+ \mu^-)$ misurato!

$$\begin{split} \mathcal{B}(B^0_s \to \mu^+ \mu^-)_{\mathsf{CMS}} &= (3.0^{+1.0}_{-0.9}) \times 10^{-9} = \left(3.0^{+0.9}_{-0.8}(\mathrm{stat.})^{+0.6}_{-0.4}(\mathrm{syst.})\right) \times 10^{-9} \\ \mathcal{B}(B^0_s \to \mu^+ \mu^-)_{\mathsf{SM}} &= (3.66 \pm 0.23) \times 10^{-9} \end{split}$$

$$\begin{aligned} \mathcal{B}(B^0 \to \mu^+ \mu^-)_{\rm CMS} &= (3.5^{+2.1}_{-1.8}) \times 10^{-10} \\ \mathcal{B}(B^0 \to \mu^+ \mu^-)_{\rm SM} &= (1.06 \pm 0.09) \times 10^{-10} \end{aligned}$$

- Compatibile col MS
- Limitati statisticamente

$$\begin{aligned} \operatorname{sign}(\mathcal{B}(B^0_s \to \mu^+ \mu^-)) &= \mathbf{4.3} \, \sigma \\ \operatorname{sign}(\mathcal{B}(B^0 \to \mu^+ \mu^-)) &= 2.0 \, \sigma \end{aligned}$$

- La più alta significatività di $\mathcal{B}(B^0_s \to \mu^+ \mu^-)$ fino ad oggi!
- Più bassa della mediana aspettata (4.8 σ)
- La FD misurata è leggermente più bassa della FD MS

• La significatività per l'ipotesi senza $\mathcal{B}(B^0_s \to \mu^+\mu^-)$ né $\mathcal{B}(B^0 \to \mu^+\mu^-)$ è:

$$\operatorname{sign}(\mathcal{B}(B_s^0 \to \mu^+ \mu^-) \cap \mathcal{B}(B^0 \to \mu^+ \mu^-)) = 4.7\,\sigma$$

Limite superiore per $\mathcal{B}(B^0 \to \mu^+ \mu^-)$ Risultati *binned*

- Nessun eccesso significativo nella finestra di massa intorno al B^0
- Il risultato è stato estratto con il metodo CL_S :

$$\mathcal{B}(B^0 \to \mu^+ \mu^-) \le 1.1 \times 10^{-9}$$
 at 95% CL

- Più eventi misurati di quelli attesi, corrispondenti a $1.9\,\sigma$
- $\mathcal{B}(B^0 \to \mu^+ \mu^-)$ è compatibile coi risultati del fit
- Questo valore è comunque ancora 10 volte sopra il valore atteso dal MS

- Anche la collaborazione LHCb ha pubblicato le FD di $B_s^0 \rightarrow \mu^+\mu^-$ (4 σ), e di $B^0 \rightarrow \mu^+\mu^-$ (2 σ) [Phys.Rev.Lett. 111 (2013)]
- Dopo una combinazione preliminare, [CMS-PAS-BPH-13-007], una combinazione delle verosimiglianze è stata fatta ed i risultati sottomessi a Nature [arXiv:1411.4413]:

$$\begin{aligned} \mathcal{B}(B^0_s \to \mu^+ \mu^-) &= \left(2.8^{+0.7}_{-0.6}\right) \times 10^{-9} \\ \mathcal{B}(B^0 \to \mu^+ \mu^-) &= \left(3.9^{+1.6}_{-1.4}\right) \times 10^{-10} \end{aligned} \tag{6.2 σ}$$

L'impatto sulla nuova fisica

- L'accuratezza di queste misure pone limiti stringenti
- Lo spazio delle fasi di parametri di SUSY è notabilmente ridotto:

L'impatto sulla nuova fisica

- L'accuratezza di queste misure pone limiti stringenti
- Lo spazio delle fasi di parametri di SUSY è notabilmente ridotto:

- Qualche tensione in $\mathcal{B}(B^0\to\mu^+\mu^-)$ potrebbe essere spiegata da modelli di nuova fisica
 - \rightarrow Ma è troppo presto per dire alcunché

- LHC Run II comincerà quest'anno
- Ci aspettiamo un centinaio di fb $^{-1}$ a $\sqrt{s}=13\,{\rm TeV}$ con una luminosità istantaneta doppia di Run I
- Un ambiente impegnativo, con < μ >= 50 PV ed alti tassi di *trigger*
- CMS continerà gli studi di $\mathcal{B}(B^0_{(s)} \to \mu^+ \mu^-)$ con *trigger* ed analisi migliorati
- $\rightarrow \mathcal{B}(B^0_{(s)} \rightarrow \mu^+ \mu^-)$ è una delle analisi prioritarie di CMS
 - L'attenzione si sta spostando su $B^0 \rightarrow \mu^+ \mu^-$:

$\mathcal{L}(fb^{-1})$	$\delta {\cal B}/{\cal B}(B^0_s)$	$\delta {\cal B}/{\cal B}(B^0)$	B^0 sign.	$\delta \frac{\mathcal{B}(B^0 \to \mu^+ \mu^-)}{\mathcal{B}(B^0_s \to \mu^+ \mu^-)}$
100 (2015–2017)	15%	66%	0.5–2.4 σ	71%

Conclusioni

- Presentato la prima misura di $\mathcal{B}(B^0_s \to \mu^+ \mu^-)$ ed il più recente limite superiore di $\mathcal{B}(B^0 \to \mu^+ \mu^-)$, usando i dati raccolti da CMS durante 2011 e 2012
- Risultati pubblicati su Phys.Rev.Lett. 111 (2013)
- La misura di $\mathcal{B}(B_s^0 \to \mu^+ \mu^-)$ con la sua incertezza relativa del 30%, è la più precisa a oggi ed è in accordo con quanto pubblicato da LHCb
- Ambedue i risultati sono pienamente compatibili col MS
- E pongono limiti stringenti a parametri di nuova fisica
- Le misure di alta precisione sono la chiave per la ricerca indiretta di nuova fisica nel futuro prossimo
- Per $B \to K^* \mu^+ \mu^-$ seguite il talk CMS di Alessio nella sezione dottorandi!

- Stato legato $\bar{b}s \ 0^-$
- B_s^0 è un autostato di sapore, non di massa
 - oscilla tra B_s^0 - \bar{B}_s^0 prima di decadere
 - è importante nel confronto valori sperimentali e teorici
- Massa pprox 5.4 GeV
 - Relativamente bassa da rilevare
- lunga lunghezza di decadimento c aupprox 450 $\mu{
 m m}$
 - possibile misurare la distanza tra il vertice primario di produzione e quello secondario di decadimento

$$\begin{aligned} \mathcal{B}_{SM}^{0} \left(B_{s}^{0} \to \mu^{+} \mu^{-} \right) &= \frac{\tau \left(B_{s}^{0} \right)}{\pi} \left(\frac{G_{F}^{2}}{4\pi \sin^{2} \theta_{w}} \right)^{2} F_{B_{s}^{0}}^{2} m_{\mu}^{2} \times \\ &\times m_{B_{s}^{0}} \sqrt{1 - 4 \frac{m_{\mu}^{2}}{m_{B_{s}^{0}}^{2}}} \left| V_{tb}^{*} V_{ts} \right|^{2} Y^{2}(x_{t}) \end{aligned}$$

- Tempo di decadimento
- Costanti di gauge e CKM e funzione di corta distanza
 - con correzioni QCD NLO
- Elemento di matrice adronica
- Soppressione chirale

• Creazione di coppia

• Creazione di coppia, eccitazione del sapore, suddivisione di gluoni

- Tutte le selezioni sono state "congelate" senza usare eventi appartenenti alla regione del segnale, per evitare errori sistematici
- distribuzioni del segnale B^0_s validati sui dati usando il campione di controllo $B^0_s \to J/\psi\phi \to \mu^+\mu^-K^+K^-$
- Il livello del fondo e la risoluzione dipendono fortemente dall' η dei muoni
 - → I dati sono stati divisi in categorie "barrel" e "endcap":
 - $barrel = ambedue i muoni in |\eta| < 1.4$
 - endcap = altrimenti

Definizione	Intervallo di massa invariante (GeV)
Intervallo totale	[4.9, 5.9]
Segnale $B^0 o \mu^+ \mu^-$	[5.2, 5.3]
Segnale $B_s^0 o \mu^+ \mu^-$	[5.3, 5.45]
Finestra cieca	[5.2, 5.45]
Bande laterali	$[4.9, 5.2] \cup [5.45, 5.9]$

- I fondi rari dipendono dalla "misidentificazione" dei muoni
- $\rightarrow\,$ Kaoni, pioni and protoni identificati erroneamente come muoni a causa di punch-through e decadimenti in volo
 - Molti parametri delle tracce sono stati usati per separare i muoni "veri" (da $B_s^0 \rightarrow \mu^+ \mu^-$) da muoni "falsi" (da $B_s^0 \rightarrow K^+ K^-$), con un'analisi multivariata BDT
- \rightarrow Miglioramento del 50% della rimozione di muoni falsi contro un'efficienza del 90% per i muoni veri

Adrone	Misid. ($ imes$ 10 ⁻³)
πK	0.5–1.3 0.8–2.2
p	0.4–1.5

- Misidentificazione intorno all'1‰
- Con un'incertezza del 50%

Validazione del BDT di singolo muone

CMS

 $B(s) \rightarrow \mu^+ \mu^-$ a CMS

Luca Martini

- Variabili del vertice secondario
 - χ^2 del vertice
 - angolo di puntamento $\alpha_{\rm 3D}$
 - parametro d'impatto 3D δ_{3D}
 - minima distanza tra i due muoni $d_{
 m ca}^{
 m max}$
 - lunghezza di decadimento $\ell_{\rm 3D}$

Il candidato $B^0_{(s)}$

• Le due tracce muoniche sono combinate per formare il candidato B

Sistematiche del BDT del $B_{(s)}^0$

• L'incertezza sistematica sull'efficienza del BDT presa dalla differenza tra dati e MC nei campioni di normalizzazione e controllo

1 rapporti tra i numeri di eventi di segnale e controllo sono stabili nel tempo

- I meccanismi di produzione del B⁰_(s), che possono cambiare l'accettanza e l'isolamento, sono nelle giuste proporzioni nei MC
- (3) Le scale di massa e le risoluzioni sono state studiate nei dati sui mesoni $J/\psi, \ \psi(2S), \ \Upsilon(nS)$

Altri studi di effetti sistematici e di controllo

- I rapporti tra i numeri di eventi di segnale e controllo sono stabili nel tempo
 I meccanismi di produzione del B⁰_(s), che possono cambiare l'accettanza e l'isolamento, sono nelle giuste proporzioni nei MC
- § Le scale di massa e le risoluzioni sono state studiate nei dati sui mesoni $J/\psi, \ \psi(2S), \ \Upsilon(nS)$

- CMS
- 1 rapporti tra i numeri di eventi di segnale e controllo sono stabili nel tempo
- **2** I meccanismi di produzione del $B^0_{(s)}$, che possono cambiare l'accettanza e l'isolamento, sono nelle giuste proporzioni nei MC
- 3 Le scale di massa e le risoluzioni sono state studiate nei dati sui mesoni $J/\psi,$ $\psi(2S),$ $\Upsilon(nS)$

Selezione del candidato $B^0_{(s)}$: il vertice secondario

• Dopo una preselezione leggera, le variabili fanno parte del training del BDT

- Segnale = $B_s^0 \rightarrow \mu^+ \mu^-$ MC; Fondo = bande laterali dei dati
- Grande separazione tra segnale e fondo combinatorio:

Separano il segnale, che è isolato, dal fondo contenente tracce da *jet* Somma su tutte le tracce in un cono intorno al B⁰_(s) o ai due muoni:

$$I = \frac{p_T(B)}{p_T(B) + \sum_{\text{trk}} p_T}$$

2 d⁰_{ca} minimo delle tracce
3 Numero di tracce vicine

CMS

Analisi binned

- Il numero di eventi in ogni intervallo di massa è una variabile stocastica che soddisfa la statistica di Poisson
 - Intervalli di massa: [4.9, 5.2, 5.3, 5.45, 5.9] GeV
- Il totale è la somma di variabili poissoniane
 - comb. + raro + signali
- Il numero atteso di decadimenti ricostruiti è

$$\nu_i = \frac{\mathcal{B}_{\rm SM}(B^0_{(s)} \to \mu^+ \mu^-)}{\mathcal{B}(B^\pm \to J/\psi K^\pm) \times \mathcal{B}(J/\psi \to \mu^+ \mu^-)} \frac{f_{\rm s}}{f_{\rm u}} \frac{\epsilon_{B_s^0}}{\epsilon_{B^\pm}} N_{\rm obs}^{B^\pm}$$

• La verosimiglianza è il prodotto di tutte le variabili poissoniane e di tutti i vincoli (gaussiane biforcate)

Analisi *binned* per il limite superiore di $\mathcal{B}(B^0 \to \mu^+ \mu^-)$

- Il totale è la somma di variabili poissoniane
- Limite superiore estratto col metodo CL_S

		$N_{\rm signal}^{\rm exp}$	$N_{\rm total}^{\rm exp}$
2011	B^0 Barrel	0.27 ± 0.03	1.3 ± 0.8
	B_s^0 Barrel	2.97 ± 0.44	$\textbf{3.6}\pm\textbf{0.6}$
	B^0 Endcap	0.11 ± 0.01	1.5 ± 0.6
	B^0_s Endcap	1.28 ± 0.19	2.6 ± 0.5
2012	B^0 Barrel	1.00 ± 0.10	7.9 ± 3.0
	B_s^0 Barrel	11.46 ± 1.72	17.9 ± 2.8
	B^0 Endcap	$\textbf{0.30}\pm\textbf{0.03}$	2.2 ± 0.8
	B^0_s Endcap	3.56 ± 0.53	5.1 ± 0.7

• Limite superiore sulla FD di $B^0 \rightarrow \mu^+ \mu^-$ atteso:

$$\begin{array}{ll} 6.3^{+2.7}_{-2.0} \times 10^{-10} & \text{MS} \\ 5.4^{+2.3}_{-1.6} \times 10^{-10} & \text{solo fondo} \end{array}$$

- *Fit* simultaneamente in ogni categoria di dati per estrarre insieme $\mathcal{B}(B^0_{(s)} \to \mu^+ \mu^-)$:
 - 1 Muoni centrali ($|\eta| < 1.4$) or in avanti
 - 2 Condizioni di dati 2011 o 2012
 - 8 Bin di BDT
- 5 contributi all'UML:

$$L = N_{B_s^0} F_{B_s^0} + N_{B^0} F_{B^0} + N_{\text{comb}} F_{\text{comb}} + N_{\text{peak}} F_{\text{peak}} + N_{\text{semi}} F_{\text{semi}}$$

La FD è:

$$\mathcal{B}(B_s^0 \to \mu^+ \mu^-) = N_{B_s^0} \times K_{B_s^0}$$

dove

$$K_{B_s^0} = (N_{B^{\pm}}) \left(\frac{f_s}{f_u}\right) \left(\frac{\epsilon_{B_s^0}}{\epsilon_{B^{\pm}}}\right) \left(\frac{1}{\mathcal{B}(B^{\pm} \to J/\psi K^{\pm}) \times \mathcal{B}(J/\psi \to \mu^+ \mu^-)}\right)$$

• Incertezze sistematiche aggiunte con parametri di rumore gaussiani

• La verosimiglianza estesa è data da 5 contributi:

 $L = N_{B_s^0} F_{B_s^0} + N_{B^0} F_{B^0} + N_{\rm comb} F_{\rm comb} + N_{\rm peak} F_{\rm peak} + N_{\rm semi} F_{\rm semi}$

- Implementato un errore per evento: la larghezza della pdf presa direttamente dall'incertezza sulla massa invariante dell'evento $\sigma(\eta)$
 - Utilizzato un errore sulla massa ridotto: $\sigma_r(\eta)\equiv\sigma(\eta)/m$ per rimuovere la sua dipendenza lineare dalla massa
- La pdf totale è la pdf di massa \times pdf dell'errore sulla massa ridotto $M^R(\sigma_r(\eta))$
- La pdf $M^R(\sigma_r(\eta))$ è descritta col metodo dei nuclei gaussiani
 - La pdf unbinned è fatta dalla somma di pdf normali (uno per evento)

Modello

- pdf del segnale = Crystal Ball con errore dato per evento:
 - Larghezza barrel pprox 50 MeV
 - Larghezza endcap pprox 80 MeV
- pdf combinatoria = polinomio di primo ordine
 - Forma studiata sulle bande laterali e sui muoni non BDT
- pdf del picco raro = Crystal Ball + gaussiana, che tiene di conto
 - Larghezza dovuta all'assegnamento della massa di muone a kaoni, pioni, protoni
 - **2** Larghezza dovuta ai differenti valori delle masse di B_s^0 , B^0 , Λ_b^0
- pdf del semileptonico raro descritta col metodo nei nuclei gaussiani
 - La pdf unbinned è fatta dalla somma di pdf normali (uno per evento)

Risultati: l'unblinding

• Dopo la scelta finale di tutte le selezioni, i risultati possono essere estratti

- Fit fatti coi due metodi 1D-BDT e categorized BDT
- Risultati Categorized BDT:

$$\begin{split} \mathcal{B}(B^0_s \to \mu^+ \mu^-) &= (3.0^{+1.0}_{-0.9}) \times 10^{-9} \qquad \left[\text{SM} : (3.66 \pm 0.23) \times 10^{-9} \right] \\ \mathcal{B}(B^0 \to \mu^+ \mu^-) &= (3.5^{+2.1}_{-1.8}) \times 10^{-10} \qquad \left[\text{SM} : (1.06 \pm 0.09) \times 10^{-10} \right] \end{split}$$

• 1D-BDT:

- $\mathcal{B}(B^0_{(s)} \to \mu^+ \mu^-)$ sono dominati dall'incertezza statistica
 - LHC fornirà centinaia e migliaia di fb^{-1} a CMS a $\sqrt{s}\approx 14\,{\rm TeV}$

$\mathcal{L}(fb^{-1})$	$\delta {\cal B}/{\cal B}(B^0_s)$	$\delta {\cal B}/{\cal B}(B^0)$	B^0 sign.	$\delta \frac{\mathcal{B}(B^0 \to \mu^+ \mu^-)}{\mathcal{B}(B^0_s \to \mu^+ \mu^-)}$
100 (2015–2017)	15%	66%	0.5–2.4 σ	71%
300 (2019–2021)	12%	45%	1.3–3.3 σ	47%
3000 (2023–)	12%	18%	5.4–7.6 σ	21%

- Gli aggiornamenti di CMS sul tracciatore ed i rivelatori di μ sono essenziali
- L'aspetto più impegnativo saranno i tassi dei trigger ed il pile-up
 - $\rightarrow~{\rm Fino}~{\rm a}<\mu>=$ 140 PVs