Search for *CP* violation using T-odd observables in charm meson decays

Jinlin Fu

on behalf of the LHCb collaboration INFN-Milano XIV Incontri di Fisica delle Alte Energie Roma Tor Vergata, 8 - 10 April 2015

INFN

Rama 8-10 aprile 2015 IFÁE INCONTRI DI FISICA DELLE ALTE ENERGIE 2015

< 回 > < 回 > < 回 >

J. FU (INFN-Milano)

CPV using T-odd observables in charm decay

IFAE 2015 1 / 14

Physics Motivation

- *CPV* in charm decays is very suppressed in the SM: ≤ 0.1%. The first evidence of *CPV* in D⁰ → K⁺K⁻, π⁺π⁻ decays not confirmed by recent results.
- The study of *CPV* in singly Cabibbo-suppressed charm decays is uniquely sensitive to NP in $c \rightarrow us\bar{s}$, $ud\bar{d}$ transitions, in particular to new contribution to $\Delta C = 1 \ QCD$ penguin and chromomagnetic dipole operators.

 The analysis of four-body charm decays probes for CPV in different phase space regions. Sensitivity enhanced due to several interfering amplitudes with different relative strong phases.

Experimental Technique

• T-odd triple products based on spin or momentum: I. Bigi arXiv:0902.3048

• T-odd asymmetries built for CP conjugate decays:

$$A_{T} = \frac{\Gamma(C_{T} > 0) - \Gamma(C_{T} < 0)}{\Gamma(C_{T} > 0) + \Gamma(C_{T} < 0)}$$

$$\bar{A}_{T} = \frac{\Gamma(-\bar{C}_{T} > 0) - \Gamma(-\bar{C}_{T} < 0)}{\Gamma(-\bar{C}_{T} > 0) + \Gamma(-\bar{C}_{T} < 0)}$$

- True *CP*-violating observable cancel FSI effects $a_{CP}^{T-\text{odd}} = \frac{1}{2}(A_T - \bar{A}_T)$
- Production asymmetry and charged track reconstruction asymmetry cancel by construction: low systematic uncertainty.

T-odd observables and sensitivity to CPV Phys. Rev. D39 (1989) 3339

- Invariant matrix element in $B(p) \rightarrow V_1(k, \epsilon_1)V_2(q, \epsilon_2)$: S + D + P $M = a\epsilon_1 \cdot \epsilon_2 + \frac{b}{m_1m_2}(p \cdot \epsilon_1)(p \cdot \epsilon_2) + i\frac{c}{m_1m_2}\epsilon^{\alpha\beta\mu\nu}\epsilon_{1\alpha}\epsilon_{2\beta}k_{\mu}p_{\nu}$ $a = \sum_j |a_j|e^{i(\delta_{sj}+\phi_{sj})}; b = \sum_j |b_j|e^{i(\delta_{dj}+\phi_{dj})}; c = \sum_j |c_j|e^{i(\delta_{pj}+\phi_{pj})}: \delta$ strong phase, ϕ weak phase.
- Interference between P and other partial waves disappear, when integrate over full phase space:

$$\sum_{\lambda_1\lambda_2} |M|^2 = \underbrace{|a|^2(2+x^2)}_{S-S} + \underbrace{|b|^2(x^2-1)^2}_{D-D} + \underbrace{|c|^22(x^2-1)}_{P-P} + \underbrace{2Re[ab^*]x(x^2-1)}_{S-D}$$

- A triple-product correlation wrt $\vec{k} \cdot \vec{\epsilon_1} \times \vec{\epsilon_2}$ is sensitive to the interference of S - P waves ($\propto \text{Im}[ac^*]$) and D - P waves ($\propto \text{Im}[bc^*]$) $A_T = \frac{N_{\text{events}}(\vec{k} \cdot \vec{\epsilon_1} \times \vec{\epsilon_2} > 0) - N_{\text{events}}(\vec{k} \cdot \vec{\epsilon_1} \times \vec{\epsilon_2} < 0)}{N_{\text{total}}}$ $\sim \text{Im}[ac^*] = |ac|e^{i(\delta_s - \delta_p)}e^{i(\phi_s - \phi_p)} \sim |ac|\sin(\Delta\delta + \Delta\phi)$
- For *CP* conjugate decay: $\bar{A}_T \sim |ac|e^{i(\delta_s - \delta_p)}e^{-i(\phi_s - \phi_p)} \sim |ac|\sin(\Delta \delta - \Delta \phi)$
- *CP*-violating observable: $a_{CP}^{T-\text{odd}} = \frac{1}{2}(A_T \bar{A}_T) \approx \cos \Delta \delta \sin \Delta \phi$

Complementary approach to direct CPV searches

• Sensitive to different relative phases:

 $\begin{array}{l} A_{C\!P} \propto \sin(\delta_1 - \delta_2) \sin(\phi_1 - \phi_2) \\ = \sin \Delta \delta \prime \sin \Delta \phi \prime : 1, 2 \text{ different amplitudes} \\ a_{C\!P}^{T\text{-odd}} \propto \cos(\delta_s - \delta_p) \sin(\phi_s - \phi_p) \\ = \cos \Delta \delta \sin \Delta \phi : \text{ s,p different partial waves} \end{array}$

 In contrast to the asymmetry between the phase-space integrated rates in a D⁰ → V₁V₂ decay (V_i, vector meson), a^{T-odd}_{CP} is sensitive to CPV in the interference between even- and odd- partial waves of the V₁V₂ system.

Experimental status

• Previous measurements of $a_{CP}^{T\text{-odd}}$ in charm decays consistent with no *CPV*.

$D^0 ightarrow K^+ K^- \pi^+ \pi^-$	N _{sig}	$a_{CP}^{T-\text{odd}}$
FOCUS(2005)	800	$a_{CP}^{T-\text{odd}}(D^0) = (1.0 \pm 5.7 \pm 3.7)\%$ [1]
Babar(2010)	47k	$a_{CP}^{T-\text{odd}}(D^0) = (0.10 \pm 0.51 \pm 0.44)\%$ [2]
$D^+_{(s)} ightarrow K^+ K^0_S \pi^+ \pi^-$		
FOCUS(2005)	500	$a_{CP}^{ au ext{-odd}}(D^+) = (2.3\pm6.2\pm2.2)\%$ [1]
	500	$a_{CP}^{ au- ext{odd}}(D_{s}^{+}) = (-3.6 \pm 6.7 \pm 2.3)\%$
BaBar(2011)	20k	$a_{CP}^{T\text{-odd}}(D^+) = (-1.20 \pm 1.00 \pm 0.46)\%$ [3]
	30k	$a_{CP}^{T-\mathrm{odd}}(D_s^+) = (-1.36 \pm 0.77 \pm 0.34)\%$

[1] Phys. Lett. B622 (2005) 239 , [2] Phys. Rev. D 81 (2010) 111103 , [3] Phys. Rev. D 84 (2011) 031103 .

Measurements at LHCb

- D^0 flavor tagged using semileptonic B decays $B \rightarrow D^0 \mu^- X$.
- 171k $D^0 \rightarrow K^+ K^- \pi^+ \pi^-$ reconstructed using a data set of 3 fb⁻¹.
- Triple-products:

$$egin{aligned} C_T \equiv ec{
ho}_{\mathcal{K}^+} \cdot (ec{
ho}_{\pi^+} imes ec{
ho}_{\pi^-}), ext{ for } D^0 \ ec{C}_T \equiv ec{
ho}_{\mathcal{K}^-} \cdot (ec{
ho}_{\pi^-} imes ec{
ho}_{\pi^+}), ext{ for } ar{D}^0 \end{aligned}$$

- Tel - N

Analysis Strategy

- Dataset divided into 4 samples depending on D⁰ flavor and C_T value.
- The number of signal events retrieved by simultaneous fit to the four distributions of m(K⁺K⁻π⁺π⁻). Asymmetry parameters A_T, Ā_T extracted from the fit.

$$\begin{split} &N_{D^0,C_T>0} = \frac{1}{2} N_{D^0} (1+A_T), \\ &N_{D^0,C_T<0} = \frac{1}{2} N_{D^0} (1-A_T), \\ &N_{\bar{D}^0,-\bar{C}_T>0} = \frac{1}{2} N_{\bar{D}^0} (1+\bar{A}_T), \\ &N_{\bar{D}^0,-\bar{C}_T<0} = \frac{1}{2} N_{\bar{D}^0} (1-\bar{A}_T). \end{split}$$

- Three measurements
 - Measurement integrated in the phase space.
 - Measurement in different regions of the phase space.
 - Measurement as a function of D⁰ proper time (sensitive to indirect CPV).

< 口 > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

Integrated measurement

$$\begin{aligned} A_T &= (-7.18 \pm 0.41(\text{stat}) \pm 0.13(\text{syst}))\%\\ \bar{A}_T &= (-7.55 \pm 0.41(\text{stat}) \pm 0.12(\text{syst}))\%\\ a_{CP}^{T\text{-odd}} &= (0.18 \pm 0.29(\text{stat}) \pm 0.04(\text{syst}))\% \end{aligned}$$

- deviation of A_T , \overline{A}_T from zero not large but sizable due to re-scattering at low energy.
- $a_{CP}^{T-\text{odd}}$ consistent with no CPV hypothesis.

4 Th

Measurement in phase space regions

• The phase space is divided into 32 bins following a binning scheme based on the Cabibbo-Maksimowicz variables: Phys. Rev. 137 (1965) B438. $m_{\pi^+\pi^-}^2$, $m_{K^+K^-}^2$, $cos(\theta_{\pi})$, $cos(\theta_{K})$, and ϕ .

• $a_{CP}^{T-\text{odd}}$ consistent with no *CPV* hypothesis with a probability of 74%. A_T and \bar{A}_T are significantly different among the different bins due to FSI effects.

Asymmetries over the phase space

J. FU (INFN-Milano)

Measurement of $a_{CP}^{T-\text{odd}}$ as a function of D^0 proper time

- a^{T-odd}_{CP} consistent with no time-dependent CPV hypothesis with a probability of 83%.
- A_T and Ā_T do not show any significant dependance on the proper time, compatible with a constant at 80% and 38% probability, respectively.

Systematic Uncertainties

Contribution $A (0/) A (0/) A (0/)$	$\langle \rangle$
Contribution $\Delta A_T(\%) \Delta A_T(\%) \Delta a_{CP}^{-300}(\%)$	0)
Prompt bkg ± 0.09 ± 0.08 ± 0.0)0
Detector bias ± 0.04 ± 0.04 ± 0.04)4
C_T resolution ± 0.02 ± 0.03 ± 0.03)1
Fit Model ±0.01 ±0.01 ±0.0)1
Flavor misid. ± 0.08 ± 0.07 ± 0.07	00
Total $\pm 0.13 \pm 0.12 \pm 0.00$)4

- PID: $a_{CP}^{T-\text{odd}}$ not dependent on variation of PID.
- Reconstruction Efficiency: not dependent on C_{T} .
- C_T resolution: estimated accurately from MC.
- Prompt bkg: any contamination affects the asymmetry: A → A(1 − f) + fA^d.
 f-contamination fraction; A^d-asymmetry of the contamination sample; fA^d very small effect.
- Detector bias: conservative estimate from control sample $D^0 \to K^- \pi^+ \pi^- \pi^+$ (Cabibbo favored decay).
- Flavor misID: wrongly identified muon candidates $\Rightarrow a_{CP}^{T-\text{odd}} \rightarrow a_{CP}^{T-\text{odd}} - \Delta \omega/2(A_T + \bar{A}_T), \Delta \omega$ -difference among the mistag probabilities, measured from control samples $B \rightarrow D^{*+}\mu^- X$ $(D^{*+} \rightarrow D^0 \pi^+, D^0 \rightarrow K^+ K^- \pi^+ \pi^-)$

Summary

- $a_{CP}^{T\text{-odd}}$ analysis is a complementary approach for CPV searches.
- *CPV* is searched for in $D^0 \rightarrow K^+ K^- \pi^+ \pi^-$ using three methods:
 - measurement integrated over the phase space.
 - measurement in different regions of the phase space.
 - measurement as a function of the D^0 decay time for the first time.
- All results consistent with no CPV.
- Established an alternative approach for precision *CPV* searches at LHCb with very small systematic uncertainties.
- Technique is very promising also for LHCb upgrade.

A (10) A (10)