

Hyperon-nucleons and Hyperon-pions final states in FINUDA

A.Filippi, INFN Torino

Analyses by S. Piano & E. Bonifazi, INFN Trieste

Outline of the talk

- Study of K⁻ multinucleon absorptions
 - K⁻(ppnn): At correlation on ⁶Li, ⁷Li and ⁹Be targets
 - K⁻(ppn): ∧d on ⁶Li targets
- Study of K⁻p interaction: Σ[±] production and coincidences with π[∓]
 - First use of neutron detection information
 - π^{\pm} coincidences: search for $\Sigma^0(1385)$ and $\Lambda(1405)$ possible signatures
 - $\Sigma^0(1385) \rightarrow \Sigma \pi$: B.R. = 18%, Γ = 36 MeV
 - $\Lambda(1405) \rightarrow \Sigma \pi$: two pole structure
 - » Higher mass: m = 1420 MeV, narrow (Γ~35-50 MeV), coupled to KN
 - » Lower mass: m = 1395 MeV, wide (Γ ~65-130 MeV), coupled to $\Sigma \pi$

Inclusive ∧ momentum spectrum (→AMADEUS)

Study of At correlation PLB 669 (2008), 229

MeV/c² S Counts / $(A = {}^{6}Li, {}^{7}Li, {}^{9}Be)$ 1150 1200 1250 1300 1100 (π, p) Invariant Mass (MeV/c²)

- A signal without background
- High momenta for both particles
- Clear angular (back-to-back) correlation

- 40 events on light targets \mathbf{O}
- Capture rate: 6x10⁻⁴/K⁻stop

 Λ and t momentum distribution compatible with:

- Four nucleon absorption • on α with (Λ t) or (Λ t)N emission
- Four nucleon absorption • with (St) emission
- 2-step pickup reaction (suppressed?)

Study of ⁶Li(K⁻,Ad)X: further steps

- 1st run data analysis: PLB654 (2007), 80
- Exclusive analysis: Ad invariant mass
- Use of ⁶Li target: low background and small FSI effects
 - 6 Li = [α +d] cluster
 - Bump observed at M_{Ad} = 3251 MeV, Γ_{Ad} =37 MeV
 - Back-to-back Ad pairs

• 2nd run data analysis

- 8x statistics on ⁶Li (⁷Li, ⁹Be)
- Further selections can be applied:
 - missing mass cut to separate Λd from Σ⁰(Λγ)d contributions

Method applied by E549 in ⁴He(K⁻_{stop}, d)

signal compatible with an absorption on α with a spectator deuteron and emission of a 25 MeV neutron:

⁶Li(K⁻_{stop}, Λd)nd

$K^{-}_{stop}{}^{6}Li \rightarrow \Lambda dX$ missing mass studies

Clean separation of Ad and $\Sigma^{0}(\rightarrow \Lambda \gamma)d$ components Miss. Mass resolution: ~6 MeV

(ed A Momentum (MeV/c) not acceptance corrected

600

400

200

 $K^{\text{-}}_{\text{stop}} \ ^{6}\text{Li} \rightarrow \Sigma^{0} \ d \ X$

400

600

200

$K^{-}_{stop}{}^{6}Li \rightarrow AdX$ invariant mass with missing mass selection

Agreement with E549 results (⁴He)
 K⁻ is absorbed on "α" (⁶Li = α + d)

 FINUDA can detect n with Λd pairs: K⁻_{stop} ⁶Li → Λ (Σ⁰) d n X accounts for ~90% "Λ (Σ⁰) d" data

 Disagreement with Katz results The role of Σ⁰ is not negligible

 Disagreement with Roosen results No data for M_{Λd} < 3100 MeV/c²

Neutrons from Σ⁺ in FINUDA

- n/γ signal discrimination by TOFONE
- π^+ identification by all p.id. layers
- Neutron selection:
 - $-\pi^+$ momentum in the $\Sigma^+ \rightarrow n\pi^+$ window
 - Back-to-back ($n\pi^+$) pair: $\cos\theta_{\pi n} < -0.97$
 - p_n = 187.6 ± 0.2 MeV/c
 - σ(p_n) = 9.4 MeV/c

(cfr 185 MeV/c for Σ decay at rest)

Σ⁺ and **Σ⁻** identification in $(n\pi^{-}\pi^{+})$ events

- Σ^+ : (n π^+) invariant mass + p_{π^+} < 189 MeV/c (+ p_{π^-} > 140 MeV/c) - m = (1188.17 ± 0.15) MeV/c², Γ = (8.20 ± 0.38) MeV, S/N(2 σ) ~ 0.94
- Σ^{-} : (n π^{-}) invariant mass + $p_{\pi^{-}}$ < 192 MeV/c (+ $p_{\pi^{+}}$ > 150 MeV/c)
 - m = (1194.83 ± 0.17) MeV/c², Γ = (12.78 ± 0.47) MeV, S/N(2 σ) ~ 1.37

Study of the $(\Sigma^- \pi^+)$ system: missing mass

• central peak: $\Sigma^{-}\pi^{+}$ production on one nucleon $K^{-2}A \rightarrow \Sigma^{-}\pi^{+} + Z^{-1}(A-1)$

right: Σ⁻π⁺ production
 on two nucleons

• left: misidentified Σ^- (γ background)

($\Sigma^{-} \pi^{+}$) invariant mass

Montecarlo simulation: signal from QF K⁻A $\rightarrow \Sigma^{-}\pi^{+}A^{+}$ reaction

No need to introduce the higher mass $\Lambda(1405)$ -pole signal to reproduce the data!

$(\Sigma^{-}\pi^{+})$ invariant mass

 $\Sigma^{-}\pi^{+}$ production on one nucleon: **QF** reaction? YES! Λ(1405) signal? NO!

 $\Sigma^{-}\pi^{+}$ production on two nucleons (one missing nucleon in the final state)

1400

1450

Entries

7Li

Minv $\Sigma^{+}\pi^{+}$ 7Li

70 60

50 40

30

20 10

1350

Counts/(5 Mev/C²)

Evidence for a low mass component produced together a missing nucleon: Σ⁰(1385) or Λ(1405) lower mass pole (~1395 MeV/c²) K⁻A →Σ⁰(1385) / ∧(1405) NA'

 $\Sigma \pi$

Minv Σ⁺π⁻ 7Li

Counts/(5 Mev/C²)

50

30

20

10

1300

1350

1400

$(\Sigma^+ \pi^-)$ invariant mass

 $\Sigma^+\pi^-$ production on one nucleon: **QF** reaction

7Li

 $\Sigma^+\pi^-$

1450

 $\Sigma^+\pi^-$ production on two nucleons

Evidence for a low mass component produced together a missing nucleon: Σ⁰(1385) or Λ(1405) lower mass pole (~1395 MeV/c²) K⁻A →Σ⁰(1385) / ∧(1405) NA'

Conclusions

Ad correlation study: sizeable steps further in the analysis

- Use of full available statistics, more stringent cuts can be applied (missing mass studies)
- Sizeable (and unexpected) contribution from the Σ^0 d channel
- Neutron coincidence selections (work started and in progress)
- Good capabilities of FINUDA to identify charged Σ hyperons with high statistics
 - Excellent π p.id. efficiency
 - Neutron identification by TOF
 - Study of $(\Sigma \pi)$ coincidence events
 - Missing mass cut to discard background and identify production sources
 - Production on one nucleon
 - » Quasi-free reaction
 - » No evidence of $\Lambda(1405)$ (higher pole)
 - Production on two nucleons
 - » Clear signal of an excitation at ~1380 together with a nucleon: $\Sigma(1385)$ or contribution from the lowest $\Lambda(1405)$ pole
- Last but not least...

A Momentum: FINUDA inclusive spectra

Inclusive Λ momentum spectra on all targets, NOT acceptance corrected

The requirement of a µ⁺ coincidence eliminates possible distortions due to the applied trigger

The two component structure remains - K⁻ [N] - K⁻ [NN]